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Summary

Secure two-party computation allows two parties to evaluate a function on their pri-
vate inputs while keeping all information private except what can be inferred from
the outputs. A major building block and the foundation for many efficient secure
computation protocols is oblivious transfer (OT). In an OT protocol a sender inputs
two messages (x0, x1) while a receiver with choice bit c wants to receive message xc.
The OT protocol execution guarantees that the sender learns no information about c
and the receiver learns no information about x1−c.

This thesis focuses on the efficient generation of OTs and their use in secure compu-
tation. In particular, we show how to compute OTs more efficiently, improve generic
secure computation protocols which can be used to securely evaluate any functional-
ity, and develop highly efficient special-purpose protocols for private set intersection
(PSI). We outline our contributions in more detail next.

More Efficient OT Extensions. The most efficient OT protocols are based on
public-key cryptography and require a constant number of exponentiations per OT.
However, for many practical applications where millions to billions of OTs need to be
computed, these exponentiations become prohibitively slow. To enable these appli-
cations, OT extension protocols [Bea96, IKNP03] can be used, which extend a small
number of public-key-based OTs to an arbitrarily large number using cheap symmetric-
key cryptography only.

We improve the computation and communication efficiency of OT extension pro-
tocols and show how to achieve security against malicious adversaries, which can
arbitrarily deviate from the protocol, at low overhead. Our resulting protocols can
compute several million of OTs per second and we show that, in contrast to previous
belief, the local computation overhead for computing OTs is so low that the main
bottleneck is the network bandwidth.
Parts of these results are published in:

• G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More Efficient Oblivious Transfer and
Extensions for Faster Secure Computation. In 20th ACM Conference on Computer and Com-
munications Security (CCS’13).

• G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More Efficient Oblivious Transfer Extensions
with Security for Malicious Adversaries. In 34th Advances in Cryptology – EUROCRYPT’15.

• G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More Efficient Oblivious Transfer Extensions.
To appear in Journal of Cryptology. Online at http://eprint.iacr.org/2016/602.
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Communication-Efficient Generic Secure Two-Party Computation. Generic
secure two-party computation techniques allow to evaluate a function, represented as a
circuit of linear (XOR) and non-linear (AND) gates. One of the most prominent generic
secure two-party computation protocols is Yao’s garbled circuits [Yao86], for which
many optimizations have been proposed. Shortly after Yao’s protocol, the generic se-
cure protocol by Goldreich-Micali-Wigderson (GMW) [GMW87] was introduced. The
GMW protocol requires a large number of OTs and was believed to be less efficient
for secure two-party computation than Yao’s protocol [HL10, CHK+12].

We improve the efficiency of the GMW protocol and show that it can outperform
Yao’s garbled circuits protocol in settings with low bandwidth. Furthermore, we utilize
the flexibility of OT and outline special-purpose constructions that can be used within
the GMW protocol and which improve its efficiency even further.
Parts of these results are published in:

• T. Schneider, M. Zohner. GMW vs. Yao? Efficient Secure Two-Party Computation with
Low Depth Circuits. In 17th International Conference on Financial Cryptography and Data
Security (FC’13).

• D. Demmler, T. Schneider, M. Zohner. ABY - A Framework for Efficient Mixed-Protocol
Secure Two-Party Computation. In 22th Network and Distributed System Security Symposium
(NDSS’15).

• G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, S. Zeitouni, M. Zohner. Pushing
the Communication Barrier in Secure Computation using Lookup Tables. In 24th Network
and Distributed System Security Symposium (NDSS’17).

Faster Private Set Intersection (PSI). PSI allows two parties to compute the
intersection of their private sets without revealing any element that is not in the
intersection. PSI is a well-studied problem in secure computation and many special-
purpose protocols have been proposed. However, existing PSI protocols are several
orders of magnitude slower than an insecure naive hashing solution that is used in
practice. In addition, many protocols were compared in a biased fashion, which makes
it difficult to identify the most promising solution for a particular scenario.

We systematize the progress made on PSI protocols by reviewing, optimizing, and
comparing existing PSI protocols. We then introduce a novel PSI protocol that is
based on our efficiency improvements in OT extension protocols and which outperforms
existing protocols by up to two orders of magnitude.
Parts of these results are published in:

• B. Pinkas, T. Schneider, M. Zohner. Faster Private Set Intersection Based on OT Extension.
In 23th USENIX Security Symposium (USENIX Security’14).

• B. Pinkas, T. Schneider, G. Segev, M. Zohner. Phasing: Private Set Intersection using
Permutation-based Hashing. In 24th USENIX Security Symposium (USENIX Security’15).

• B. Pinkas, T. Schneider, M. Zohner. Scalable Private Set Intersection Based on OT Extension.
Journal paper. In submission. Online at http://iacr.eprint.org/2016/930.

http://iacr.eprint.org/2016/930


Zusammenfassung

Sichere Zweiparteienberechnung erlaubt es zwei Parteien eine Funktion auf ihren pri-
vaten Eingabedaten zu evaluieren ohne dass Informationen über die Eingabedaten, die
nicht von der Ausgabe ableitbar sind, preisgegeben werden. Ein wichtiger Baustein und
die Grundlage für viele sichere Berechnungsprotokolle ist Oblivious Transfer (OT). In
einem OT Protokoll interagieren ein Sender mit Nachrichten (x0, x1) und ein Empfänger
mit Auswahlbit c, sodass der Empfänger die Nachricht xc empfängt ohne dass der
Sender Informationen über c oder der Empfänger Informationen über x1−c lernt.

Diese Dissertation befasst sich mit der effizienten Generierung von OTs und deren
Einsatz im Gebiet der sicheren Zweiparteienberechnung. Wir zeigen wie OTs effizien-
ter generiert werden können, verbessern generische sichere Berechnungsprotokolle, die
dazu genutzt werden können um jede Funktion sicher zu berechnen, und entwick-
eln hoch effiziente sichere Berechnungsprotokolle für private Schnittmengenberechnung
(PSI). Im Folgenden beschreiben wir unseren wissenschaftlichen Beitrag detaillierter.

Effizientere OT Extension Protokolle. Die meisten effizienten OT Protokolle
basieren auf asymmetrischer Verschlüsselung und benötigen eine konstante Anzahl von
Exponentiationen pro OT. Für praktische Anwendungen, in denen Millionen bis Mil-
liarden von OTs benötigt werden, ist diese hohe Anzahl an Exponentiationen allerdings
untragbar. Um solche Anwendungen trotzdem zu realisieren, wurden OT Extension
Protokolle [Bea96, IKNP03] eingeführt, die eine kleine Anzahl von OTs aus Protokollen
die auf asymmetrischer Verschlüsselung beruhen mittels effizienter symmetrischer Ver-
schlüsselung auf eine beliebige Anzahl von OTs ausdehnen.

Wir verbessern die Berechnungs- und Kommunikationseffizienz von OT Extension
Protokollen und zeigen auf wie Sicherheit gegen stärkere, aktive Angreifer, welche be-
liebig von der Protokollausführung abweichen können, mittels geringem Mehraufwand
erreicht werden kann. Unsere Protokolle ermöglichen die Generierung von mehreren
Millionen OTs pro Sekunde, wobei die Netzwerkkommunikation den Flaschenhals dar-
stellt anstatt, wie allgemein vermutet, die Berechnungskomplexität.
Teile dieser Ergebnisse wurden publiziert in:

• G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More Efficient Oblivious Transfer and
Extensions for Faster Secure Computation. In 20ter ACM Konferenz zu Computer and Com-
munications Security (CCS’13).

• G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More Efficient Oblivious Transfer Extensions
with Security for Malicious Adversaries. In 34ter Advances in Cryptology – EUROCRYPT’15.

• G. Asharov, Y. Lindell, T. Schneider, M. Zohner. More Efficient Oblivious Transfer Extensions.
Erscheint in Journal of Cryptology. Online auf http://eprint.iacr.org/2016/602.
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Kommunikationseffiziente, Generische, Sichere Zweiparteienberechnung.
Protokolle zur generischen sicheren Zweiparteienberechnung erlauben es eine Funktion
zu evaluieren, die als Schaltkreis aus linearen (XOR) und nichtlinearen (UND) Gattern
dargestellt ist. Eines der prominentesten Protokolle in diesem Umfeld ist Yao’s Gar-
bled Circuits [Yao86], für welches viele Optimierungen vorgeschlagen wurden. Kurz
nach Yao’s Protokoll wurde das generische, sichere Protokoll von Goldreich-Micali-
Wigderson (GMW) [GMW87] vorgeschlagen, welches aber aufgrund seiner hohen Ab-
hängigkeit von OT als weniger effizient für generisch, sichere Zweiparteienberechnung
als Yao’s Protokoll angesehen wurde [HL10, CHK+12].

Wir verbessern die Effizienz des GMW Protokolls und zeigen, dass es besser in
Szenarien mit niedriger Bandbreite abschneidet als Yao’s Protokoll. Zudem nutzen
wir die Flexibilität von OT um Protokolle für spezielle Funktionen zu entwickeln, die
mit dem GMW Protokoll kombinierbar sind und dessen Effizienz weiter steigern.
Teile dieser Ergebnisse wurden publiziert in:

• T. Schneider, M. Zohner. GMW vs. Yao? Efficient Secure Two-Party Computation with
Low Depth Circuits. In 17ter Internationaler Konferenz zu Financial Cryptography and Data
Security (FC’13).

• D. Demmler, T. Schneider, M. Zohner. ABY - A Framework for Efficient Mixed-Protocol
Secure Two-Party Computation. In 22ter Network and Distributed System Security Symposium
(NDSS’15).

• G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider, S. Zeitouni, M. Zohner. Pushing
the Communication Barrier in Secure Computation using Lookup Tables. In 24ter Network
and Distributed System Security Symposium (NDSS’17).

Schnellere Private Schnittmengenberechnung (PSI). Mittels PSI können zwei
Parteien die Schnittmenge ihrer privaten Mengen berechnen ohne Elemente preis-
zugeben, die nicht in der Schnittmenge sind. Obwohl zahlreiche PSI Protokolle vorge-
schlagen wurden, sind alle derzeit existierenden Protokolle mehrere Größenordnungen
langsamer als eine unsichere Lösung, welche in der Praxis eingesetzt wird. Zudem wur-
den viele Protokolle unter ungleichen Bedingungen verglichen, was die Identifizierung
des vielversprechendsten Protokolls für ein bestimmtes Szenario erschwert.

Wir systematisieren existierende PSI Protokolle indem wir einen Überblick über
existierende Protokolle geben und diese dann optimieren und vergleichen. Zudem
entwickeln wir ein neues PSI Protokoll, das auf unseren Verbesserungen im Bereich
der OT Extension Protokolle basiert und die Leistung bestehender PSI Protokolle um
zwei Größenordnungen übertrifft.
Teile dieser Ergebnisse wurden publiziert in:

• B. Pinkas, T. Schneider, M. Zohner. Faster Private Set Intersection Based on OT Extension.
In 23ter USENIX Security Symposium (USENIX Security’14).

• B. Pinkas, T. Schneider, G. Segev, M. Zohner. Phasing: Private Set Intersection using
Permutation-based Hashing. In 24ter USENIX Security Symposium (USENIX Security’15).

• B. Pinkas, T. Schneider, M. Zohner. Scalable Private Set Intersection Based on OT Extension.
Journal Einreichung. Im Bewertungsprozess. Online auf http://iacr.eprint.org/2016/930.
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1 Introduction

In the setting of secure two-party computation, two parties P0 and P1 with respective
inputs x and y wish to compute a joint function f on their inputs without revealing any-
thing but the output f(x, y). This captures a large variety of tasks, including privacy-
preserving data mining, anonymous transactions, private database search, and many
more. Protocols for secure computation can be divided in two categories: Generic se-
cure computation protocols and special-purpose secure computation protocols. Generic
secure computation protocols, such as Yao’s garbled circuits [Yao86] or the protocol
by Goldreich-Micali-Wigderson (GMW ) [GMW87], are powerful techniques that can
be used to securely evaluate any function, represented as Boolean circuit. In contrast,
special-purpose protocols are tailored to one particular functionality but often achieve
a much higher efficiency than generic secure computation protocols.

Until the last decade [MNPS04], the bulk of research on secure computation was
mostly theoretical. Many held the opinion that secure computation will never be prac-
tical since carrying out cryptographic operations for every Boolean gate in a circuit
will never be fast enough to be of use. Due to many works that pushed secure compu-
tation further towards practical applications, this conjecture has been proven wrong
and it is possible to carry out secure computation at speeds that ten years ago would
have been inconceivable. In particular, protocols that provide security against semi-
honest (or passive) adversaries, which honestly follow the protocol but try to learn as
much information as possible from the execution, process several million Boolean gates
per second [LWN+15]. Protocols that provide security against stronger malicious (or
active) adversaries which can arbitrarily deviate from the protocol execution, process
several hundred thousand Boolean gates per second [LR15b, RR16].

A fundamental primitive in secure computation and the focus of this thesis is obliv-
ious transfer (OT). In an OT, a sender PS holds two input messages (x0, x1) of which
a receiver PR with choice bit c ∈ {0, 1} wants to obliviously obtain xc such that PS
learns no information about c and PR learns no information about x1−c. OT is a major
building block for many secure computation protocols. However, in [IR88, IR89] it was
shown that OT requires public key cryptography, which limits its efficiency. OT exten-
sion protocols [Bea96, IKNP03] greatly improve the efficiency of OT by extending a
small number of public-key-based OTs, called base-OTs, to an arbitrary number of OTs
using cheap symmetric-key cryptography only. However, even though OT extension
protocols greatly improve the efficiency of OT, their potential was underestimated and
protocols that were based on OT were believed to be less efficient than protocols based
on other techniques (e.g., OT-based GMW vs. Yao’s garbled circuits in [CHK+12]).

1



Chapter 1 Introduction 2

1.1 Outline and Scope

This thesis analyzes the following research question:

Can OT extension enable more efficient semi-honest secure two-party
computation?

To answer this research question, we derive three sub-questions that form the scope
and methodology of this work:

• §3: How efficient can OT extension protocols become?
Prior to this thesis, the most efficient OT extension protocol was due to [IKNP03].
Although the [IKNP03] protocol already required only symmetric operations
and few communication per OT, it was often overlooked as a building block for
efficient protocols [HL10] or practical implementations that used it were found to
be less efficient than related techniques [CHK+12]. We revisit the OT extension
protocol of [IKNP03] and perform a detailed protocol and algorithmic analysis
to identify and resolve bottlenecks. We then focus on features of protocols that
use OT as a building block and analyze how to improve OT extension protocols
based on these features.

• §4: Can OT extension enable more efficient semi-honest generic secure
two-party computation?
Most efficient generic secure two-party computation implementations focused on
Yao’s garbled circuits [Yao86]. Implementations of the GMW protocol [GMW87],
which heavily relies on OT, were believed to be less efficient in the two-party
case [CHK+12] due to higher computation, communication, and round complex-
ity. Using the results from the efficiency analysis of OT extension, we re-evaluate
the efficiency of the GMW protocol. We then analyze further possibilities how
OT can improve the performance of generic secure two-party computation.

• §5: Can OT extension enable more efficient semi-honest secure special-
purpose protocols?
One of the most prominent secure computation functionalities is private set in-
tersection (PSI), which allows two parties to compute the intersection of their
private sets without revealing elements that are not in the intersection. Various
special-purpose PSI protocols have been proposed, making it difficult to deter-
mine a suitable protocol for a particular setting. Furthermore, existing protocols
add several orders of magnitude overhead over insecure solutions, used in prac-
tice. We systematize the knowledge in the area of PSI by reviewing, categorizing,
optimizing, and evaluating existing PSI protocols. We then utilize our insights
in OT extension to further improve the efficiency of PSI.

We give the necessary background for this work in §2 and conclude this thesis and
outline directions for future work in §6.
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1.2 Summary of Our Results

Our results show that OT extension can indeed enable more efficient secure compu-
tation. In particular, we improve the run-time of OT extension protocols by at least
factor 2×. Using our efficient OT extension protocols, we show that OT-based generic
secure computation techniques achieve better communication than the state-of-the-art
Yao’s garbled circuits protocol. We show that our OT-based special-purpose PSI pro-
tocol achieves two orders of magnitude better run-time than existing solutions and is
only slightly slower than insecure solutions, used in practice. More detailed, we obtain
the following results:

Faster OT Extension (§3).
We improve the OT extension protocol of [IKNP03] by factor 3× in computation
and 2× in communication. For κ = 128-bit symmetric security, our most efficient
protocol generates OTs at a rate of up to 7 million per second and thread where each
OT requires 128 bit of communication. Furthermore, we improve the OT extension
protocol of [KK13], which generates OTs on single bits at a rate of up to 2.5 million
per second and thread where each OT requires 73 bit of communication whereas the
previous most efficient [KK13] instantiation generated OTs at a rate of 0.6 million per
second and thread with 80 bit of communication per OT. We then show how to achieve
malicious security for the [IKNP03] OT extension protocol at a cost overhead of 150%
compared to the semi-honest version.

Communication-Efficient Generic Secure Two-Party Computation (§4).
We achieve more communication-efficient secure two-party computation. In particular,
we show that each party in the GMW protocol each party has to send the same
data as in Yao’s garbled circuits protocol using our improved OT extension protocol
of [IKNP03] and only half of the data using our improved OT extension protocol
of [KK13]. We then design special-purpose protocols that are based on OT and which
further reduce the communication for certain functions by factor 1.5× to 30×. Finally,
we outline a framework that combines our special-purpose protocols with generic secure
computation techniques and allows us to combine the efficiency of special-purpose
protocols with the generality of generic secure computation protocols.

Faster Private Set Intersection (§5).
We review, categorize, and optimize existing works on PSI and perform an extensive
performance evaluation. Our optimized protocols outperform their original versions
by factor 2× to 5×. We then introduce a novel OT-based PSI protocol that utilizes
our efficient OT extension protocols and improves the run-time of existing protocols
by two orders of magnitude. Finally, we identify practical applications of PSI and
compare the performance of our OT-based PSI protocol with state-of-the-art insecure
solutions. Overall, our secure solutions reduce the overhead over insecure solutions in
practice to factor 8× and, in settings with unequal set sizes, even achieve the same
performance.





2 Background

In this chapter, we present the necessary background for this thesis. We first give
our definitions (§2.1) and outline cryptographic primitives (§2.2). Then, we review
oblivious transfer (§2.3) and generic secure computation techniques (§2.4). Finally, we
discuss hashing elements to smaller domains (§2.5).

Remark. Parts of this chapter have been published in [SZ13, ALSZ16, PSZ16].

2.1 Definitions

In the following, we give our notation (§2.1.1), review the Boolean circuit represen-
tation (§2.1.2), present our security parameters (§2.1.3), outline our adversary defini-
tions (§2.1.4), and discuss the pre-computation model (§2.1.5).

2.1.1 Notation

We denote the parties as P0 and P1 or sender PS and receiver PR. We write b[i] for
the i-th element of a list b, denote the bitwise-AND between two bit strings a and b of
equal length as a∧ b and the bitwise-XOR as a⊕ b. We denote a constant string of m
zeros (or ones) as 0m (or 1m). For the PSI protocols, we denote the input sets of P0

and P1 as X and Y with |X| = n0 and |Y | = n1. We refer to elements from X as x
and elements from Y as y and each element has bit-length σ (cf. §2.5 for the relation
between n0, n1, and σ). We denote m 1-out-of-N OT executions on strings with n bit
as
(
N
1

)
OTm

n . We often abbreviate the output of protocols as (x, y), where P0 obtains x
as output while P1 obtains y as output.

2.1.2 Circuit Representations and Evaluation Metrics

In this thesis, we discuss protocols that securely evaluate functions represented as
arithmetic circuit, which consists of addition and multiplication gates, or a Boolean
circuit, which consists of XOR and AND gates. Motivated by the fact that we mostly
focus on secure computation protocols that operate on Boolean circuits and provide
free XORs, we consider the (multiplicative) size S(C) of a Boolean circuit C as the
number of AND gates in C and the (multiplicative) depth D(C) as the maximum
number of AND gates on any path from any input to any output of C. An example
circuit Cex with S(Cex) = 3 and D(Cex) = 2 can be seen in Figure 2.1. For later

5
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4x y4 3x y3 2x y2 1x y1

z

Figure 2.1: Example circuit Cex with S(Cex) = 3 and D(Cex) = 2.

analyses, we bound the size S(C) and depth D(C) of a Boolean circuit C. For many
functionalities, a low size and a low depth are two mutually exclusive goals. Hence, we
first outline the case for Boolean circuits with ` ≥ 1 input bits and o = 1 output bit,
since this allows us to set tighter upper bounds, and then examine the case for o > 1.

Boolean Circuits with One Output Bit. It was shown in [TP14] that any func-
tionality with ` ≤ 5 input bits can be realized by a Boolean circuit with at most `− 1
AND gates. For functions with ` > 5 inputs, a lower bound on the maximum num-
ber of AND gates is still unknown but, according to [TP14], “no specific `-variable
function has yet been proven to have multiplicative complexity larger than ` − 1 for
any `”. We bound the number of AND gates in a Boolean circuit C with ` inputs by
S(C) ≤ `−1. In [BB94] it was shown that every Boolean circuit of multiplicative size n
has an equivalent Boolean circuit of multiplicative depth O(log n) and size O(nα) for
arbitrary α > 1. We bound the multiplicative depth of a circuit C with ` inputs by
D(C) ≤ log2(`).

Boolean Circuits with Multiple Output Bits. Finding a size- or depth-optimal
Boolean circuit for functionalities with o > 1 outputs is a hard problem for a larger
number of inputs ` [BP12] and determining a minimal upper bound is a complex task
out of scope of this thesis. A more tractable approach to find a possible upper bound
is to build optimal Boolean circuits for each output bit separately. In this thesis, we
take this approach and assume that a Boolean circuit C with ` input and o output bits
has at most size S(C) ≤ o(`− 1) if optimized for size and D(C) ≤ log2 ` if optimized
for depth.

2.1.3 Security Parameters

Our protocols use the following security parameters, summarized in Table 2.1: A
computational (symmetric) security parameter κ, a statistical security parameter λ, a
prime of bit-length ψ, an elliptic curve of field size ξ, and a hashing failure parameter φ.
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Description Parameter Value

Symmetric security κ 128

Statistical security λ 40

Integer factorization prime bit length ψ 3 072

Elliptic curve bit length ξ 283

Hashing failure (affects correctness of PSI protocols) φ 40

Table 2.1: Security parameters and values, used throughout this thesis.

We fix the security parameters to achieve security beyond 2030.1, i.e., set κ = 128,
λ = 40, ψ = 3 072, ξ = 283, and φ = 40. The hashing failure parameter φ is used
for some PSI protocols in §5 and specifies that the protocols yield the correct output
except with probability 2−φ. For ECC we use the Koblitz curve K-283, which had the
best performance in our experiments (cf. [EFLL12]).

2.1.4 Adversaries

Protocols for secure computation provide security in the presence of adversarial behav-
ior. A number of adversary models have been considered in the literature (cf. [HL10]
for more details). The most common adversaries are: Passive or semi-honest adver-
saries who follow the protocol specification but attempt to learn more than allowed
by inspecting the protocol transcript, and active or malicious adversaries who run
any arbitrary strategy in an attempt to break the protocol. In both these cases, the
security of a protocol guarantees that nothing is learned by an adversary beyond its
legitimate output. Another notion is that of security in the presence of covert adver-
saries ; in this case the adversary may follow any arbitrary strategy, but is guaranteed
to be caught with good probability if it attempts to cheat. The ultimate goal in
designing efficient protocols is to construct protocols that are secure against strong
(active or covert) adversaries while adding very little overhead compared to the pas-
sive variant. Within this goal, optimizing the efficiency of protocols in the semi-honest
model serves as an important stepping stone. In this thesis, we optimize protocols in
the semi-honest model and show how to achieve covert and malicious security for OT
extension protocols at low additional cost.

2.1.5 Pre-Computation Model

Most of our protocols work in the pre-computation model, where the computation is
divided into a setup and an online phase. In the setup phase, the parties do not know
the actual inputs (or not necessarily even the function to be evaluated) but are allowed

1According to the summary of cryptographic key length recommendations at http://keylength.

com.

http://keylength.com
http://keylength.com
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to generate helper data. This helper data can then be used to achieve a more efficient
online phase, where the inputs (or the function) become known.

The advantage of the pre-computation model is threefold. Firstly, the parties can
pre-compute computation- and communication-intensive operations when resources are
available (e.g., at night) to allow a faster online evaluation when required. Secondly,
pre-computation allows to batch operations, which amortizes costs and allows for faster
evaluation. Finally, by separating the protocol into multiple phases, the protocol design
becomes more modular, which allows to flexibly exchange the underlying algorithms.

Note, that setup and online phase can be pipelined in order to reduce the memory
footprint and overall evaluation time [HEKM11, HS13].

2.2 Cryptographic Primitives

The following section lists cryptographic primitives that are commonly used in se-
cure computation protocols and presents the instantiations used in this work: The
pseudo-random generator (§2.2.1), the random oracle (§2.2.2), the pseudo-random
function (§2.2.3), and the correlation-robust function (§2.2.4).

2.2.1 Pseudo-Random Generator

A pseudo-random generator (PRG) G : {0, 1}κ 7→ {0, 1}∗ takes as input a truly ran-
dom κ-bit string and generates an arbitrary-length output that is computationally
indistinguishable from a truly random sequence [Gol04]. In this thesis, we instantiate
the PRG using AES in counter mode (AES-CTR), as outlined in [NIS15]. More de-
tailed, to generate a 128-bit pseudo-random sequence, we compute AESk(i), where k
is a sequence of truly random bits that is used as key and i is a monotone counter that
is initialized with a fixed value and incremented after generating a 128-bit block. The
AES-CTR-based instantiation is especially efficient on machines that are equipped with
the AES-NI operations, which have a dedicated AES encryption operation [Gue12].

2.2.2 Random Oracle

A random oracle (RO) H : {0, 1}` 7→ {0, 1}` is a black box function that, upon being
queried by an input for the first time, maps it to a truly random output, which it con-
sistently returns for the same input from then on [BR93]. Cryptographic constructions
often distinguish between security proofs that use the standard or the random oracle
model. There are many criticisms about the random oracle model, and in the theory
of cryptography proofs, this model is considered heuristic. However, as most previous
works on efficient secure computation, we often use the random oracle model to achieve
more efficient implementations [BR93]. Throughout this thesis, we instantiate the RO
using SHA256.
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2.2.3 Pseudo-Random Function

A pseudo-random function (PRF) Fs : {0, 1}` 7→ {0, 1}` that is parameterized by a
κ-bit seed s takes as input an `-bit argument x and computes y = Fk(x) such that y is
indistinguishable from the output of truly random function for any s ∈ {0, 1}κ [Gol04].
A PRF can be instantiated by using a specific sequence in the output of a PRG [Gol04].
In this thesis, we instantiate the PRF using the AES encryption by computing Fs(x) =
AESs(x), i.e., encrypting x using the key s, since the AES-NI operations provide us
with a very fast AES encryption and key scheduling operation [Gue12].

2.2.4 Correlation-Robust Function

A correlation robust one-way function (CRF) H : {0, 1}κ 7→ {0, 1}` is a function for
which, given uniformly and randomly x1, ..., xm, s, an adversary is unable to compu-
tationally distinguish the outputs chosen x1, ..., xm, H(x1 ⊕ s) , ..., H(xm ⊕ s) from a
uniform distribution. It is a weaker assumption than the random oracle model and is
used in OT extension and, with an additional circularity property, in Yao’s garbled
circuits protocol with state-of-the-art optimizations [ZRE15].

Instantiations of a CRF based on number-theoretic or lattice-based assumptions
were given in [AHI11]. However, many implementations use a hash function (e.g.,
SHA) to increase the performance. An instantiation of the CRF in Yao’s garbled
circuits protocol which uses fixed-key AES and greatly improves performance was pro-
posed in [BHKR13] and refined in [ZRE15] for use in the half-gates scheme. Using
the fixed-key AES instantiation, a value x is processed as AESk(2x ⊕ t) ⊕ 2x ⊕ t,
where k is a fixed AES key, 2x refers to doubling in GF(2κ), and t is a unique identi-
ficator (i.e., a monotone counter). The fixed-key AES instantiation, however, imposes
the strong ideal permutation assumption [Bla06] on AES. To achieve more relaxed
assumptions, [GLNP15] propose several different constructions that use a pipelined
AES-NI evaluation to achieve speeds similar to fixed-key AES.

In this thesis, we first instantiate the CRF using SHA-256 to ensure a fair com-
parison between OT extension protocols in §3. Since the focus of this thesis is on
practical efficiency, we then instantiate the CRF for up to 128-bit inputs using the
fixed-key AES [BHKR13], for up to 256-bit inputs using AES-256 with key sched-
ule (cf. §3.2.4.2), and for up to 512-bit inputs using SHA-256. We empirically evaluate
the performance improvement of AES-based over SHA-based CRF instantiations for
OT extension in §3.5.5.

2.3 Oblivious Transfer

OT was first introduced by Rabin [Rab81] as a function where a receiver receives a
message, sent by a sender, with probability 1/2, while the sender remains oblivious



Chapter 2 Background 10

whether the message was received. It was later re-defined by [EGL85] to the 1-out-
of-2 OT (

(
2
1

)
OT) functionality more commonly used today, where the sender inputs

two messages (x0, x1) and the receiver inputs a choice bit c and obliviously receives xc

without learning any information about x1−c. In this thesis we focus on the general
(
N
1

)
OTm

n functionality, which is equivalent to m invocations of the
(
N
1

)
OT functionality on

n-bit strings. That is, the sender inputs m tuples of n-bit strings (x1
j , ..., x

N
j ) and the

receiver inputs m choice strings r = (r1, . . . , rm) with rj ∈ [1...N ] and for 1 ≤ j ≤ m.
The output of the receiver is (xr11 , . . . , x

rm
m ) while the sender has no output. Throughout

this thesis, we sometimes omit
(

2
1

)
and write OT instead of

(
2
1

)
OT.

Several protocols for OT based on different cryptographic assumptions and attacker
models were introduced. Most notable are the passive secure OT protocol of [NP01]
and the active secure OT protocols of [PVW08] and [CO15], which are among the
most efficient today. However, the impossibility result of [IR88, IR89] showed that OT
protocols require costly asymmetric cryptography, which greatly limits their efficiency.

Efficiency. The most efficient OT protocols in the semi-honest and malicious model
are [NP01] and [CO15], which both have an amortized cost of 3 exponentiations and
one public-key ciphertext sent per OT.

2.3.1 1-Out-of-2 OT Extension

In his seminal work, Beaver [Bea96] introduced OT extension protocols, which extend
few costly public-key base-OTs using symmetric cryptography only. While the first
construction of [Bea96] was inefficient and mostly of theoretical interest, the protocol
of [IKNP03] showed that OT can be extended efficiently and with very little overhead.
We give the semi-honest secure

(
2
1

)
OT extension protocol of [IKNP03] in Protocol 1.

An extension to malicious adversaries was also given in [IKNP03] but is omitted.

Efficiency. We give the complexity for the
(

2
1

)
OT extension of [IKNP03] in Table 2.2.

For the complexity analysis we omit the base-OTs, which present a linear overhead in
the security parameter and amortize fairly quickly.

Complexity Sender PS Receiver PR
PRG evaluations 1 2

CRF evaluations 2 1

Sent [bits] 2n 2κ

Table 2.2: Computation and communication complexity per party for one
(

2
1

)
OT on

n-bit messages using the OT extension of [IKNP03] (excluding base-OTs).
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PROTOCOL 1 (Semi-Honest Secure
(

2
1

)
OT Extension Protocol of [IKNP03]).

• Input of PS: m pairs (x0
j , x

1
j ) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m choice bits r = (r1, . . . , rm).

• Common Input: Symmetric security parameter κ and number of base-OTs ` = κ.

• Oracles and cryptographic primitives: The parties have an oracle access to the
OT `κ functionality and use a pseudo-random generator G : {0, 1}κ → {0, 1}m and a
correlation-robust function H : [m]× {0, 1}` → {0, 1}n (cf. §2.2.4).

1. Initial OT Phase:

a) PS initializes a random vector s = (s1, . . . , s`) ∈R {0, 1}` and PR randomly
chooses ` pairs of seeds k0

i ,k
1
i each of size κ.

b) The parties invoke the OT`κ-oracle, where PS acts as the receiver with input s
and PR acts as the sender with inputs (k0

i ,k
1
i ) for every 1 ≤ i ≤ `.

Let T = [t1| . . . |t`] be a random m× ` bit matrix that is generated by PR where its
ith column is ti for 1 ≤ i ≤ `. Let tj denote the jth row of T for 1 ≤ j ≤ m.

2. OT Extension Phase:

a) PR computes u(i,0) = ti ⊕ G(k0
i ) and u(i,1) = ti ⊕ G(k1

i ) ⊕ r, and sends
(ui,0,ui,1) to PS for every 1 ≤ i ≤ `.

b) For every 1 ≤ i ≤ `, PS defines qi = u(i,si) ⊕ G(ksii ). (Note that qi =
(si · r)⊕ ti.)

c) Let Q = [q1| . . . |q`] denote the m × ` bit matrix where its ith column is qi.
Let qj denote the jth row of the matrix Q. (Note that qi = (si · r) ⊕ ti and
qj = (rj · s)⊕ tj .)

d) PS sends (y0
j , y

1
j ) for every 1 ≤ j ≤ m, where:

y0
j = x0

j ⊕H(j,qj) and y1
j = x1

j ⊕H(j,qj ⊕ s)

e) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

• Output: PS has no output; PR outputs (x1, . . . , xm).

2.3.2 1-Out-of-N OT Extension

In the
(

2
1

)
OT extension protocol of [IKNP03], the parties use multiple base-OTs to

obliviously transfer shares of the receiver’s choice bits. The authors of [KK13] observed
that this approach can be generalized to have both parties share a ρ-bit codeword
from a code Γρ with codewords of Hamming distance κ to efficiently realize

(
N
1

)
OT

extension. These codewords encode the receiver’s choices and constitute the main
component of the communication workload of the OT extension protocol. We give a
full description of the protocol in Protocol 2.

ForN = 2, a repetition code can be used, which has 2 codewords of size ρ = κ. In this
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PROTOCOL 2 (Semi-Honest Secure
(
N
1

)
OT Extension Protocol of [KK13]).

• Input of PS: m N -tuples (x1
j , ..., x

N
j ) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m choice integers r = (r1, . . . , rm) with rj ∈ [1...N ].

• Common Input: Symmetric security parameter κ, code Γρ = (γ1, ..., γN ) with N
ρ-bit codewords that have κ-bit relative distance, and number of base-OTs ` = ρ.

• Oracles and cryptographic primitives: The parties have an oracle access to the
OT `κ functionality and use a pseudo-random generator G : {0, 1}κ → {0, 1}m and a
correlation-robust function H : [m]× {0, 1}` → {0, 1}n (cf. §2.2.4).

1. Initial OT Phase:

a) PS initializes a random vector s = (s1, . . . , s`) ∈R {0, 1}` and PR randomly
chooses ` pairs of seeds k0

i ,k
1
i each of size κ.

b) The parties invoke the OT`κ-oracle, where PS acts as the receiver with input s
and PR acts as the sender with inputs (k0

i ,k
1
i ) for every 1 ≤ i ≤ `.

PR generates two m × ` bit matrices: A random matrix T = [t1| . . . |t`], where its
ith column is ti for 1 ≤ i ≤ `, and a choice-code bit matrix C = [c1| . . . |c`], where
its jth row is cj = γrj for 1 ≤ j ≤ m. Let tj denote the jth row of T and ci denote
the ith column of C for 1 ≤ i ≤ ` and 1 ≤ j ≤ m.

2. OT Extension Phase:

a) PR computes u(i,0) = ti ⊕ G(k0
i ) and u(i,1) = ti ⊕ G(k1

i ) ⊕ ci, and sends
(ui,0,ui,1) to PS for every 1 ≤ i ≤ `.

b) For every 1 ≤ i ≤ `, PS defines qi = u(i,si) ⊕ G(ksii ). (Note that qi =
(si · ci)⊕ ti.)

c) Let Q = [q1| . . . |q`] denote the m × ` bit matrix where its ith column is qi.
Let qj denote the jth row of the matrix Q. (Note that qi = (si · ci)⊕ ti and
qj = (cj ∧ s)⊕ tj .)

d) For every p ∈ [1...N ], PS computes:

ypj = xpj ⊕H(j,qj ⊕ γp)

and sends (y1
j , ..., y

N
j ) for every 1 ≤ j ≤ m.

e) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

• Output: PS has no output; PR outputs (x1, . . . , xm).

case, the
(
N
1

)
OT protocol of [KK13] is identical to the

(
2
1

)
OT protocol of [IKNP03].

For 2 < N ≤ 2κ, the authors propose to use a Walsh-Hadamard code which has
codewords of size ρ = 2κ to achieve a relative Hamming distance of κ.

For N > 2κ, a linear error-correcting code achieves the best performance. In par-
ticular, when N = poly(κ), the communication cost for the OT extension part of

(
N
1

)
OT invocations decreases asymptotically from O(κ logN) to O(κ) compared to a

(
2
1

)
OT instantiation.
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Efficiency. We give the complexity for one
(
N
1

)
OT extension protocol of [KK13]

in Table 2.3. We again omit the base-OTs, which present a linear overhead in the code
size and amortize fairly quickly.

Complexity Sender PS Receiver PR
PRG evaluations 1 2

CRF evaluations N 1

Sent [bits] Nn 2ρ

Table 2.3: Computation and communication complexity for
(
N
1

)
OT on n-bit messages

using the OT extension of [KK13] (excluding base-OTs).

2.3.3 Converting Between 1-Out-of-2 OT and 1-Out-of-N OT

Converting from
(
N
1

)
OT to

(
2
1

)
OT and vice versa is trivial and can be done with

only some additional overhead. We outline in Protocol 3 how to obtain
(
N
1

)
OT from(

2
1

)
OT and in Protocol 4 how to obtain

(
2
1

)
OT from

(
N
1

)
OT and give a high level

discussion of both protocols in the following.(
N
1

)
OT1

n from
(

2
1

)
OT

log2N
κ (Protocol 3). The high-level idea of converting to

(
N
1

)
OT1

n is to let both parties compute
(

2
1

)
OT

log2N
κ on random κ-bit key pairs and send

each n-bit input message masked using a different combination of keys [NP05]. In

terms of efficiency, this conversion involves the cost of
(

2
1

)
OT

log2N
κ plus 2N additional

PRF evaluations to mask the values and log2N additional PRF evaluations to unmask
the correct value.(

2
1

)
OT

log2N
n from

(
N
1

)
OT1

n log2N
(Protocol 4). To break

(
N
1

)
OT down to log2N(

2
1

)
OT, PS builds all combinations of message pairs (x0

j , x
1
j) for 1 ≤ j ≤ log2N and

obliviously transfers these combinations via
(
N
1

)
OT1

n log2N
. The cost for the conversion

to
(

2
1

)
OT

log2N
n is equal to the cost of a

(
N
1

)
OT1

n log2N
.

It was shown in [KK13] that when computing
(

2
1

)
OT4

1, the
(
N
1

)
OT extension protocol

of [KK13] requires less communication than the OT extension protocol of [IKNP03]. In
particular, while computing

(
2
1

)
OT4

1 using the OT extension from [IKNP03] requires

sending 8(κ+ 2) = 1 040 bits (cf. Table 2.2), a conversion from
(

16
1

)
OT1

4 using the OT
extension of [KK13] requires sending only 2ρ+ 64 = 576 bits (cf. Table 2.3), which is
factor 1.8× improvement in communication.

2.3.4 OT Pre-Computation

OT pre-computation [Bea95] allows to pre-compute a
(
N
1

)
OTm

n on random inputs in
the setup phase and later in the online phase use these pre-computed values as one-time
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PROTOCOL 3 (
(
N
1

)
OT1

n From
(

2
1

)
OT

log2N
κ [NP05]).

• Input of PS: A N -tuple (x1, ..., xN ) of n-bit strings.

• Input of PR: A choice integer r with r ∈ [1...N ].

• Oracles and cryptographic primitives: The parties have an oracle access to the(
2
1

)
OT

log2N
κ functionality and use a PRF Fk : {0, 1}log2N 7→ {0, 1}n with a κ-bit

seed k.

1. PS chooses log2N pairs of random κ-bit keys (k0
i , k

1
i ) ∈R {0, 1}2κ, for 1 ≤ i ≤ log2N .

2. PS and PR invoke the
(

2
1

)
OT

log2N
κ functionality where, in the i-th OT, PS plays the

sender with random inputs (k0
i , k

1
i ) while PR plays the receiver and inputs the i-th

bit of r. PS obtains no output while PR obtains ti = k
r[i]
i , for 1 ≤ i ≤ log2N .

3. PS then computes for 1 ≤ j ≤ N :

yj = xj ⊕
log2N⊕
i=1

F
k
j[i]
i

(j),

and sends (y1, ..., yN ) to PR, where j[i] is the i-th bit of j.

4. PR computes x = yr ⊕
⊕log2N

i=1 Fti(r).

• Output: PS has no output; PR outputs x.

PROTOCOL 4 (
(

2
1

)
OT

log2N
n From

(
N
1

)
OT1

n log2N
).

• Input of PS: log2N tuples (x0
j , x

1
j ) of n-bit strings, for 1 ≤ j ≤ log2N .

• Input of PR: log2N choice bits r = (r1, ..., rlog2N ).

• Oracles and cryptographic primitives: The parties have an oracle access to the(
N
1

)
OT1

n log2N
functionality.

1. PS computes a sequence (s0, ..., sN−1) of n log2N -bit strings si for 0 ≤ i < N as:

si = (x
i[1]
1 , x

i[2]
2 , ..., x

i[log2N ]
log2N

),

where i[j] is the j-th bit of i for 1 ≤ j ≤ log2N .

2. PS and PR invoke the
(
N
1

)
OT1

n log2N
functionality where PS plays the sender with

input (s0, ..., sN−1) while PR plays the receiver with input r. PS obtains no output
while PR obtains sr = (xr11 , ..., x

rlog2 N
log2N

) = (x1, ..., xlog2N ).

• Output: PS has no output; PR outputs (x1, ..., xlog2N ).
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pads to run the OT on the actual inputs. We give a full protocol of OT pre-computation
in Protocol 5. Regarding efficiency in the online phase, the parties perform two rounds
of communication, where PR first sends one message of size m log2N bits to PS who
replies with a message of size Nmn bits.

PROTOCOL 5 (OT Pre-Computation of [Bea95]).

• Input of PS: m N -tuples (x1
j , ..., x

N
j ) of n-bit input messages as well as m random

N -tuples (k1
j , , ..., k

N
j ) of n-bit strings from the pre-computed

(
N
1

)
OTmn , for 1 ≤ j ≤

log2N .

• Input of PR: m choice integers r = (r1, ..., rm) with rj ∈ [1...N ] as well asm random

choice integers c = (c1, ..., cm) and m n-bit strings kcj from the pre-computed
(
N
1

)
OTmn , for 1 ≤ j ≤ log2N .

1. PR sends uj = rj ⊕ cj to PS , for 1 ≤ j ≤ m.

2. PS computes yij for 1 ≤ i ≤ N as:

yij = k
i⊕uj
j ⊕ xij ,

and sends (y1
j , ..., y

N
j ) to PR, for 1 ≤ j ≤ m.

3. PR computes xj = y
rj
j ⊕ kcj .

• Output: PS has no output; PR outputs (x1, ..., xm).

2.4 Generic Secure Two-Party Computation

In this section, we present the two most prominent generic secure two-party compu-
tation protocols for Boolean circuits: Yao’s garbled circuits (§2.4.1) and the GMW
protocol (§2.4.2) and compare various aspects of both protocols (§2.4.3).

2.4.1 Yao’s Garbled Circuits Protocol

In his seminal work [Yao86], Yao introduced the garbled circuits protocol2, which en-
ables two parties to securely evaluate any functionality that can be represented as
Boolean circuit. Yao’s garbled circuits protocol is run between two parties called gar-
bler and evaluator, which perform the following steps: Circuit garbling, input encoding,
and circuit evaluation, which we describe in more detail in §2.4.1.1. Several optimiza-
tions for Yao’s garbled circuits have been proposed, of which we describe the most
prominent ones in §2.4.1.2. A first proof of security for Yao’s garbled circuits protocol

2Even though [Yao86] is used as source for Yao’s garbled circuits protocol, it was, in fact, only
mentioned in an oral presentation [Gol01, BHR12].
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appeared in [LP04, LP09] and a generalization of garbled circuits protocols to garbling
schemes appeared in [BHR12].

2.4.1.1 Unoptimized Garbled Circuits

In the following, we describe the unoptimized Yao’s garbled circuits protocol, as out-
lined in [LP04].

Circuit Garbling. The garbler selects the function f to be computed and repre-
sents f as Boolean circuit C. For each wire A in the circuit, the garbler selects two
random κ-bit keys (kA0 , k

A
1 ) ∈R {0, 1}2κ that represent the logical 0 and 1 on the wire.

For each gate g with input wires A and B, output wire C, corresponding wire keys
(kA0 , k

A
1 , k

B
0 , k

B
1 , k

C
0 , k

C
1 ), and gate semantic s : {0, 1}×{0, 1} 7→ {0, 1}, the garbler then

selects a random permutation πg : [0...3] 7→ [0...3] and creates a garbled table Tg with
four entries as:

Tg[πg(0)] = EkA0 (EkB0 (kCs(0,0)))

Tg[πg(1)] = EkA0 (EkB1 (kCs(0,1)))

Tg[πg(2)] = EkA1 (EkB0 (kCs(1,0)))

Tg[πg(3)] = EkA1 (EkB1 (kCs(1,1))).

The symmetric encryption function Ek uses a secret-key k and the corresponding
decryption function Dk guarantees correct decryption only if the ciphertext was in-
deed encrypted with the same key k and otherwise outputs an error (for more details
see [LP04]). Each of the 4 entries in the garbled table has a size of 2κ [LP04]. When
all gates have been garbled, the garbler then sends the garbled circuit, which consists
of the garbled tables of all gates, to the evaluator.

Input Encoding. After the circuit has been garbled and transmitted, the evaluator
needs to obtain the keys for the input wires that correspond to both parties’ input
bits. For each of the garbler’s input wires, the garbler simply sends the wire key that
corresponds to its input to the evaluator. For each of the evaluator’s input wires W
with corresponding input bit w, the parties run an OT1

κ, where the garbler acts as
sender with messages (kW0 , k

W
1 ) and the evaluator acts as receiver with choice bit

w ∈ {0, 1} and obliviously receives kWw .

Circuit Evaluation. Upon obtaining the garbled circuit and the input wire keys,
the evaluator can evaluate the garbled circuit. For each gate g with input wires A
and B, and output wire C, the evaluator holds two input keys kAa and kBb (the eval-
uator remains oblivious about the exact values of a and b) and the garbled table Tg.
The evaluator then decrypts all entries in the garbled table and obtains a valid key
kCc = DkAa

(DkBb
(Tg[i])) for one entry i. Note that the decryption function has to guar-

antee that the evaluator only obtains a valid output if the encryption and decryption
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procedure use the same key and otherwise yields an error symbol (⊥). After decrypt-
ing all gates, the evaluator either sends the keys on the output wires to the garbler or
the garbler provides a mapping from output wire keys to plaintext bits, depending on
which party obtains the output.

Efficiency. In the unoptimized Yao’s garbled circuits protocol, described in [LP04],
the garbler has to evaluate 4 double encryption functions and send 8κ-bit per gate in
the Boolean circuit while the evaluator has to evaluate 2.5 double decryption functions
on average until a successful decryption occurs. Note that Yao’s garbled circuits pro-
vides one-sided malicious security against a malicious evaluator when using a malicious
secure OT protocol, since the only message that the evaluator sends to the garbler con-
sists of the keys on the output wires, which the evaluator can only correctly decrypt for
the corresponding keys on the input wires. A malicious garbler, however, could encode
any function in the garbled circuit and thereby retrieve the inputs of the evaluator.

2.4.1.2 Optimizations for Yao’s Garbled Circuits

Several optimizations for Yao’s garbled circuits have been proposed, among which the
most prominent are: Point and permute (PnP) [BMR90], garbled row reduction (GRR-
3) [NPS99], free-XOR [KS08], fixed-key AES garbling (Fixed-Key AES) [BHKR13],
half-gates [ZRE15], and inter party parallelization (IPP) [BK15]. We give their per-
formance improvement in terms of run-time for symmetric cryptographic operations
and communication for the AES circuit of [HEKM11] with the S-Box circuit of [BP10]
in Figure 2.2. Overall, this circuit has 24 848 total gates of which 5 120 are AND gates.
We used the S-Box circuit of [BP10], since it is optimized for both, small number of
Boolean gates and small number of AND gates. For optimizations prior to fixed-key
AES of [BHKR13], we assume that SHA-256 is used to encrypt and decrypt an entry
in the garbled table (cf. [LPS08] for the instantiation in the random oracle model),
which requires amortized 248.7 ns computation on a desktop PC with Intel AES-NI
support, while fixed-key AES requires amortized 15.8 ns computation (cf. Table 3.3
on page 36). Using all optimizations, the parties can process XOR gates for free and,
for each AND gate, the garbler needs to send a garbled table with two κ-bit entries
while the local computation overhead of 4 symmetric operations for the garbler and 2
symmetric operations for the evaluator is close to negligible. It was shown in [ZRE15]
that the communication of 2κ bit presents a lower bound for most of the existing
garbling schemes. Using IPP, the parties can then evenly distribute the computation
and communication overhead, given that the circuit allows for parallelization. A more
detailed description of each optimization is given next.

Point And Permute (PnP) [BMR90]. In [LP04], the garbler permutes the garbled
table to hide from the evaluator, which entry in the garbled table corresponds to which
plaintext bit. The evaluator then decrypts all entries in the garbled table and selects
the correctly decrypted key. In order to identify the correctly decrypted key, the
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Figure 2.2: Time for symmetric cryptographic operations (x-axis) and communication
(y-axis) for different Yao’s garbled circuit optimizations when evaluating
the AES circuit of [HEKM11] using the S-Box circuit of [BP10] (24 848
total gates, 5 120 AND gates). Each optimization includes previous opti-
mizations. Time for symmetric crypto was measured using an Intel Haswell
i7-4770K CPU with AES-NI support.

garbler needs to increase the garbled table entries to size 2κ (or κ + λ for statistical
security parameter λ) to ensure that the correct key is chosen except with negligible
probability 2−κ (or 2−λ).

The point and permute technique reduces the size per entry in the garbled table from
2κ to κ+ 1 and allows the evaluator to decrypt only one table entry per garbled table
instead of 2.5 on average. This is done by introducing a special bit per key, called per-
mutation bit, which “points” to the correct entry in the garbled table but “permutes”
the semantics of the key in such a way that the evaluator gains no information on
the processed value. Note that, in the remainder of this thesis, we use the common
approach of replacing the least significant bit of the wire key by the permutation bit,
which allows for more efficient evaluation but decreases the symmetric security by one
bit.

Garbled Row Reduction (GRR-3) [NPS99]. While garbling the circuit, the
garbler assigns two symmetric keys to each wire in the circuit and, for each gate,
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creates a garbled table with four entries.

The garbled row reduction technique reduces the number of entries in the garbled
table from four to three by fixing the first entry in the garble table to a constant value
(e.g., 0κ). Thereby, one of the keys on the output wire is determined by the input
keys. An additional row-reduction technique was proposed in [PSSW09], which reduces
the number of entries in the garbled table to two but is incompatible with the free-
XOR optimization, outlined next. A technique that switches between garbling using
the free-XOR technique and the row-reduction technique of [PSSW09] was outlined
in [KMR14].

Free-XOR [KS08]. During circuit garbling, the two keys on each wire are chosen
independently and the garbler needs to garble every gate.

The free-XOR technique allows to evaluate XOR (linear) gates “for free” by choosing
all wire key pairs in the circuit such that they are XOR-correlated by the same constant
offset. This allows the parties to process XOR gates locally by computing the XORs of
the keys instead of generating and sending a garbled table for each gate. The efficiency
gains of free-XOR vary, depending on the circuit. E.g., for the example AES circuit,
where the number of XOR gates is 24 848 and the number of AND gates is 5 120, the
free-XOR decreases the number of garbled gates by approximately factor 5×. Note,
however, that the free-XOR optimizations imposes the circular-2 correlation robustness
assumption to CRF [CKKZ12].

Fixed-Key AES Garbling [BHKR13]. The main computational workload in Yao’s
garbled circuits protocol comes from encryption and decryption functions that are used
to create and evaluate the garbled table. In [LP04], these functions were instantiated
using a double encryption scheme with a PRF. Later works instantiated these func-
tions using a hash function [KS08, HEKM11], or using a block cipher with 2κ-bit key
length [KSS12].

The work of [BHKR13] proposes a fixed-key AES instantiation, which utilizes the
AES-NI operations to reduce the computation time for garbling a gate close to negligi-
ble at the cost of modeling the encryption function as an ideal permutation (cf. §2.2.4).
Several further garbling function instantiations with weaker security requirements that
make use of the pipelining features of the AES-NI operations were given in [GLNP15].

Half-Gates [ZRE15]. The half-gates technique reduces the number of entries in
the garbled table from three to two at the cost of one additional decryption for the
evaluator. The idea of the half-gates garbling scheme is to split each AND gate into
two parts: A garbler half-gate, where the garbler knows the plaintext bit corresponding
to one input key, and an evaluator half-gate, where the evaluator knows the plaintext
bit corresponding to one input key. The authors then show how to garble each half-
gate using only one κ-bit ciphertext each and how to securely evaluate an AND gate
by combining both half-gates. In addition, [ZRE15] introduced the notion of linear
garbling schemes, which covers most known garbling schemes, and proved that there
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is a lower-bound of two κ-bit ciphertexts (plus two permutation bits) per non-linear
gate for such schemes.

Inter Party Parallelization (IPP) [BK15]. The garbler in Yao’s garbled cir-
cuits has a higher computation and communication workload than the evaluator, since
the garbler has to construct and send the garbled circuit. Furthermore, in the pre-
computation model, where the garbling and evaluation are separated into the setup
and online phase, one party waits idly until the other party is done.

In order to reduce this idle time, [BK15] introduces the inter party parallelization
technique (IPP), where the garbler and evaluator switch roles for parts of the gar-
bled circuit. To merge parts with different role assignments, [BK15] proposes a role
transformation protocol, which is a two-round protocol, similar to the input encoding
routine for client inputs (cf. §2.4.1.1), where the parties perform a OT1

κ. The garbler
of the old garbled circuit (and hence evaluator of the new garbled circuit) plays the
receiver and inputs the permutation bit on the output key of the old garbled circuit
and obtains the input key to the new garbled circuit. The evaluator of the old garbled
circuit (and hence garbler of the new garbled circuit) plays the sender with two input
keys to the new garbled circuit, which are swapped depending on the least significant
bit of the output key of the old garbled circuit, and obtains no output.

IPP was evaluated on several functionalities and was shown to achieve approxi-
mately factor 1.1× local computation speed-up for a pipelined Yao’s garbled circuits
evaluation and a factor 2× communication improvement. In our empirical evaluations
of generic secure computation protocols in §4.6, we use Yao’s garbled circuits in the
pre-computation model without pipelining and show that IPP achieves a performance
gain for functions that consist of many independent sub-circuits of nearly factor 2×.
Note, that IPP removes the malicious client security guarantee (cf. §2.4.1.1), since
both parties act as garbler. However, since the focus of this work is on semi-honest
adversaries, we use IPP in our evaluation.

2.4.2 Goldreich-Micali-Wigderson (GMW)

In the GMW protocol [GMW87], two parties interactively compute a function using
secret-shared values. The parties share the value of each input and intermediate wire
using a 2-out-of-2 secret sharing scheme such that each party holds a random-looking
share xi with x = x0 ⊕ x1. As XOR is an associative operation, XOR gates can be
securely evaluated locally by XORing the shares.

For secure evaluation of AND gates, the parties run an interactive protocol using
OT or multiplication triples (MTs) as discussed further below. Note that AND gates
of the same layer in the circuit can be evaluated in parallel. To obtain the output, the
parties exchange their shares of the respective output wire.

AND via OT [CHK+12, LLXX05]. To securely evaluate an AND gate z = x ∧ y
on input shares x = x0 ⊕ x1 and y = y0 ⊕ y1, the two parties can run a

(
4
1

)
OT1

1
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protocol. Here, the sender P0 chooses a random output share z0 and provides four
inputs (s0, s1, s2, s3) to the OT protocol using x0, y0 with:

s0 = z0 ⊕ (x0 ∧ y0)

s1 = z0 ⊕ (x0 ∧ (y0 ⊕ 1))

s2 = z0 ⊕ ((x0 ⊕ 1) ∧ y0)

s3 = z0 ⊕ ((x0 ⊕ 1) ∧ (y0 ⊕ 1)).

The receiver P1 inputs x1||y1 as choice bits and obliviously obtains its share z1 =
sx1||y1 = z0 ⊕ (x0 ⊕ x1) ∧ (y0 ⊕ y1). As described in §2.3, all OTs can be moved into a
pre-processing phase such that the online phase is highly efficient (only two message
rounds of 2 and 4 bit and inexpensive one-time-pad operations).

AND via Multiplication Triples [Bea91]. An alternative method to securely
evaluate an AND gate z = x ∧ y on input shares x = x0 ⊕ x1 and y = y0 ⊕ y1

are multiplication triples (MTs) [Bea91]. MTs are random shares ai, bi, ci satisfying
(c0 ⊕ c1) = (a0 ⊕ a1) ∧ (b0 ⊕ b1) where Pi holds the shares labeled with i. They can
be generated in the setup phase using a

(
4
1

)
OT1

1 protocol in a similar way to the OT-
based AND evaluation described above. In the online phase, the parties then use the
pre-generated MTs to compute and exchange di = xi⊕ai and ei = yi⊕ bi and set their
output shares as z0 = (d∧e)⊕(b0∧d)⊕(a0∧e)⊕c0 and z1 = (b1∧d)⊕(a1∧e)⊕c1. The
advantage of MTs over the OT-based AND evaluation is that, per AND gate in the
online phase, the parties only need to perform one interaction round (instead of two
interaction rounds for OT pre-computation) and the size of the messages is slightly
smaller (2 + 2 bits instead of 2 + 4 bits).

2.4.3 GMW vs. Yao

In this section, we give a conceptual and performance comparison of Yao’s garbled
circuits and the GMW protocol. In our comparison, we assume a state-of-the-art Yao’s
garbled circuits instantiation, using the optimizations summarized in §2.4.1.2 excluding
IPP, and a GMW instantiation similar to [CHK+12] that pre-computes the

(
4
1

)
OT

extension protocol of [LLXX05] (which is similar to 2 invocations of the [IKNP03] OT
extension protocol) but uses MTs to evaluate AND gates. We first review the ability for
pre-computation of both schemes, then compare their complexity, and finally discuss
implementation features. An overview of the complexity of both schemes assuming
that both can fully pre-compute all necessary data can be found in Table 2.4.

Pre-Computability. Yao’s garbled circuits and the GMW protocol can both be pre-
computed but differ in the information that is necessary to allow pre-computation.
The GMW protocol allows to pre-compute OT extension and hence all symmetric
cryptographic operations and the majority of the communication if the function size
or even only an upper bound on the function size is known. Yao’s garbled circuits allows
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Properties Garbled Circuits GMW [CHK+12]

per AND gate:
setup computation P0: 4×CRF P0: 1×PRG, 4×CRF

P1: 4×PRG, 1×CRF
setup communication [bit] P0 →P1: 2(κ+ 1) P0 →P1: 4

P0 ←P1: 4κ
online computation P1: 2×CRF negligible
online communication [bit] - P0 →P1 &P0 ←P1: 2

per wire storage P1 & P0 [bit] κ 1
per input: comm. [bit] P0: κ; P1: 4κ 1
Online communication rounds O(1) D(C)

Table 2.4: Conceptual comparison between state-of-the-art Yao’s garbled circuits (us-
ing the optimizations in §2.4.1.2) and the GMW protocol (using

(
4
1

)
OT

extension of [LLXX05] to compute MTs). P0: garbler, P1: evaluator. As-
suming that function and input sizes are known during setup phase.

to pre-compute and send the garbled circuit in case the function and the number of
inputs are known in advance. A garbling scheme that relaxes the necessary information
for pre-computing Yao’s garbled circuits is given in [GLMY16]. Instead of garbling
the whole function at once, [GLMY16] garbles individual modular blocks, which can
be connected arbitrarily at an additional communication overhead in the online phase
per connected wire.

Implementation Features. The memory required for storing the pre-computed
data is smaller for the GMW protocol as for every AND gate in the circuit, each
party only needs to store 3 bits instead of 2κ-bits that the evaluator in Yao’s garbled
circuits needs to store. On the other hand, Yao’s garbled circuits is able to efficiently
evaluate much larger circuits than GMW by pipelining the circuit generation and
evaluation [HEKM11, Mal11, HS13, KMSB13, SHS+15], which allows the parties to
only keep in memory a small number of gates at any point during the computation.
The GMW protocol, on the other hand, needs to store the full circuit description in
memory at one point during the computation in order to schedule the gates layer-wise
to identify the critical path that defines the depth of the circuit. Finally, the setup
phase of the GMW protocol can be easily parallelized, independently of the function,
while the parallelizability of Yao’s garbled circuits protocol depends on the function
that is evaluated. A compiler that schedules high level functions and allows automatic
parallelization for Yao’s garbled circuits is given in [BK15].

Efficiency. An implementation of the GMW protocol in the multi-party setting is
given in [CHK+12]. The authors of [CHK+12] expect their multi-party GMW im-
plementation to be roughly factor 2× slower in the two-party setting than the Yao’s
garbled circuits implementation of [HEKM11]. Our complexity comparison supports
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this statement, since the total communication and computation per AND gate for the
GMW protocol is approximately twice as large as for Yao’s garbled circuits. Another
disadvantage of the GMW protocol is its need for interaction for evaluating AND gates
which becomes a performance bottleneck for networks with high latency. On the other
hand sharing the inputs is cheaper in the GMW protocol as only one random bit needs
to be chosen and sent to the other party, whereas in garbled circuits a random κ-bit
key needs to be chosen and sent to the evaluator (using OT for evaluator’s inputs).

2.5 Hashing Inputs to a Smaller Domain

The performance of some PSI protocols depends on the length of the representation
of their inputs, e.g., the protocols described in §5.3.2 and §5.4.2. In some settings,
inputs come from a small and densely populated domain, such as national identity
numbers (e.g., social security numbers in the US, which can be represented by 30 bits)
or credit card numbers (54 bits). In other settings, the input representation is sparse,
for instance when a person is identified by an ASCII string containing his or her name,
or when the number of inputs is very small, say 100.

When the original input representation is sparse, we can first use a hash function to
map the identities of the input items to identities from a smaller domain with a shorter
representation. We then run the original protocol on that representation, resulting in
a more efficient execution. The size of the new domain should be large enough so that
no two different input items are mapped to the same value. The theoretical analysis of
this mapping, related to the birthday paradox, shows that when n items are mapped
to a domain of size D using a random hash function, the probability of experiencing a
collision is p = 1−e−n·(n−1)/(2D), and can be approximated as p ≈ n2/(2D) (see [MR95],
p. 45).

Let us denote the length of the representation of items in D as d = logD. Then
p ≈ n2/(2 · 2d), and therefore

d = 2 log(n)− 1− log(p).

For example, for an input of n = 90 items and a collision probability of p = 2−20,
the representation can be d = 32 bits long. If we need the collision probability to be
p = 2−40 then we should set d = 52. Similarly, for n = 106, and collision probability
p = 2−20 the representation can be d = 59 bits long, and can fit in a single long word.
For a collision probability of 2−40 we must use d = 79. Throughout this thesis, we
use this observation to reduce the bit-length of hashes to achieve collision probability
p = 2−40.





3 Faster OT Extension

Practical applications in secure computation can require millions to billions of OTs.
Efficient OT extension protocols are of great importance to meet this large demand.
In this chapter, we show how to improve the efficiency of OT extension protocols in
the semi-honest and malicious model.

Remark. Parts of this chapter have and will be published in [ALSZ13, ALSZ15,
ALSZ16, DKS+17]. The author of this thesis has significantly contributed to the
research results of these publications, in particular the protocols, optimizations, and
evaluation. The security proof in §3.3.2 was done in collaboration with Gilad Asharov
(IBM T.J. Watson Research Center, USA) and Yehuda Lindell (Bar-Ilan University,
Israel) during a visit of the authors from TU Darmstadt at Bar-Ilan University. The
implementations are available online at http://encrypto.de/code/OTExtension.

3.1 Motivation

OT is an extremely powerful tool and the foundation for almost all efficient proto-
cols for secure computation. Notably, Yao’s garbled-circuits protocol [Yao86] requires
OT for every input bit of one party (cf. §2.4.1.1), and the GMW protocol [GMW87]
requires OT for every AND gate of the circuit (cf. §2.4.2). Accordingly, the efficient
instantiation of OT is of crucial importance as is evident in many recent works that
focus on efficiency, e.g., [MNPS04, HKS+10, KSS12, NNOB12, GKK+12, CHK+12,
NNOB12, LOS14, DLT14, FKOS15, BLN+15, KOS16]. The best known public-key-
based OT protocol in the semi-honest and malicious case is that of [CO15], which
achieves around 10 000 1-out-of-2 OTs per second using one thread. However, if
millions or even billions of OTs need to be carried out, this becomes prohibitively ex-
pensive. We give concrete examples for typical applications requiring a large number
of OTs next:

Example 3.1.1. The AES circuit has ∼ 5 000 AND gates (cf. §4.2.1.12) and requires
10 000 passive secure OTs when evaluated with GMW and ∼ 200 000 active secure
OTs when evaluated with TinyOT (≥ 40 OTs (aBits) per AND gate [LOS14]).

Example 3.1.2. The PSI circuit (Sort-Compare-Shuffle) of [HEK12] has O(σn log n)
AND gates and for n = 65 536 elements with σ = 32 bits the circuit has 225 AND
gates and requires 226 passive secure OTs when evaluated with GMW and ∼ 230 active
secure OTs when evaluated with TinyOT.
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Example 3.1.3. The PSI protocol of [DCW13] needs 1.44κn OTs. For n = 1 000 000
elements and symmetric security parameter κ = 128, this amounts to ∼ 227 OTs
(∼ 180 OTs per element).

To meet this large-scale demand of OTs, OT extensions [Bea96, IKNP03] can be
used. An OT extension protocol works by running a small number of base-OTs (say
128) that are used as a base for obtaining many OTs via the use of cheap symmet-
ric cryptographic operations only. This is conceptually similar to hybrid encryption
where instead of encrypting a large message using RSA, which would be too expensive,
only a single RSA computation is carried out to encrypt a symmetric key and then
the long message is encrypted using symmetric operations only. Such an OT exten-
sion can actually be achieved with extraordinary efficiency; specifically, the protocol
of [IKNP03] requires only three evaluations of a symmetric cryptographic function per
OT (beyond the initial base-OTs, cf. §2.3.1). For active adversaries, OT extensions
are somewhat more expensive. Prior to this work, the best known protocol for OT ex-
tensions with security against active adversaries was introduced by [NNOB12], which
added an overhead of approximately 8

3
(= 266%) to the passive secure OT extension

protocol of [IKNP03].

3.1.1 Our Contributions

In this chapter, we present more efficient protocols for OT extensions in the semi-
honest and malicious model. Our improvements in the semi-honest model (§3.2) seem
somewhat surprising since the protocol of [IKNP03] sounds optimal given that only
three symmetric cryptographic function computations are needed per transfer. Inter-
estingly, our protocols do not lower the number of symmetric cryptographic opera-
tions. However, we observe that significant cost is incurred due to other factors than
the symmetric cryptographic operations. We propose several optimizations that im-
prove computation and communication and outline how to parallelize the semi-honest
OT extension. We build on the efficiency improvements of the semi-honest OT ex-
tension protocol of [IKNP03] and outline how to extend the protocol to malicious
adversaries at a lower cost than the previously best malicious secure OT extension
protocol of [NNOB12] (§3.3). In short, our protocol improves the overhead that comes
with extending the passive secure OT extension protocol of [IKNP03] to malicious
adversaries from 266% to 150%. Finally, we outline different OT flavors that are
specifically designed to be used in secure computation protocols and which reduce the
communication and computation even further (§3.4). We apply our optimizations to
the OT extension implementation of [CHK+12] and demonstrate the improvements by
extensive experiments (§3.5). After presenting related work in §3.1.2, this chapter is
structured as follows:

Faster Semi-Honest OT Extensions (§3.2). We present an improved version of
the original OT extension protocol of [IKNP03] with reduced communication and com-
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putation complexity. We demonstrate how the OT extension protocol can be processed
in independent blocks, allowing OT extension to be parallelized and yielding a much
faster run-time (§3.2.1). In addition, we describe how to implement the matrix trans-
pose operation using a cache-efficient algorithm that operates on multiple entries at
once (§3.2.2); this significantly reduces the run-time of the protocol to 41% as can be
seen in the LAN experiments in Table 3.1. We then show how to reduce the commu-
nication from the receiver to the sender to 50% (§3.2.3). This is of great importance
since local computations of the OT extension protocol are so fast that the communi-
cation is often the bottleneck, especially when running the protocol over the Internet
or even wireless networks (cf. WAN results in Table 3.1 and Figure 3.2). Parallel
to and independently of our work, [KK13] introduced an efficient 1-out-of-N OT (

(
N
1

)
OT) extension protocol that achieves good communication when performing

(
2
1

)
OT on

short strings at the cost of increased computation (cf. §2.3.2). We improve the commu-
nication complexity of the [KK13] protocol for

(
2
1

)
OT by approximately 10% (§3.2.4).

Faster Malicious OT Extensions (§3.3). We present our improved malicious
OT extension protocol which improves on the previously best malicious OT exten-
sion protocol of [NNOB12]. We first present the basic protocol (§3.3.1) and prove its
security (§3.3.2). The basic protocol adds very low communication overhead to the
semi-honest version but incurs a high computation overhead. We then use the results
from [ALSZ16] to reduce the computation at the cost of increased communication,
which results in better overall efficiency. The resulting protocol decreases the commu-
nication overhead for obtaining active secure OT extension from 266% for [NNOB12] to
150%. In a subsequent work, [KOS15] outlined an OT extension protocol that achieves
nearly the same communication and computation overhead as our passive secure OT
extension protocol.

Extended OT Functionalities (§3.4). Our improved protocols can be used in any
setting that regular OT can be used. However, with a mind on the application of
secure computation, we further optimize the protocol by taking into account its use
in secure computation. We outline four OT flavors that are specifically designed to
be used in secure computation protocols and which reduce the communication and
computation even further: Correlated OT, Sender Random OT, Receiver Random OT,
and Random OT. Correlated OT (C-OT, §3.4.1) is suitable for secure computation
protocols that require varying correlated inputs, such as Yao’s garbled circuits pro-
tocol with the free-XOR technique [KS08]. Sender Random OT (SR-OT, §3.4.2) and
Receiver Random OT (RR-OT, §3.4.3) are suitable where the input of the sender (or
receiver) can be random but the input of the receiver (sender) needs to be non-random.
Finally, Random OT (R-OT §3.4.4) is a combination of Sender Random and Receiver
Random OT and can be used where the inputs of sender and receiver can be random,
such as GMW with multiplication triples [GMW87, Bea91] (cf. §2.4.2). In most cases,
the communication from the sender to the receiver is reduced to 50% (or even less) of
the original protocol of [IKNP03].



Chapter 3 Faster OT Extension 28

Experimental Evaluation (§3.5). We experimentally verify the performance im-
provements of our proposed optimizations for OT extension and special-purpose OT
functionalities in a LAN and a WAN setting. A summary of our results for 224 random
OT extensions on 1-bit strings using 4 threads is given in Table 3.1. Overall, our
optimizations improve the run-time and communication of the passive secure OT ex-
tension protocol of [IKNP03] by factor 2×−3× and 2×, respectively, and the run-time
and communication for active secure OT extension by factor 1.3 × −1.7× and 1.7×,
respectively.

Protocol
Comm. Run-Time [s]

Base-OTs Security
[MB] LAN WAN

Semi-Honest

[IKNP03] 508 9.2 39.9 128 CRF

[KK13] 160 - - 256 RO

Opt. [KK13] (§3.2.4) 146 7.8 20.8 240 RO

This (§3.2) 254 3.8 18.8 128 CRF

Malicious

[Lar14] 196 688∗ - - 323 CRF

[NNOB12] 682 9.1 50.4 342 RO

This (§3.3) 378 7.3 30.5 190 CRF / RO

[KOS15] 256* - - 128 RO

Table 3.1: Empirical communication and run-time for 224 random OT extensions on
1-bit strings with κ=128-bit security evaluated using 4 threads in a LAN
and WAN setting (cf. §3.5). The security assumption is given as correla-
tion robust function assumption (CRF) or random oracle assumption (RO)
cf. §2.2.2. Numbers with * are estimated.

3.1.2 Previous Works

In the following, we review works on OT extension in the semi-honest (§3.1.2.1) and
malicious model (§3.1.2.2).

3.1.2.1 Semi-Honest OT Extension

In the semi-honest model, the protocol of [IKNP03] was implemented by the FastGC
framework [HEKM11]. In [HS13], the memory footprint of the OT extension implemen-
tation in [HEKM11] was improved by splitting the OT extension protocol sequentially
into multiple rounds and speedups were obtained by instantiating the pseudo-random
generator with AES instead of SHA-1. In [KK13], a

(
N
1

)
OT extension protocol was

introduced that is based on the OT extension protocol of [IKNP03] and, for
(

2
1

)
OT



29 3.1 Motivation

on short strings, achieves sub-linear communication in the number of OTs. In par-
ticular, for

(
2
1

)
OT on 1-bit strings, their protocol improves communication compared

to [IKNP03] by factor 1.8× (cf. §2.3.3). This improvement in communication comes
with an increased cost in computation, since the number of evaluations of the ran-
dom oracle H for the sender is increased from 2 log2(N) to N . In addition, [KK13]
independently and in parallel introduced the same optimization for reducing the com-
munication from the receiver to the sender by 50% that we propose in §3.2.3. In §3.2.4
we improve the [KK13] OT and empirically compare the optimized

(
N
1

)
OT exten-

sion protocol to our
(

2
1

)
OT extension protocol for

(
2
1

)
OT on 1-bit strings in order to

evaluate this computation / communication trade-off.
The above works all consider the concrete efficiency of OT extensions. The theo-

retical feasibility of OT extensions was established in [Bea96], and further theoretical
foundations were laid in [LZ13]. [IKOS08] introduced a non-black-box technique for
extending OTs with asymptotic constant computation / communication overhead.
Their protocol assumes the existence of a polynomial stretch pseudo-random genera-
tor in NC0, i.e., the set of functions that can be computed by a constant depth circuit
with bounded fan-in where each output bit depends on a constant number of input
bits. The high level idea of the protocol is to use the PRG in the scheme for extending
OTs of [Bea96]. However, their scheme is extremely costly in concrete terms and the
security of the PRG in NC0 requires non-standard assumptions.

3.1.2.2 Malicious OT Extension

Due to its importance, a number of previous works have tackled the question of OT ex-
tensions with security for malicious/active adversaries. All of the known constructions
build on the semi-honest protocol of [IKNP03], and add consistency checks of different
types to the OT extension protocol, to ensure that the receiver sent consistent values.
(Note that in [IKNP03], the sender cannot cheat and so it is only necessary to enforce
honest behavior for the receiver.)

The first active secure version of OT extension used a cut-and-choose technique
and was already given in [IKNP03]. This cut-and-choose technique achieves a security
of 2−ρ by performing ρ parallel evaluations of the basic OT extension protocol.

This was improved on by [Nie07, HIKN08], who show that active security can be
achieved at a much lower cost. Their approach works in the random oracle model and
ensures security against a malicious receiver by adding a low-cost check per extended
OT, which uses the uncertainty of the receiver in the choice bit of the sender. As a
result, a malicious receiver who wants to learn p choice bits of the sender risks being
caught with probability 2−p. However, this measure allows a malicious sender to learn
information about the receiver’s choice bits. They prevent this attack by combining
S ∈ {2, 3, 4} OTs and ensuring the security of one OT by sacrificing the remaining
S− 1 OTs. Hence, their approach adds an overhead of at least S ≥ 2 compared to the
semi-honest OT extension protocol of [IKNP03] for a reasonable number of OTs (with
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S = 2 and approximately 107 OTs, they achieve security except with probability 2−25,
cf. [Nie07]).

An alternative approach for achieving active secure OT extension was presented
in [NNOB12]. Their approach also works in the random oracle model but, instead of
performing checks per extended OT as in [Nie07, HIKN08], they perform consistency
checks per base-OT. Their consistency check method involves hashing the strings that
are transferred in the base-OTs and is highly efficient. In their approach, they ensure
the security of a base-OT by sacrificing another base-OT, which adds an overhead of
factor 2×. In addition, a malicious receiver is able to learn p choice bits of the sender in
the base-OTs with probability 2−p. [NNOB12] shows that this leakage can be tolerated
by increasing the number of base-OTs from κ to d8

3
κe. The [NNOB12] protocol has

been optimized and implemented on a GPU in [FN13].
An approach for achieving active secure OT extension that works in the standard

model has been introduced in [Lar14]. Their approach achieves less overhead in the
number of base-OTs at the expense of substantially more communication during the
check routine (cf. Table 3.1 on page 28) and is therefore considerably less efficient.
Nevertheless, we point out that the work of [Lar14] is of independent interest since it
is based on the original correlation robustness assumption only.

Since it is the previous best, we compare our protocol to that of [NNOB12]. Our ap-
proach reduces the number of base-OTs by removing the “sacrifice” step of [NNOB12]
(where one out of every 2 base-OTs are opened) but increases the workload in the
consistency check routine. Indeed, we obtain an additive factor of a statistical security
parameter, instead of the multiplicative increase of [NNOB12]. This can be seen as
a trade-off between reducing communication through fewer base-OTs while increas-
ing computation through more work in the consistency check routine. We empirically
show that this results in a more efficient active secure OT extension protocol, which
only has 60% − 90% more time and 50% more communication than the passive se-
cure OT extension protocol of [IKNP03] in the LAN- and WAN setting compared to
90%− 175% more time and 166% more communication for [NNOB12] (cf. Table 3.1).

In [IPS08] it was shown how to achieve active secure OT extension with constant
overhead from the passive secure protocol of [IKNP03]. Their approach involves the
sender and receiver “simulating” additional parties and then running an outer secure
computation protocol with security against honest majority. In addition, they show
that their transformation can make black-box use of any passive secure OT protocol.
Overall, this approach improves on the asymptotic communication of [HIKN08] but
the exact constants involved in this approach have not been analyzed.

3.1.3 Follow-Up Works

Our work on semi-honest secure OT extension is considered state-of-the-art in works
on practical secure computation protocols with over 70 citations according to Google
Scholar. Our open source implementation has been used in works such as [BCP+14,
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SLPR15, WFNL16, GLNP15, BK15, BB16, PSS17] and is a major building block
of our ABY secure computation framework, presented in §4, and our PSI protocols,
presented in §5.

Subsequently to our work on active secure OT extension in [ALSZ15], a new active
secure OT extension protocol has been introduced [KOS15] which achieves nearly the
same communication and computation overhead as our passive secure OT extension
protocol protocol in §3.2. Their protocol is conceptually similar to ours (and to that
of [NNOB12]) but performs the checks on the base-OTs in parallel instead of checking
individual pairs. Thereby, the protocol of [KOS15] reduces the communication per
extended OT to κ bit plus a small additive term that is independent of the number of
OTs. Furthermore, their check routine can be implemented very efficiently using the
AES new instructions (AES-NI), resulting in very little computational overhead over
the passive secure variant. Note that there is a difference in security guarantees be-
tween the protocol of [KOS15] and our active secure OT extension protocol in §3.3. In
both protocols, a malicious receiver can learn at most c bits of the sender’s secret base-
OT choices but gets caught except with probability 2−c. If the receiver is successful, it
can then issue q queries to an oracle and break the protocol with probability q/2κ−c.
In our malicious OT extension protocol, we therefore increase the number of base-OTs
to κ + λ while the protocol of [KOS15] keeps the number of base-OTs at κ. Hence,
our active secure OT extension protocol provides κ-bit symmetric security while the
active secure OT extension protocol of [KOS16] provides (κ− λ)-bit symmetric secu-
rity against a malicious receiver that successfully guesses λ bits. When aligning the
security of both protocols by performing κ+ λ base-OTs, the [KOS16] protocol would
perform better than our protocol since it’s checks are more computationally efficient.

Recently, two independent works [OOS17, PSS17] outlined how to achieve active
security for the

(
N
1

)
OT extension protocol of [KK13] at only a small communication

overhead that is independent of the number of OTs. Previous works on active secure
OT extension utilize certain features of the [IKNP03] protocol that do not hold for
the more general protocol of [KK13] (cf. §2.3.2). The works of [OOS17, PSS17] both
showed how to generalize the existing techniques for achieving active security for OT
extension using ideas of [FJNT16].

3.2 Faster Semi-Honest OT

In the following we describe algorithmic optimizations that improve the scalability and
computational complexity of OT extension protocols. We identified computational
bottlenecks in OT extension by micro-benchmarking the

(
2
1

)
OT extension [IKNP03]

implementation of [CHK+12]. We found that the combined computation time of PS
and PR was mostly spent on two operations: The matrix transposition (61%) and the
evaluation of the correlation-robust function (CRF, cf. §2.2.4) in Step 2d and Step 2e
in Protocol 1 on page 11, instantiated with SHA-256 (32%). The remaining time
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was mostly spent on XOR operations (5%) and the evaluation of the pseudo-random
generator (PRG, cf. §2.2.1) in Step 2a and Step 2b, instantiated with AES (2%).
Furthermore, for networks with low bandwidth, the communication of OT quickly
became the bottleneck. To speed up OT extension, we propose to use parallelization
(§3.2.1), an efficient algorithm for bit-matrix transposition (§3.2.2), and a protocol
optimization that allows to reduce the communication from PR to PS by half (§3.2.3).
Note that these implementation optimizations are of general nature and can be applied
to our, but also to other OT extension protocols with security against stronger active
adversaries. Finally, we show how to optimize the computation and communication
of the

(
N
1

)
OT extension protocol of [KK13] using more efficient instantiations of the

underlying primitives (§3.2.4).

3.2.1 Blockwise Parallelized OT Extension

The previous OT extension implementation of [CHK+12] improved the performance of
OT extension by using a vertical pipelining approach, i.e., one thread is associated to
each step of the protocol: The first thread evaluates the PRG and the second thread
evaluates the CRF (cf. §2.2.4). However, since the PRG, which is instantiated using
fixed-key AES, is much faster than the CRF, which is instantiated using SHA-256, the
workload between the two threads is distributed unequally, causing idle time for the
first thread. Additionally, this method for pipelining is designed to run exactly two
threads and thus cannot easily be scaled to a larger number of threads.
As observed in [IKNP03, HS13], a large number of OT extensions can be performed by
sequentially running the OT extension protocol on blocks of fixed size, which reduces
the total memory consumption. We propose to use a horizontal pipelining approach
that splits the matrices processed in the OT extension protocol into independent blocks
that can be processed in parallel using multiple threads with equal workload, i.e., each
of the T threads evaluates the OT extension protocol for m

T
of the m inputs in parallel.

3.2.2 Efficient Bit-Matrix Transposition

The computational complexity of cryptographic protocols is often measured by count-
ing the number of invocations of cryptographic primitives, since their evaluation often
dominates the overall run-time. However, non-cryptographic operations can also have
a high impact on the overall run-time although they might seem insignificant in the
protocol description. Matrix transposition is an example for such an operation. It is
required during the OT extension protocol to transpose the m× ` bit-matrices T and
Q in Step 2d and Step 2e in Protocol 1 on page 11, which are created column-wise
but processed row-wise. Although transposition is a seemingly trivial operation, it
has to be performed individually for each entry in T and Q, making it a very costly
operation.
We propose to efficiently implement the matrix transposition using Eklundh’s algo-
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rithm [Ekl72], which uses a divide-and-conquer approach to recursively swap elements
of adjacent rows (cf. Figure 3.1). This decreases the number of swap operations for
transposing a n× n matrix from O(n2) to O(n log2 n). Additionally, since we process
a bit-matrix, we can perform multiple swap operations in parallel by loading multi-
ple bits into one register. Thereby, we again reduce the number of swap operations
from O(n log2 n) to O(dn

r
e log2 n), where r is the register size of the CPU (r = 64 for

the machines used in our experiments). Jumping ahead to the evaluation in §3.5.2,
this reduces the total time for the matrix transposition by approximately factor 22×
from 17.4 s to 0.8 s per party for 224 OTs and reduces the total time for the OTs from
30.4 s to 13.2 s when using a single thread.

10 11 129

14 15 1613

6 7 85

2 3 41

13 11 159

14 12 1610

6 4 82

5 3 71

7 11 153

8 12 164

6 10 142

5 9 131

Figure 3.1: Efficient matrix transposition of a 4×4 matrix using Eklundh’s algorithm.

3.2.3 Optimized Semi-Honest OT Extension

In the following, we optimize the OTm
n extension protocol of [IKNP03], described

in §2.3.1. Note that our optimization was independently outlined in [KK13]. Recall,
that in the first step of the protocol in [IKNP03], PR chooses a huge m × ` matrix
T = [t1| . . . |tκ] while PS waits idly (for the semi-honest OT extension protocol we can
set ` = κ; for the malicious OT extension protocol, ` needs to be increased). The
parties then engage in a OT `m protocol, where the inputs of the receiver are (ti, ti⊕ r)
where r is its input in the outer OTmn protocol (m choice bits). After the OT, PS holds
ti⊕ (si · r) for every 1 ≤ i ≤ `. As described in the appendices of [IKNP03, HMEK11],
the protocol can be modified such that PR only needs to choose two small `×κ matrices
K0 = [k0

1| . . . |k0
` ] and K1 = [k1

1| . . . |k1
` ] of seeds. These κ-bit seeds are used as input

to the ` base-OTs; specifically PR’s input as sender in the i-th OT is (k0
i ,k

1
i ) and, as

in [IKNP03], the input of PS is si. To transfer the m-bit tuple (ti, ti⊕r) in the i-th OT,
PR expands k0

i and k1
i using a PRG G, sends (u(i,0),u(i,1)) = (G(k0

i )⊕ti, G(k1
i )⊕ti⊕r),

and PS recovers G(ksii )⊕ u(i,si).
Our main observation is that, instead of choosing ti randomly, we can set ti = G(k0

i ).
Now, PR needs to send only one m-bit element ui = G(k0

i )⊕G(k1
i )⊕ r to PS (whereas

in previous protocols of [IKNP03, HMEK11] two m-bit elements were sent). Observe
that if PS had input si = 0 in the i-th OT, then it can just define its output qi to
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PROTOCOL 6 (Our Optimized Semi-Honest Secure OT Extension Protocol).

• Input of PS: m pairs (x0
j , x

1
j ) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m choice bits r = (r1, . . . , rm).

• Common Input: Symmetric security parameter κ and number of base-OTs ` = κ.

• Oracles and cryptographic primitives: The parties have an oracle access to the
OT `κ functionality and use a pseudo-random generator G : {0, 1}κ → {0, 1}m and a
correlation-robust function H : [m]× {0, 1}` → {0, 1}n (cf. §2.2.4).

1. Initial OT Phase:

a) PS initializes a random vector s = (s1, . . . , s`) ∈R {0, 1}` and PR randomly
chooses ` pairs of seeds k0

i ,k
1
i each of size κ.

b) The parties invoke the OT`κ-oracle, where PS acts as the receiver with input s
and PR acts as the sender with inputs (k0

i ,k
1
i ) for every 1 ≤ i ≤ `.

For every 1 ≤ i ≤ `, let ti = G(k0
i ). Let T = [t1| . . . |t`] denote the m× ` bit matrix

where its ith column is ti for 1 ≤ i ≤ `. Let tj denote the jth row of T for 1 ≤ j ≤ m.

2. OT Extension Phasea:

a) PR computes ti = G(k0
i ) and ui = ti⊕G(k1

i )⊕r, and sends ui to PS for every
1 ≤ i ≤ `.

b) For every 1 ≤ i ≤ `, PS defines qi = (si · ui) ⊕ G(ksii ). (Note that qi =
(si · r)⊕ ti.)

c) Let Q = [q1| . . . |q`] denote the m × ` bit matrix where its ith column is qi.
Let qj denote the jth row of the matrix Q. (Note that qi = (si · r) ⊕ ti and
qj = (rj · s)⊕ tj .)

d) PS sends (y0
j , y

1
j ) for every 1 ≤ j ≤ m, where:

y0
j = x0

j ⊕H(j,qj) and y1
j = x1

j ⊕H(j,qj ⊕ s)

e) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

• Output: PS has no output; PR outputs (x1, . . . , xm).

aThis phase can be iterated. Specifically, PR can compute the next κ bits of ti and ui

(by applying G to get the next κ bits from the PRG for each of the seeds and using the
next κ bits of its input in r) and send the block of `× κ bits to PS .

be G(k0
i ) = G(ksii ). In contrast, if PS had input si = 1 in the i-th OT, then it can

define its output qi to be G(k1
i ) ⊕ ui = G(ksii ) ⊕ ui. Since ui = G(k0

i ) ⊕ G(k1
i ) ⊕ r,

we have that G(k1
i )⊕ui = G(k0

i )⊕ r = ti⊕ r, as required. The full description of our
protocol is given in Protocol 6. This optimization is significant in applications of OTmn
extension where m is very large and n is short, such as in GMW. In typical use-cases
for GMW, m is in the size of several millions to a billion (cf. examples in §3.1), while n
is one. Thereby, the communication complexity of GMW is almost reduced by half.
In addition, observe that the initial OT phase in Protocol 6 is completely independent
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of the actual inputs of the parties. Thus, the parties can compute the initial base-OTs
before their inputs are determined.
Finally, another problem that arises in the original protocol of [IKNP03] is that the
entire m × ` matrix is transmitted together and processed. This means that the
number of OTs to be obtained must be predetermined and, if m is very large, this
results in considerable latency as well as memory management issues. As in [HS13],
splitting the matrix into blocks which are processed in a pipelined fashion reduces
latency, computation time, and avoids memory management problems. In addition, it
is possible to continually extend OTs, with no a priori bound on m. This is very useful
in a secure computation setting, where parties may interact many times together with
no a priori bound. We state and prove security of our optimized protocol in [ALSZ16].

3.2.4 Faster 1-Out-of-N OT Extension

In the following, we improve the efficiency of the
(
N
1

)
OT extension protocol of [KK13].

We improve the communication using size-optimized codes (§3.2.4.1) and the compu-
tation using pipelined AES implementations (§3.2.4.2).

3.2.4.1 Size-Optimized Codes

The communication efficiency of the
(
N
1

)
OT extension protocol of [KK13] for N > 2

is directly related to the codeword bit-length ρ of the code Γρ (cf. §2.3.2). For
2 < N ≤ 2κ, [KK13] uses a Walsh-Hadamard code, which has codewords of size
ρ = 2κ = 256 bits to achieve a Hamming distance of κ = 128 between codewords.
However, for N = 2i, with i ∈ [2, 8], the Walsh-Hadamard code is not size-optimal
with regard to the codeword size ρ. Hence, we propose to use more size-efficient
codes in order to further decrease the communication. We base our code choices
on the list of efficient codes in [SS06] and give the codeword sizes for N = 2i for
i ∈ [1, 12] in Table 3.2. In particular, for N = 4 we use a parity check code, for
N ∈ {8, 16, 32, 64, 128, 256} we use a Simplex code, for N = 512 we use a Reed-Muller
code, for N ∈ [1 024, 2 048] we use a narrow-sense BCH-code, and for N = 4 096, we
use the concatenation of a Denniston code and a Simplex code (see [SS06] for more
details). The OT communication improvements achieved by adopting our reduced
codeword sizes are the largest for N = 4 (reduced by 64 bits, i.e., 25%) and decrease
with N growing towards 256 (reduced by 1 bit, i.e., 0.4%).

In our work on private set intersection in §5, we encounter N = 270. In this case, we
use the linear BCH code [277, 512, 129], generated by [MZ06], which allows us to set
N = 277 with ρ = 512 bit codewords and relative Hamming distance κ = 128.
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N 2 4 8 16 32 64

Our Size-Efficient Codes [bits] 128 192 224 240 248 252

[KK13] Codes [bits] 128 256 256 256 256 256

N 128 256 512 1024 2048 4096

Our Size-Efficient Codes [bits] 254 255 256 264 268 270

[KK13] Codes [bits] 256 256 - - - -

Table 3.2: Communication for
(
N
1

)
OT with size-optimal codes [SS06] compared to

those used in [KK13].

3.2.4.2 Pipelined AES-256 with Key Schedule

In OT extension [IKNP03, KK13], both parties process several value tuples that are
correlated by a constant XOR offset using a CRF (Step 2d and Step 2e in Protocol 2
on page 12). While the CRF has traditionally been instantiated with a hash function,
more efficient AES-based constructions have replaced it (cf. §2.2.4). When using the
most efficient, fixed-key AES instantiation [BHKR13], the input is restricted to the
block-length of AES, i.e., 128-bit, which suffices for the

(
2
1

)
OT extension protocol

of [IKNP03] when κ = 128-bit. However, in the
(
N
1

)
OT extension of [KK13], we

need to process codewords of size ρ > 128 for N > 2, which prevents the use of
fixed-key AES. Falling back to a hash function or AES-256 with key schedule (AES-
256+KS) [KSS12] greatly decreases performance by about an order of magnitude, as
depicted in Table 3.3. Furthermore, the

(
N
1

)
OT protocol requires N invocations of

an expensive CRF (instantiated via AES-256+KS or SHA-256) as opposed to 2 logN
invocations of a cheaper CRF (instantiated via AES-128) when using

(
2
1

)
OT. In

particular, for our protocol in §4.4.2.3 we use N = 256, which requires 256 CRF
invocations when using

(
N
1

)
OT compared to 16 invocations when using

(
2
1

)
OT. Using

the AES-256+KS instantiation for
(
N
1

)
OT and the pipelined AES-128 instantiation

of [GLNP15] for
(

2
1

)
OT, this results in a computational overhead of 480x.

Primitive Width Sequential [ms] Pipelined [ms]

AES-128 [BHKR13] 128 158 54

AES-128+KS [GLNP15] 128 1 460 358

AES-256+KS [KSS12] 256 1 625 476

SHA-256 arbitrary 2 487 -

Table 3.3: Instantiations of a correlation-robust function with input width in bits, se-
quential, and pipelined run-time for 107 invocations, where KS denotes the
key schedule.

We improve the performance of the CRF instantiation based on AES-256 with key
schedule by pipelining the AES-256 key expansion and encryption as well as pipelining
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multiple invocations of AES, as was done for AES-128 in [GLNP15]. Thereby, we
manage to decrease the computation time for AES-256 by factor 4×, which reduces
the computation overhead compared to

(
2
1

)
OT from 480× to 140×. We show in §3.5.5

that when evaluating
(

2
1

)
OT224

1 using the [KK13] protocol, instantiating the CRF with
pipelined AES-256 with key schedule reduces the run-time from 39 s to 12 s compared
to a SHA-256 instantiation. For ρ > 256, we instantiate the CRF with SHA-256.

A promising line of research is given in [GM16], which outlines how to obtain cryp-
tographic permutations with larger block sizes based on fixed-key AES-128. Due to
security concerns, however, we refrain from using their instantiations but point it out
as a future alternative to explore.

3.3 Faster Malicious OT

The key insight to understanding how to secure OT extension against malicious ad-
versaries is to understand that a malicious party only has very limited possibilities for
an attack. In fact, the original OT extension protocol of [IKNP03] already provides
security against a malicious PS. In addition, the only attack for a malicious PR is
in Step 2a of Protocol 6 on page 34, where PR computes and sends ui = ti⊕G(k1

i )⊕ r
(cf. [IKNP03]). A malicious PR could choose a different r for each ui (for 1 ≤ i ≤ `),
and thereby extract PS’s choice bits s. Hence, malicious security can be obtained if
PR can be forced to use the same choice bits r in all messages u1, . . . ,u`.

3.3.1 Overview of Our Malicious Secure Protocol

All we add to the semi-honest protocol in Protocol 6 is a consistency check for the
values r that are sent in Step 2a, and increase the number of base-OTs. Let ri =
ti ⊕G(k1

i )⊕ ui, i.e., the value that is implicitly defined by ui. We observe that if the
receiver PR uses the same choice bits ri and rj for some distinct i, j ∈ [`]2, they cancel
out when computing their XOR, i.e., ui⊕uj = (ti⊕G(k1

i )⊕ ri)⊕ (tj ⊕G(k1
j)⊕ rj) =

G(k0
i ) ⊕ G(k1

i ) ⊕ G(k0
j) ⊕ G(k1

j). After the base-OTs, PS holds G(ksii ) and G(k
sj
j )

and in Step 2a of Protocol 6, PR computes and sends ui = G(k0
i ) ⊕ G(k1

i ) ⊕ ri and
uj = G(k0

j) ⊕ G(k1
j) ⊕ rj. Now note that PS can compute the XOR of the strings it

received in the base-OTs G(ksii )⊕G(k
sj
j ) as well as the “inverse” XOR of the strings

received in the base-OTs G(ksii )⊕G(k
sj
j ) = G(ksii )⊕G(k

sj
j )⊕ui⊕uj if and only if PR

has correctly used ri = rj.

However, PS cannot check whether the “inverse” XOR is correct, since it has no
information about G(ksii ) and G(k

sj
j ) (this is due to the security of the base-OTs that

guarantees that PS receives the keys ksii ,k
sj
i only, and learns nothing about ksii ,k

sj
j ).

PR cannot give these values to PS since this will reveal its choice bits. However, PR
can send the hashes of these inverse values. Specifically, PR commits to the XORs
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of all strings hp,qi,j = H(G(kpi ) ⊕ G(kqj)), for all combinations of p, q ∈ {0, 1}. Now,

given h
si,sj
i,j , h

si,sj
i,j , PS checks that h

si,sj
i,j = H(G(ksii ) ⊕ G(k

sj
j )), and that h

si,sj
i,j =

H(G(ksii )⊕G(k
sj
i )⊕ ui ⊕ uj) = H(G(ksii )⊕G(k

sj
j )). This check passes if ri = rj and

hp,qi,j were set correctly.

If a malicious PR tries to cheat and has chosen ri 6= rj, it has to convince PS by
computing hp,qi,j = H(G(kpi ) ⊕ G(kqj) ⊕ ri ⊕ rj) for all p, q ∈ {0, 1}. However, PS
can check the validity of h

si,sj
i,j = H(G(ksii ) ⊕ G(k

sj
j )) while PR remains oblivious to

si, sj. Hence, PR can only convince PS by guessing si, sj, computing h
si,sj
i,j correctly

and setting h
si,sj
i,j = H(G(ksii ) ⊕ G(k

sj
j ) ⊕ ri ⊕ rj), which PR cannot do better than

with probability 1/2. This means that PR can only successfully learn ρ bits but will
be caught except with probability 2−ρ. The full description of our new protocol is
given in Protocol 7. We give some more explanations regarding the possibility of the
adversary to cheat during the consistency check in §3.3.2.

We note that learning few bits of the secret s does not directly break the security of
the protocol once |s| > κ. In particular, the values {H(j, tj⊕s)}j are used to mask the

inputs {xrjj }j. Therefore, when H is modeled as a random oracle and enough bits of s
remain hidden from the adversary, each value H(j, tj⊕s) is random, and the adversary

cannot learn the input x
rj
j . For simplicity we first prove security of our protocol in the

random oracle model. We show in [ALSZ16] that H can be replaced with a variant of
a correlation-robustness assumption.

The advantage of our protocol over [NNOB12] is that PS does not need to reveal
any information about si, sj when checking the consistency between ri and rj (as long
as PR does not cheat, in which case it risks getting caught). Hence, it can force PR to
check that ri equals any rj, for 1 ≤ j ≤ ` without disclosing any information.

3.3.2 The Security of Our Protocol

In the following, we prove the security of our protocol.

Malicious Sender. The original OT extension protocol of [IKNP03] already provides
security against a malicious PS. Our checks do not add any capabilities for a malicious
sender, since they consist of messages from the receiver to the sender only. Thus, by
a simple reduction to the original protocol, one can show that our protocol is secure
in the presence of a malicious sender.

Simulating a Malicious Receiver. In the case of a malicious receiver, the adversary
may not use the same r in the messages u1, . . . ,u`, and as a result learn some bits from
the secret s. Therefore, we add a consistency check of r to the semi-honest protocol
of [IKNP03]. However, this verification of consistency of r is not perfectly sound, and
the verification may still pass even when the receiver sends few u’s that do not define
the same r. This makes the analysis a bit more complicated.
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PROTOCOL 7 (Our Active Secure OT Extension Protocol).

• Input of PS: m pairs (x0
j , x

1
j ) of n-bit strings, 1 ≤ j ≤ m.

• Input of PR: m choice bits r = (r1, . . . , rm).

• Common Input: Symmetric security parameter κ, statistical security parameter λ,
and number of base-OTs ` = κ+ λ.

• Oracles and cryptographic primitives: The parties have oracle access to the
active secure OT `κ functionality, and use a pseudo-random generator G : {0, 1}κ →
{0, 1}m and a random oracle H.

1. Initial OT Phase:

a) PS initializes a random vector s = (s1, . . . , s`) ∈R {0, 1}` and PR randomly
chooses ` pairs of seeds k0

i ,k
1
i each of size κ.

b) The parties invoke the OT `κ oracle, where PS acts as the receiver with input s
and PR acts as the sender with inputs (k0

i ,k
1
i ) for every 1 ≤ i ≤ `.

For every 1 ≤ i ≤ `, let ti = G(k0
i ). Let T = [t1| . . . |t`] denote the m× ` bit matrix

where its ith column is ti for 1 ≤ i ≤ `. Let tj denote the jth row of T for 1 ≤ j ≤ m.

2. OT Extension Phase (Part I):

a) PR computes ti = G(k0
i ) and ui = ti⊕G(k1

i )⊕r, and sends ui to PS for every
1 ≤ i ≤ `.

3. Consistency Check of r: (the main change from the passive secure protocol)

a) For every pair α, β ⊆ [`]2, PR defines the four values:

h0,0
α,β = H(G(k0

α)⊕G(k0
β)) , h0,1

α,β = H(G(k0
α)⊕G(k1

β)) ,

h1,0
α,β = H(G(k1

α)⊕G(k0
β)) , h1,1

α,β = H(G(k1
α)⊕G(k1

β)) .

It then sends Hα,β = (h0,0
α,β , h

0,1
α,β , h

1,0
α,β , h

1,1
α,β) to PS .

b) For every pair α, β ⊆ [`]2, PS knows sα, sβ ,k
sα
α ,k

sβ
β ,u

α,uβ and checks that:

i. h
sα,sβ
α,β = H(G(ksαα )⊕G(k

sβ
β )).

ii. h
sα,sβ
α,β = H(G(ksαα )⊕G(k

sβ
β )⊕uα⊕uβ) (= H(G(ksαα )⊕G(k

sβ
β )⊕rα⊕rβ)).

iii. uα 6= uβ .

In case one of these checks fails, PS aborts and outputs ⊥.

4. OT Extension Phase (Part II):

a) For every 1 ≤ i ≤ `, PS defines qi = (si · ui) ⊕ G(ksii ). (Note that qi =
(si · r)⊕ ti.)

b) Let Q = [q1| . . . |q`] denote the m × ` bit matrix where its ith column is qi.
Let qj denote the jth row of the matrix Q. (Note that qi = (si · r) ⊕ ti and
qj = (rj · s)⊕ tj .)

c) PS sends (y0
j , y

1
j ) for every 1 ≤ j ≤ m, where:

y0
j = x0

j ⊕H(j,qj) and y1
j = x1

j ⊕H(j,qj ⊕ s)

d) For 1 ≤ j ≤ m, PR computes xj = y
rj
j ⊕H(j, tj).

• Output: PS has no output; PR outputs (x1, . . . , xm).
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For every 1 ≤ i ≤ `, let ri
def
= ui ⊕ G(k0

i ) ⊕ G(k1
i ) that is, the “input” ri which is

implicitly defined by ui and the base-OTs.

We now explore how the matrices Q, T are changed when the adversary uses incon-
sistent r’s. Recall that when the receiver uses the same r, then qi = (si · r) ⊕ ti and
qj = (rj ·s)⊕tj. However, in case of inconsistent r’s, we get that qi = (si ·ri)⊕ti. The

case of qj is rather more involved; let R =
[
r1 | . . . | r`

]
denote the m×` matrix where

its ith column is ri, and let rj denote the jth row of the matrix R. For two strings
of the same length a = (a1, . . . , ak),b = (b1, . . . , bk), let a ∗ b define the entry-wise
product, that is a ∗ b = (a1 · b1, . . . , ak · bk). We get that qj = (rj ∗ s)⊕ tj (note that
in an honest execution, rj is the same bit everywhere). The sender masks the inputs
(x0

j , x
1
j) with (H(j,qj), H(j,qj ⊕ s)).

In order to understand better the value qj, let r = (r1, . . . , rm) be the string that
occurs the most from the set {r1, . . . , r`}, and let U ⊂ [`] be the set of all indices for
which ri = r for all i ∈ U . Let B = [`]\U be the complementary set, that is, the set of
all indices for which for every i ∈ B it holds that ri 6= r. As we will see below, except
with some negligible probability, the verification phase guarantees that |U| ≥ ` − λ.
Thus, for every 1 ≤ j ≤ m, the vector rj (which is the jth row of the matrix R), can
be represented as rj = (rj · 1) ⊕ ej, where 1 is the all one vector of size `, and ej is
some error vector with Hamming distance at most λ from 0. Note that the non-zero
indices in ej are all in B. Thus, we conclude that:

qj = (s ∗ rj)⊕ tj = (s ∗ (rj · 1⊕ ej))⊕ tj = (rj · s)⊕ tj ⊕ (s ∗ ej) .

Recall that in an honest execution qj = (rj · s)⊕ tj, and therefore the only difference
is the term (s ∗ ej). Moreover, note that s ∗ ej completely hides all the bits of s that
are in U , and may expose only the bits that are in B. Thus, the consistency check of r
guarantees two important properties: First, that almost all the inputs are consistent
with some implicitly defined string r, and thus the bits rj are uniquely defined. Second,
the set of inconsistent inputs (i.e., the set B) is small, and thus the adversary may
learn only a limited amount of bits of s.

The Consistency Checks of r. We now examine what properties are guaranteed
by our consistency check, for a single pair (α, β). The malicious receiver PR first
sends the set of keys K = {k0

i ,k
1
i } to the base-OT protocol, and then sends all the

values (u1, . . . ,u`) and the checks H = {Hα,β}α,β. In the simulation, the simulator
can choose s only after it receives all these messages (this is because the adversary gets
no output from the invocation of the OT primitive). Thus, for a given set of messages
that the adversary outputs, we can ask what is the number of secrets s for which the
verification will pass, and the number for which it will fail. If the verification passes for
some given T = (K,u1, . . . ,u`,H) and some secret s, then we say that T is consistent
with s; In case the verification fails, we say that T is inconsistent.

In the following, let Tα,β denote all messages that the receiver sends and which are rel-
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evant for the verification of the pair (α, β), that is, Tα,β =
(
k0
α,k

1
α,k

0
β,k

1
β,u

α,uβ,Hα,β

)
.

Note that T , the set of all messages that the receiver sends, is defined as T =⋃
α,β Tα,β = (K,u1, . . . ,u`,H), exactly as considered above.

The following Lemma considers the values that the adversary has sent regarding
some pair (α, β), and considers the relation to the pair of bits (sα, sβ) of the secret s.
We have:

Lemma 3.3.1. Let Tα,β = {{kbα}b, {kbβ}b,uα,uβ,Hα,β} and H be a collision-resistant
hash-function. Then, the following holds, except with negligible probability:

1. If rα 6= rβ and Tα,β is consistent with (sα, sβ), then it is inconsistent with (sα, sβ).

2. If rα = rβ and Tα,β is consistent with (sα, sβ), then it is consistent also with
(sα, sβ).

Proof: For the first item, assume that rα 6= rβ and that Tα,β is consistent both with
(sα, sβ) and (sα, sβ). Thus, from the check of consistency of (sα, sβ):

h
sα,sβ
α,β = H

(
G(ksαα )⊕G(k

sβ
β )
)
, h

sα,sβ
α,β = H

(
G(ksαα )⊕G(k

sβ
β )⊕ uα ⊕ uβ

)
,

and that uα 6= uβ. In addition, from the check of consistency of (sα, sβ) it holds that:

h
sα,sβ
α,β = H

(
G(ksαα )⊕G(k

sβ
β )
)
, h

sα,sβ
α,β = H

(
G(ksαα )⊕G(k

sβ
β )⊕ uα ⊕ uβ

)
,

and that uα 6= uβ. This implies that:

H
(
G(ksαα )⊕G(k

sβ
β )
)

= h
sα,sβ
α,β = H

(
G(ksαα )⊕G(k

sβ
β )⊕ uα ⊕ uβ

)
,

and from the collision resistance property of H, except for some negligible probability
we get that:

G(ksαα )⊕G(k
sβ
β ) = G(ksαα )⊕G(k

sβ
β )⊕ uα ⊕ uβ .

Recall that rα
def
= uα⊕G(k0

α)⊕G(k1
α), and rβ

def
= uβ ⊕G(k0

β)⊕G(k1
β). Combining the

above, we get that rα = rβ, in contradiction.

For the second item, once rα = rβ, we get that uα⊕uβ = G(k0
α)⊕G(k1

α)⊕G(k0
β)⊕

G(k1
β) and it is easy to see that if the consistency check of (sα, sβ) holds, then the

consistency check of (sα, sβ) holds also.

Lemma 3.3.1 implies what attacks the adversary can do, and what bits of s it can
learn from each such an attack. In the following, we consider a given partial transcript
Tα,β = ((k0

α,k
1
α,k

0
β,k

1
β), (uα,uβ),Hα,β) and analyze what the messages might be, and

what the adversary learns in case the verification passes. Let rα = uα⊕G(k0
α)⊕G(k1

α)
and rβ defined analogously. We consider 4 types:
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1. Type 1: rα = rβ and Hα,β is correct. That is, for every (a, b) ∈ {0, 1}2:

ha,bα,β = H
(
G(kaα)⊕G(kbβ)

)
. In this case, the verification passes for every possible

value of (sα, sβ).

2. Type 2: rα = rβ, but Hα,β is incorrect. In this case, the adversary sent
uα,uβ that define the same r. However, it may send hashes Hα,β that are in-

correct (i.e., for some (a, b) ∈ {0, 1}2, it may send: ha,bα,β 6= H(G(kaα) ⊕ G(kbβ))).

However, from Lemma 3.3.1, if rα = rβ and Hα,β is consistent with (sα, sβ) then
it is also consistent with (sα, sβ).

Thus, a possible attack of the adversary, for instance, is to send correct hashes for
some bits (0, 0) and (1, 1), but incorrect ones for (0, 1) and (1, 0). The verification
will pass with probability 1/2, exactly if (sα, sβ) are either (0, 0) or (1, 1), but it
will fail in the other two cases (i.e., (1, 0) or (0, 1)). We therefore conclude that
the adversary may learn the relation sα ⊕ sβ, and gets caught with probability
1/2.

3. Type 3: rα 6= rβ and Hα,β is incorrect in two positions. In this case,
for instance, the adversary can set the values h0,0

α,β, h
0,1
α,β correctly (i.e., h0,0

α,β =

H(G(k0
α) ⊕ G(k0

β)) and h0,1
α,β = H(G(k0

α) ⊕ G(k1
β))) and set values h1,0

α,β, h
1,1
α,β,

accordingly, such that the verification will pass for the cases of (sα, sβ) = (0, 0)
or (0, 1). That is, it sets:

h1,0
α,β = H(G(k0

α)⊕G(k1
β)⊕ uα ⊕ uβ)

(and it sets h1,1
α,β in a similar way). In this case, the adversary succeeds with

probability 1/2 and learns that sα = 0 in case the verification passes. Similarly,
it can guess the value of sβ and set the values accordingly. In conclusion, the
adversary can learn whether its guess was correct, and in which case it learns
exactly one of the bits sα or sβ but does not learn anything about the other bit.

In case where Hα,β is correct in only one position but rα 6= rβ, the probability

of success is even smaller. For instance, assume that ha,bα,β = H(G(kaα) ⊕ G(kbβ))

for (a, b) = (0, 0), (0, 1), (1, 0), but the adversary sends h1,1
α,β incorrectly as above.

In this case, the verification will fail for (sα, sβ) = (1, 1) and, in addition, also
for the cases where (sα, sβ) = (0, 1) or (1, 0), since rα 6= rβ. Similarly, for the
case where Hα,β is incorrect in only one position, for which the adversary only
succeeds with probability 1/2. Therefore, it is more beneficial for the adversary
to send two positions incorrectly.

4. Type 4: rα 6= rβ and Hα,β is incorrect in three positions. In this case,

the adversary may guess both bits (sα, sβ) = (a, b) and set ha,bα,β correctly, set ha,bα,β
accordingly (i.e., such that the verification will pass for (a, b)), but will fail for
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any one of the other cases. In this case, the adversary learns the values (sα, sβ)
entirely, but succeeds with probability at most 1/4.

Note that whenever rα 6= rβ, the adversary may pass the verification of the pair
(α, β) with probability at most 1/2. This is because it cannot send consistent hashes
for all possible values of (sα, sβ), and must, in some sense, “guess” either one of the
bits, or both (i.e., Type 3 or Type 4). However, an important point that makes the
analysis more difficult is the fact that the two checks are not necessarily independent.
That is, in case where rα 6= rβ and rβ 6= rγ, although the probability to pass each
one of the verification of (α, β) and (β, γ) separately is at most 1/2, the probability
to pass both verifications together is higher than 1/4, and these two checks are not
independent. This is because the adversary can guess the bit sβ, and set the hashes
as in Type 3 in both checks. The adversary will pass these two checks if it guesses sβ
correctly, with probability 1/2.

Proving Security of the Protocol. Before proceeding to the full proof of security,
we first provide a proof sketch. The simulator S invokes the malicious receiver and
plays the role of the base-OT trusted party and the honest sender. It receives from the
adversary its inputs to the base-OTs, and thus knows the values {k0

i ,k
1
i }`i=1. Therefore,

it can compute all the values r1, . . . , r` when it receives the messages u1, . . . ,u`. It
computes the set of indices U , and extracts r. It then performs the same checks as
an honest sender, in Step 3 of Protocol 7, and aborts the execution if the adversary
is caught cheating. Then, it sends the trusted party the value r that it has extracted,
and learns the inputs xr11 , . . . , x

rm
m . It computes qj as instructed in the protocol (recall

that these qj may contain the additional “shift” s ∗ ej) and use some random values

for all {yrjj }mj=1.

Since the values {yrjj }mj=1 are random in the ideal execution, and equal {xrjj ⊕H(j,qj⊕
s)} in the real execution, a distinguisher may distinguish between the real and ideal
execution once it makes a query of the form (j,qj⊕s) to the random oracle. We claim,
however, that the probability that the distinguisher will make such a query is bounded
by (t + 1)/|S|, where t is the number of queries it makes to the random oracle, and
S is the set of all possible secrets s that are consistent with the view that it receives.
Thus, once we show that |S| > 2κ, the probability that it will distinguish between the
real and ideal execution is negligible in κ.

However, the above description is too simplified. First, if the adversary performs
few attacks of Type 2, it learns information regarding s from the mere fact that the
verification has passed. Moreover, recall that y

rj
j = x

rj
j ⊕H(j, tj ⊕ (s ∗ ej)), and that

the adversary can control the values tj and ej. Recall that ej is a vector that is all
zero in positions that are in U , and may vary in positions that are in B. This implies
that by simple queries to the random oracle, and by choosing the vectors ej cleverly,
the adversary can totally reveal the bits sB quite easily. We therefore have to show
that the set B is small, while also showing that the set of consistent secrets is greater
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than 2κ (that is, |S| ≥ 2κ). We now proceed to a formal statement of the theorem and
formal proof of security, where there we prove the two informal claims that were just
mentioned.

Theorem 3.3.2. Assume that H is a random oracle and that G is a pseudo-random
generator. Then, Protocol 7 with ` = κ + λ securely computes the OTmn functionality
in the OT `κ-hybrid model in the presence of a static malicious adversary, where κ is
the symmetric security parameter and λ is the statistical security parameter.

Proof:
Recall that security against a malicious sender can be proven by a simple reduction

to the original OT extension protocol of [IKNP03], which is already secure against
malicious sender, using the fact that our checks consist of messages that go from the
receiver to the sender only. In the following we will give the proof for a malicious
receiver. Since we already gave some proof sketch, we start directly with a formal
description of the simulator S:

The Simulator S.

1. The simulator invokes the adversary A on the auxiliary input z.

2. Initial OT phase: The adversary A outputs ` pairs of κ-bits each {k0
i ,k

1
i }`i=1

as input to the `×OTκ-functionality. It receives no output from this invocation.

3. First part of OT extension phase: The adversary A outputs ` strings
u1, . . . ,u`.

4. Consistency check of r:

a) For every α, β ∈ [`]2, the adversary A outputs the quadruple Hα,β =
(h0,0

α,β, h
0,1
α,β, h

1,0
α,β, h

1,1
α,β).

b) The simulator chooses a string s uniformly at random from {0, 1}`.
c) Given the values {{k0

i ,k
1
i }`i=1,u

1, . . . ,u`, {Hα,β}α,β} and the chosen secret
s, the simulator can perform all the needed checks as the honest sender in
the real execution. In case where one of the verification fails, the simulator
halts.

5. Second part of the OT extension phase:

a) The simulator computes the matrices T , Q and R, where for every i, ti =
G(k0

i ), qi = (si · ri)⊕ ti and ri = G(k0
i )⊕G(k1

i )⊕ ui.

b) From all the vectors r1, . . . , r`, let r be the vector that is mostly repeated
(as we will see, the verification process guarantees that there exists a vector
that is repeated at least `− λ times).
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c) Send r to the trusted party, and receive xr11 , . . . , x
rm
m . Define the values ej

for every 1 ≤ j ≤ m (explicitly, define the matrix R as the matrix for which
its ith column is ri, and let rj denote its jth row. Then, ej = (rj · 1)⊕ rj.
Then, for every 1 ≤ j ≤ m, set y

rj
j = x

rj
j ⊕ H(j, tj ⊕ (s ∗ ej)), and set

y
rj
j uniformly at random. Send {(y0

j , y
1
j )}mj=1 to the adversary A, output

whatever it outputs and halt.

Let T = {{k0
i ,k

1
i }`i=1,u

1, . . . ,u`, {Hα,β}α,β}, i.e., the values that the adversary gives
during the execution of the protocol. Observe that the simulator chooses the secret s
only after T is determined (since the adversary receives no output from the execution
of the OT primitive, we can assume that). We divide all possible choices of T into two
sets, Tgood and Tbad, defined as follows:

Tgood =
{
T | Prs [consistent(T , s) = 1] > 2−λ

}
and

Tbad =
{
T | Prs [consistent(T , s) = 1] ≤ 2−λ

}
,

where consistent(T , s) is a predicate that gets 1 when the verification passes for the
transcript T and the secret s, and 0 otherwise. The probability is taken over the choice
of s. For a given T , let S(T ) be the set of all possible secrets s ∈ {0, 1}`, that are
consistent with T . That is: S(T ) = {s ∈ {0, 1}` | consistent(T , s) = 1}. Therefore, it
holds that:

Pr
s

[consistent(T , s) = 1] =
|S(T )|

2`

and thus |S(T )| = 2` ·Pr [consistent(T , s) = 1]. As a result, for every T ∈ Tgood, it holds
that |S(T )| > 2` · 2−λ = 2`−λ = 2κ. That is, in case a transcript T ∈ Tgood passes the
consistency check of r, there are at least 2κ different secrets s that are consistent with
the given transcript, each are likely with the same probability, and thus the adversary
may guess s with probability at most 2−κ.

Let U be the largest set of indices such that for every i, j ∈ U , ri = rj. Let B be
the complementary set, that is, B = [`] \ U . From the definition of the sets, for every
α ∈ U and β ∈ B, it holds that rα 6= rβ.

We claim that if |U| < `−λ (i.e., |B| > λ), then it must hold that T ∈ Tbad and the
adversary gets caught with high probability. That is:

Claim 3.3.3. Let T be as above, and let U be the largest set of indices such that for
every α, β ∈ U , rα = rβ. Assume that |U| < `− λ. Then:

Pr
s

[consistent(T , s) = 1] ≤ 2−λ

and thus, T ∈ Tbad.

We will prove the claim below. Let T ∈ Tgood, and let U and B be as above. Using
the claim above, we have that |B| < λ. We now focus on the set of secrets s that are
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consistent with this transcript T , i.e., the set S(T ). For a set of indices A, we let sA
denote all the bits in s with indices from A, that is sA = (sa)a∈A. We now claim that
the bits sB are common to all the secrets in S(T ), and thus, even when we give the
adversary the bits sB in the clear once the verification is completed, the adversary still
has to guess s from a set of at least 2κ secrets. Formally:

Claim 3.3.4. Let T ∈ Tgood, and let U and B as above. Then, there exists a string
w ∈ {0, 1}|B|, such that for every s′ ∈ S(T ), it holds that: s′B = w.

Proof: From the definition of the sets B and U , it holds that for every α ∈ U and
β ∈ B, rα 6= rβ. Consider two secrets s, s′ that are consistent with T (since T ∈ Tgood,
there are many such T ’s). We show the following:

• If there exists an index β ∈ B such that sβ 6= s′β, then for every α ∈ U it holds
that sα = s′α (that is, sU = s′U).

• Similarly, if there exists an index α ∈ U such that sα 6= s′α then for every β ∈ B
it holds that sβ = s′β (that is, sB = S ′B).

We show the first claim. Assume that sB 6= s′B, thus, there must exist an index
β ∈ B such that sβ 6= s′β, i.e., s′β = sβ. Now, consider some α ∈ U , we show that
sα = s′α and thus sU = s′U . Recall that T is consistent with s, and therefore is consistent
with (sα, sβ). From Lemma 3.3.1, it is inconsistent with (sα, sβ) = (sα, s

′
β). However,

recall that T is consistent also with s′, and therefore it is consistent with (s′α, s
′
β). We

therefore conclude that it must hold that sα 6= s′α and thus sα = s′α. The second claim
is proven analogously.

We now claim that the set S(T ) either shares the same sB for all its elements, or
shares the same sU for all elements (and of course, not both). In order to see this, let
S(T ) = {s1, . . . , sn}. Assume, without loss of generality, that s1

U 6= s2
U (and so, from

above, s1
B = s2

B). We now claim that all the other elements share the same bits in B.
If not, that is, if there exists an element si ∈ S(T ) such that siB 6= s1

B, it must hold
that siU = s1

U . However, s1
U 6= s2

U , which implies that siU 6= s2
U and thus siB = s2

B = s1
B,

in contradiction.
We further claim that the set S(T ) must share the same sB and cannot share the

same sU . This is a simple counting argument: Since |B| < λ, a set S(T ) that shares
the same sU has size of at most 2|B| ≤ 2λ. However, since T ∈ Tgood, it holds that
|S(T )| > 2κ. Therefore, the set must share the same sB, and the claim follows.

We now show that the distinguisher distinguishes between the ideal and real execu-
tions with relatively small probability, even when it asks the oracle H as (polynomially)
many queries as it wishes.

First, assume that the distinguisher cannot make any queries to H. We claim that
the distributions of the real and ideal executions are statistically close. Intuitively,
if the adversary outputs T ∈ Tbad, then clearly the distinguisher may succeed only
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if the consistency check fails, which happens with probability at most 2−λ. On the
other hand, in case where the adversary outputs T ∈ Tgood, then, except for negligible
probability (in λ) it holds that |U| ≥ `−λ = κ, and |S(T )| ≥ 2κ, where all the elements
in S(T ) share the same bits sB. Thus, even if the distinguisher receives sB in the clear,
the values H(j,qj), H(j,qj ⊕ s) that are used for masking the inputs are uniformly
random and independent of each other. Therefore, the simulation is indistinguishable
from the real-execution.

Now, assume that the distinguisher can also make queries to the random oracle H.
In this case, we claim that the distinguisher can distinguish only if it makes a “critical
query”, where:

Definition 3.3.5. For every 1 ≤ j ≤ m, a query made by the distinguisher or the
receiver to the random oracle is a critical query if it is of the form (j, ((1− rj) · s)⊕qj)
for some j.

Note that a critical query can also be represented asH(j, (rj ·s)⊕tj⊕(s∗ej)). Clearly,

a critical query totally reveals x
rj
j . Conditioned on the event that the distinguisher

(or the receiver) never queries such a critical query and that sU 6= 0, the distributions
of the real and ideal executions are statistically close. On the other hand, as long as
sU 6= 0, and as long as no such a critical query is made, the answers to the queries are
independent of the value of s, and the distinguisher does not learn anything new from
the queries themselves. Any query to H is distributed uniformly and independently
at random, and since s is distributed uniformly in S(T ), the probability to “hit” a
critical query is bounded by 1/|S(T )|. We therefore conclude the following claim:

Claim 3.3.6. The probability that the distinguisher or the receiver make a critical query
is bounded by: (t+ 1)/|S(T )| ≤ (t+ 1) · 2−κ, where t is an upper-bound on the number
of their queries.

This completes the proof.

We now restate Claim 3.3.3 and prove it. This claim is in fact, an analysis of the
consistency check phase of the protocol.

Claim 3.3.7 (Claim 3.3.3, restated). Let T be as above, and let U be the largest set
of indices such that for every α, β ∈ U , rα = rβ. Assume that |U| < `− λ. Then:

Pr
s

[consistent(T , s) = 1] ≤ 2−λ

and thus, T ∈ Tbad.

Proof: Let T be the values that the adversary outputs, i.e., the values

T =
{
{k0

i ,k
1
i }i, {ui}i, {Hα,β}α,β

}
.
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For a pair α ∈ U , β ∈ B, we claim that the adversary passes the verification of the pair
(α, β) with probability at most 1/2. This is because rα 6= rβ and due to Lemma 3.3.1,
if T is consistent with some (sα, sβ) then it is inconsistent with (sα, sβ). Thus, there
are at most 2 possible values (sα, sβ) that are consistent with T , and the adversary
gets caught for the 2 other values.

We define the inconsistency graph Γ = (V,E) as follows. The set of vertices is the set
[`]. The set of edges contains all the pairs that define different r’s, that is, there exists
an edge (α, β) if rα 6= rβ. Note that since (α, β) are not consistent, the adversary gets
caught in the check (α, β) with probability at least 1/2. We sometimes consider the
complement graph (or, the consistency graph) Γ = (V,E). In Γ, each edge represents
that the two vertices define the same implicit input r.

We now analyze the size of the set U .

1. Case 1: λ ≤ |U| < ` − λ. In this case, we have a large enough set which is
consistent within itself, but is inconsistent with all the others. We claim that in
this case, the adversary will get caught with probability 1− 2−λ.

In order to see this, consider the set B = [`] \U . Since B ∪U = [`], we have that
λ < |B| ≤ `− λ as well.

Moreover, consider the inconsistency graph Γ, and remove all the edges that are
between two elements of B (this can be interpreted as follows: Although there is
some possibility that the adversary gets caught because of these checks, we ignore
them and do not consider these inconsistencies as cheating). As a result, we have
a bipartite graph where the set of vertices is divided to B and U . Moreover, when
considering the complement graph for the resulting graph, we have two cliques,
B and U , and the maximal clique in this graph is at most `− λ.

According to König’s theorem [LP86], in any bipartite graph the number of edges
in the maximal matching equals the minimal vertex cover. Moreover, it is easy to
see that the sum of the minimum vertex cover in some graph, and the maximal
clique of its complement graph equals to the overall number of vertices `. We
therefore conclude that the maximal matching in the graph Γ is at least λ.

Each edge in the graph represents a check where the adversary gets caught with
probability at least 1/2. Since there are at least λ edges in the maximal matching
in the inconsistency graph, there are at least λ pairs for which the adversary
gets caught with probability at least 1/2. Moreover, since we have a matching,
each pair and check are independent. We therefore conclude that the adversary
succeeds in its cheating with probability at most 2−λ, and therefore it gets caught
with probability at least 1− 2−λ.

2. Case 2: |U| < λ. Similarly to the previous case, we can just find a superset
U ′ that contains U of size at least λ for which we assume (artificially) that it
is all consistent. That is, for this set U ′ we just ignore the checks between the
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elements in this set and assume that they are all consistent. After we obtain this
clique (by ignoring some of the checks), we are back to the previous case.

For conclusion, we have the following: If T is such that |U| < `− λ, then:

Pr
s

[consistent(T , s) = 1] < 2−λ.

Reducing the Number of Checks. Protocol 7 uses ` = κ + λ base-OTs and
performs `( `−1

2
) checks, i.e., a check between all possible combinations of base-OTs.

In [ALSZ16], we show that the number of base-OTs ` and the number of checks can be
traded which improves the performance of the protocol. We give possible parameter
choices from [ALSZ16] for κ = 128 and λ = 40 in Table 3.4.

# base-OTs ` 190 177 174 172 171 170 169 168

#-checks 380 531 696 860 1 026 1 360 2 535 14 028

Table 3.4: Concrete choice of parameters for Protocol 7 that achieve κ = 128 and
λ = 40 from [ALSZ16].

Achieving Covert Security. In [ALSZ16] we show that the number of base-OTs
and number of checks can be chosen to achieve covert instead of active security. We
show that using ` = 166 base-OTs and 7 checks allows to detect a malicious receiver
with probability 1/2.

3.4 Special-Purpose OT Functionalities

The protocols described up until now implement the OTmn functionality. In the fol-
lowing, we present further optimizations that are specifically tailored to the use of OT
extensions in secure computation protocols summarized in Table 3.5 on page 52: Cor-
related OT (§3.4.1), Sender Random OT (§3.4.2), Receiver Random OT (§3.4.3), and
Random OT (§3.4.4). We give the intuition and overview of the functionalities next
and then summarize the resulting complexities (§3.4.5). The definitions and proofs of
security are given in [ALSZ16].

3.4.1 Correlated OT (C-OT)

When performing OT extension, often the sender does not need to transfer two inde-
pendent n-bit strings (x0

j , x
1
j). In some protocols, x0

j and x1
j only need to be correlated

by a value ∆j and a correlation function f∆j
, while one of the two strings can be
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constant and publicly known or random. For instance, Yao’s garbled circuits with the
free-XOR optimization (cf. §2.4.1.2) chooses a key kj0 per wire at random and com-
putes the second key for the wire as kj1 = kj0 ⊕ ∆ for a fixed global offset ∆ (hence
we can set kj0 = x0

j and kj1 = f∆(x0
j) = x0

j ⊕ ∆), the PSI protocol of [DCW13] fixes
x0
j = 0 and transfers only x1

j (hence, we can set ∆j = x1
j and f∆j

(x0
j) = ∆j), and

the Hamming distance protocol of [BCP13] requires a random x0
j and a correlated

x1
j = f∆j

(x0
j) = x0

j + ∆j. We can alter the functionality of our OT extension protocols
to compute correlated OT as follows. Since x0

j is just a random value, PS can set
x0
j = H(j,qj) and x1

j = f∆j
(x0

j) and can send the single value yj = x1
j ⊕H(j,qj ⊕ s).

PR defines its output as H(j, tj) if rj = 0 or as yj ⊕ H(j, tj) if rj = 1. For
(

2
1

)
OT

on n-bit strings, we thereby reduce the communication from PS to PR from 2n + `
to n + ` per OT, where ` is the number of base-OTs. The protocol description can
be found in Protocol 8. Note that the C-OT functionality can be generalized to

(
N
1

)
OT by generating one message at random and sending correlations for the remaining
N − 1 messages.

PROTOCOL 8 (Implementing Correlated OT (C-OT)).
We follow Protocol 6 but assume that the sender has inputs f∆1

, . . . , f∆m
instead of

(x0
1, x

1
1), . . . , (x0

m, x
1
m). In Step 2d and Step 2e, we have the following modifications:

1. PS defines x0
j = H(j,qj) and x1

j = f∆j
(x0
j ).

2. PS sends yj for every 1 ≤ j ≤ m, where: yj = x1
j ⊕H(j,qj ⊕ s) .

3. For 1 ≤ j ≤ m, PR computes xj = H(j, tj) if rj = 0, and xj = yj ⊕H(j, tj)
otherwise.

Output: PS outputs (x0
1, x

1
1), . . . , (x0

m, x
1
m); PR outputs (x1, . . . , xm).

3.4.2 Sender Random OT (SR-OT)

When using OT extensions for implementing the OT-based PSI protocol of [DCW13],
the efficiency can be improved even further. In this case, the inputs for PS in every
OT are independent random strings x0 and x1. Thus, the sender can allow the

(
2
1

)
OT extension protocol (functionality) Sender Random OT (SR-OT) to determine both
of its inputs randomly. This is achieved in the OT extension protocol by having PS
define x0 = H(j,qj) and x1 = H(j,qj ⊕ s). Then, PR computes xrj just as H(j, tj).
The protocol description can be found in Protocol 9. The SR-OT functionality can be
generalized to

(
N
1

)
OT by generating all N messages as output of the CRF. With this

optimization, we obtain that the entire communication in the OT extension protocol
consists only of the initial base-OTs, together with the messages u1, . . . ,u`, and there
are no yj messages. This is a dramatic improvement of bandwidth. In particular,
for our OT-PSI protocol in §5.4.2, which performs O(n)

(
2σ

1

)
OT on λ + 2 log2(n)-bit

strings, where n is the number of elements in both parties sets and σ is the bit-length
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of each element, the communication from PS to PR is reduced from O(2σ · n log2(n))
to O(n log2(n)).

PROTOCOL 9 (Implementing Sender Random OT (SR-OT)).
We follow Protocol 6, where the sender does not have any input. In Step 2d and Step 2e,
we have the following modification:

1. PS defines x0
j = H(j,qj) and x1

j = H(j,qj ⊕ s) for every 1 ≤ j ≤ m.

2. PR defines xj = H(j, tj) for every 1 ≤ j ≤ m. Note that there is no interaction
between the parties in this step.

Output: PS outputs (x0
1, x

1
1), . . . , (x0

m, x
1
m); PR outputs x1, . . . , xm.

3.4.3 Receiver Random OT (RR-OT)

Analogously to the Sender Random OT, in the Receiver Random OT (RR-OT), PR
obtains its input choice bits r as random output of the protocol execution. Our in-
stantiation of RR-OT in OT extension allows PR to save one bit of communication
per OT. Recall that in Step 2(a) in Protocol 6, PR sends ui = G(k0

i )⊕ G(k1
i )⊕ r for

1 ≤ i ≤ `. However, if we allow r to be randomly chosen, we can set r = G(k0
1)⊕G(k1

1)
and t1 = G(k0

1) and only need to transfer ui
′

= G(k0
i′)⊕G(k1

i′)⊕ r for 2 ≤ i′ ≤ `. PS
can then compute q1 = G(ks11 ) and, as before, qi

′
= (si′ · ui

′
)⊕G(k

si′
i′ ). Thereby, the

communication from PR to PS is reduced by one bit per OT. The protocol description
can be found in Protocol 10.

In order to randomly sample the choice bits in the
(
N
1

)
OT protocol of [KK13], we

transform the code Cρ into a systematic form, similar to [FJNT16]. In the systematic
form, the input data is embedded into the codeword, i.e., the integer s ∈ {0, 1}log2N is
a sub-string of codeword cs. This reduces the communication per

(
N
1

)
OT by log2N

bits.

3.4.4 Random OT (R-OT)

In a random OT, both PS and PR obtain their input as random output of the protocol.
The random OT functionality can be obtained by combining the SR-OT protocol with
the RR-OT protocol. Random OT can be used in the GMW protocol when pre-
computing MTs (cf. §4.3.2). The protocol description can be found in Protocol 11.

3.4.5 Summary

The original OT extension protocol of [IKNP03] and our proposed improvements for
OTmn are summarized in Tab. 3.5. We compare the communication complexity of PR
and PS for m parallel

(
2
1

)
OT extensions of n-bit strings, with security parameter κ

and ` base-OTs (we omit the cost of the initial OT κκ ). We also compare the assumption
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PROTOCOL 10 (Implementing Receiver Random OT (RR-OT)).
We follow Protocol 6 with the following modifications:

1. PR has no input.

2. Given the chosen keys {k0
i ,k

1
i }`i=1, PR sets r = G(k0

1)⊕G(k1
1).

3. For every 2 ≤ i ≤ `, PR sets ui = G(k0
i ) ⊕ G(k1

i ) ⊕ r, and sends u2, . . . ,u` to PS .
Note that u1 is not sent.

4. In case of our active secure OT extension protocol, the parties check consistency as
previously.

5. PR defines T = [t1 | . . . | t`] where ti = G(k0
i ) for every 1 ≤ i ≤ ` as in Protocol 6.

6. PS defines Q = [q1 | . . . | q`] where q1 = G(ks11 ), and for every 2 ≤ i ≤ `, qi is
defined as in Protocol 6, i.e., qi = G(k0

i ) if si = 0; otherwise, set qi = ui ⊕G(k1
i ).

7. The parties proceed with the execution as in Protocol 6.

Output: PS has no output; PR outputs r and x1, . . . , xm.

PROTOCOL 11 (Implementing Random-OT (R-OT)).
This is a simple combination of Protocol 9 and Protocol 10. Specifically, PR defines its
input as G(k0

1)⊕G(k1
1), and PS defines its inputs x0

j , x
1
j according to H(j,qj), H(j,qj⊕ s),

respectively, for every 1 ≤ j ≤ m. There is no transmission of u1 from PR to PS , and there
is no transmission of y0

j , y
1
j from PS to PR for every 1 ≤ j ≤ m.

on the function H needed in each protocol, where CR denotes correlation-robustness
and RO denotes random oracle.

Protocol Applicability PR → PS PS → PR H
Orig. [EGL85] All applications m` 2mn CR
C-OT §3.4.1 x0

j random; x1
j correlated with ∆j m` mn RO

SR-OT §3.4.2 x0
j , x

1
j random, rj chosen m` 0 RO

RR-OT §3.4.3 x0
j , x

1
j chosen, rj random m(`− 1) 2mn RO

R-OT §3.4.4 x0
j , x

1
j , rj random m(`− 1) 0 RO

Table 3.5: Bits sent for sender PS and receiver PR for
(

2
1

)
OTm

n using the semi-honest
OT extension protocol of [IKNP03] with our optimizations.

3.5 Evaluation

In this section, we empirically evaluate our optimizations and proposed protocols. We
first describe our benchmarking environment and implementation (§3.5.1). Then, we
evaluate the optimizations on the passive secure OT extension protocol of [IKNP03]
from §3.2 (§3.5.2) as well as the special-purpose OT functionalities from §3.4 (§3.5.3).
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We then compare the performance of our active secure OT extension protocol of §3.3
to related protocols (§3.5.4). Finally, we evaluate the performance gains that can be
achieved when using AES-based instead of SHA-based CRF instantiations (§3.5.5).

3.5.1 Benchmark Setting

Parameters and Instantiation. In all our experiments, we assume long-term se-
curity beyond 2030 (cf. §2.1.3). We instantiate the PRG using AES-CTR (cf. §2.2.1)
and the RO using SHA256 (cf. §2.2.2). For the evaluation in §3.5.2, §3.5.3, and §3.5.4,
we instantiate the CRF using SHA256. For the evaluation in §3.5.5, we instantiate
the CRF using fixed-key AES-128 [BHKR13] for the passive secure [IKNP03] proto-
col and pipelined AES-256 with key schedule for the passive secure [KK13] protocol
(cf. §3.2.4.2). We process the OTs blockwise with blocks of size w = 219 and run two
additional threads for network send and receive operations. We use the OT protocol
of [NP01] in the random oracle model as base-OT protocol for the passive secure OT
extension protocols and the OT protocol of [CO15] as base-OT protocol for the active
secure OT extension protocols. As parameters for our active secure protocol we use
190 base-OTs and 380 checks and for our covert secure protocol we use 166 base-OTs
and 7 checks as these parameters resulted in the best performance. For the active
secure protocol of [NNOB12], we use the parameters in the paper, i.e. 342 base-OTs
and 171 checks.

3-step OT Extension. To generate large numbers m > w = 219 of OTs for the
active secure OT extension protocols, we perform a 3-step OT, where PS and PR first
perform ` base-OTs, then extend these ` OTs to dm`/we OTs using the respective
OT extension protocols, and finally split these dm`/we OTs into m/w blocks of ` OTs
and extend each block to w OTs again using the respective OT extension protocol to
obtain the m OTs. In case m > wbw/`c, one can simply extend this approach again
and do a 4-step OT.(

2
1

)
R-OT on bits via

(
N
1

)
R-OT [KK13]. For the passive secure

(
N
1

)
OT extension

protocol of [KK13], we use N = 16, since this resulted in the lowest communication,
and hence convert one

(
16
1

)
R-OT to four

(
2
1

)
R-OT (cf. §2.3.3). In particular, we

convert the i-th
(

16
1

)
R-OT with 4-bit output values (z0

i , ..., z
15
i ) ∈ {0, 1}64 to the 4i-

th to (4i + 3)-th
(

2
1

)
OT with single bit output values (x0

4i, x
1
4i), ..., (x

0
4i+3, x

1
4i+3) as:

(x0
4i||x0

4i+1||x0
4i+2||x0

4i+3) = z0
i and (x1

4i||x1
4i+1||x1

4i+2||x1
4i+3) = z15

i . For the remaining

values (z1
i , ..., z

14
i ), PS sends 4-bit correction values yji = zji ⊕ (xj04i||x

j1
4i+1||x

j2
4i+2||x

j3
4i+3)

for 1 ≤ j ≤ 14 and where j = j0||j1||j2||j3 with j0 being the least significant bit of j.
Thereby, we do not need to send the correction values for z0

i and z15
i which reduces

the cost per conversion from 64 to 56 bit. Note, that the [KK13] OT can also be
instantiated with N ∈ {4, 8}, which would increase communication but reduce the
computation complexity.
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Benchmark Environment. We perform our experiments in two settings: A LAN
setting and a WAN setting. In the LAN setting, we run the sender and receiver routines
on two Desktop PCs, each equipped with an Intel Haswell i7-4770K CPU with 4 cores
and AES-NI support and 16 GB RAM that are connected by Gigabit Ethernet. In the
WAN setting, we run the sender on an Amazon EC2 m3.xlarge instance with a 2.5 GHz
Intel Xeon E5-2670v2 CPU with 4 virtual CPUs (vCPUs) and AES-NI support and
15 GB RAM, located in North Virginia (US EAST) and the receiver routine on one
of our Desktop PCs in Europe. The average bandwidth between these two machines
was 120MBit/s and the average ping latency (round-trip time) was 100 ms.

3.5.2 Evaluation of Semi-Honest OT Extension

In the following, we evaluate the performance gains from our optimizations on the
passive secure OT extension protocol of [IKNP03] described in §3.2. We benchmark
the protocol in three versions: The original passive secure OT extension protocol
of [IKNP03] with naive matrix transposition, the protocol of [IKNP03] with the Ek-
lundh matrix transposition (cf. §3.2.2), and our improved passive secure OT extension
protocol (cf. §3.2.3), including the Eklundh matrix transposition. We evaluate all
three versions using the Random OT functionality (cf. §3.4.4) as this functionality
reduces the overhead for the last step in the protocol and hence lets us evaluate the
core-efficiency of the protocol more precisely. We vary the number of OTs from 210

(=1 024) to 224 (=16 777 216) and fix the bit-length of the transferred strings to 128.
The results in the LAN and WAN setting are given in Figure 3.2.

In both the LAN and WAN setting, we were able to decrease the run-time by
factor 2× to 3×. In the LAN setting, the efficient matrix transposition from §3.2.2 had
the highest impact while our protocol optimization from §3.2.3 only slightly decreased
the run-time. This can be explained by the computation being the bottleneck in the
LAN setting, hence the communication improvement from our protocol optimization
had only little effect. In the WAN setting, on the other hand, the communication
improvement from our protocol optimization resulted in a higher run-time decrease
than the efficient matrix transposition because in this setting communication is the
main bottleneck. For smaller number of OTs, the base-OTs have a high impact on
the total run-time, hence the run-time of all protocols is similar. However, the base-
OTs amortize for higher number of OTs and the improvements on the OT extension
protocols can be seen more clearly. Note that the dent for 219 OTs for both the LAN
and WAN setting is due to the block size of our implementation. More than 219 OTs
are processed in multiple blocks, resulting in a better amortization.

3.5.3 Evaluation of Special-Purpose OT Functionalities

Next we evaluate the performance of the special-purpose OT functionalities, outlined
in §3.4. We use the performance of the Random OT (R-OT) (cf. §3.4.4) as base-
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Figure 3.2: Run-time for passive secure R-OT extension on 128-bit strings in the LAN
(a) and WAN (b) setting. Time for 224 OTs is given in {}.

line and evaluate the overhead that is added when using the original OT, Correlated
OT (C-OT) (cf. §3.4.1), and Sender Random OT (SR-OT) (cf. §3.4.2) functionalities.
Similar to the evaluation of semi-honest protocol optimizations, we vary the number
of OTs from 210 (=1 024) to 224 (=16 777 216) and fix the bit-length of the transferred
strings to 128. The results for the LAN and WAN scenario are given in Figure 3.3.

From the results we can observe that the standard OT functionality and the C-OT
functionality are both slower than the R-OT functionality. The SR-OT, on the other
hand, has a similar performance as the R-OT since R-OT only reduces the communi-
cation by a single bit per OT. In the LAN setting, the performance difference is nearly
negligible (224 R-OTs need 13.1 s while the same number of OTs require 13.6 s), since
the improvements from R-OT mainly affect the communication complexity which is
not the bottleneck in the LAN setting. In the WAN setting, however, the performance
improvements of (S)R-OT are higher, since the communication is the bottleneck and
the C-OT and standard OT functionality have to send messages from the sender to
the receiver. Evaluating 224 OTs in the WAN setting requires 23.0 s for the standard
OT functionality, 20.7 s for C-OT, 19.7 s for SR-OT, and 19.5 s for R-OT.

3.5.4 Evaluation of Active Secure OT Extension

Here we evaluate our active secure OT extension protocol of §3.3 and compare its
performance to the active secure protocol of [NNOB12], our optimized versions of the
passive secure

(
2
1

)
OT protocol of [IKNP03] and

(
N
1

)
OT protocol of [KK13], and our

covert secure OT protocol in [ALSZ16]. We benchmark all five protocols on the 1-bit
R-OT functionality and vary the number of OTs from 210 (=1 024) to 230 (=1 073 741



Chapter 3 Faster OT Extension 56

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
un

−
T

im
e 

O
ve

rh
ea

d 
(s

)

Number of OTs (2x)

Standard OT
C−OT §3.4.1

          SR−OT §3.4.2

{0.5 s}
{0.4 s}
{0.0 s}

(a) LAN Setting

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

R
un

−
T

im
e 

O
ve

rh
ea

d 
(s

)

Number of OTs (2x)

Standard OT
C−OT §3.4.1

          SR−OT §3.4.2

{3.5 s}
{1.2 s}
{0.2 s}

(b) WAN Setting

Figure 3.3: Run-time overhead over R-OT for different OT flavors using the semi-
honest OT extension on 128-bit strings in the LAN (a)- and WAN (b)
setting. Run-time overhead for 224 OTs is given in {}.

824) in the LAN setting and to 224 (=16 777 216) in the WAN setting. We evaluate
the protocols once using one thread for both parties and once using four threads for
both parties to highlight the effect of increased computing power. The single- and
multi-thread results are given in Figure 3.4. To evaluate the improvement when using
multiple threads in parallel, we benchmark all protocols in the LAN setting on a fixed
number of 226 random OTs with increasing number of threads from 1 to 4 and give
the results in Table 3.6.

Single Thread. As expected, we can observe that the run-time increases with the
provided security as our passive secure OT extension protocol outperforms the covert
secure protocol which again outperforms both active secure protocols in both LAN and
WAN. The only exception to this is the passive secure

(
N
1

)
OT extension of [KK13],

which is slowest in the LAN setting and second slowest in the WAN setting due
to its higher computational overhead. In the LAN setting, the active secure pro-
tocol of [NNOB12] outperforms our active secure protocol since our protocol has a
larger computational overhead for the check routine. In the WAN setting, however,
the communication becomes the bottleneck and the overhead for the communication
of [NNOB12] outweighs the computational overhead for the check routine of our pro-
tocol. In fact, in the WAN setting, the run-time overhead of the covert- and active
secure OT extension protocols over the passive secure protocol is proportional to their
communication overhead. Compared to our passive secure

(
2
1

)
OT protocol, our covert

secure protocol has a communication and run-time overhead of 130%, our active secure
protocol has a communication overhead of 148% and a run-time overhead of 152%, and
the active secure protocol of [NNOB12] has a communication overhead of 267% and a
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Figure 3.4: Run-time for single thread (a,c) and multi thread (b,d) passive, covert, and
active secure R-OT extension protocols on 1-bit strings in the LAN (a,b)-
and WAN (c,d) setting. Time for 224 OTs is given in {}.

run-time overhead of 277%.

Multiple Threads. The main improvement when increasing the number of threads
can be seen in the LAN setting, were the run-time of all protocols was improved. In
particular the passive secure OT extension protocol of [KK13] and our active secure
protocol benefit most from the increased number of threads (cf. Table 3.6). The better
scaling of these protocols can again be explained by their lower communication, which
becomes the bottleneck when using multiple threads even in the LAN setting. In the
WAN setting, the run-times for nearly all protocols remain unchanged even when using
multiple threads since already a single thread is able to utilize the full bandwidth. The
only exception to this is the passive secure protocol of [KK13], which nearly achieves
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the same run-times as our passive secure protocol.

Protocol 1 Thread 2 Threads 3 Threads 4 Threads
Improvement
4 7→ 1 Threads

[NNOB12] (act) 65.8 s 34.6 s 27.2 s 27.3 s 41%
This work (act) 64.7 s 33.1 s 23.7 s 18.8 s 29%
[ALSZ16] (cov) 49.9 s 25.8 s 18.2 s 15.1 s 30%
This work (pas) 44.1 s 22.7 s 15.9 s 13.2 s 30%
[KK13] (pas) 107.7 s 54.6 s 37.4 s 29.5 s 27%

Table 3.6: Run-time for increasing number of threads and time improvement of 4
threads over 1 thread when evaluating R-OT226

1 extension in the LAN
setting.

3.5.5 AES-Based CRF Instantiations

The main computational workload for the passive secure protocols comes from the
CRF evaluation, which is instantiated with SHA-256. In this section, we evaluate the
performance benefits when relaxing the security assumption by using an AES-based
CRF instantiation. In §3.2.4.2, we discuss different AES-based instantiations, which
utilize the AES-NI operations to improve the evaluation time of the CRF. For our
passive secure OT extension protocol, the most efficient instantiation is the fixed-key
AES instantiation from [BHKR13], which models AES as ideal permutation. For the
passive secure

(
N
1

)
OT extension protocol of [KK13], the most efficient instantiation

uses pipelined AES-256 with key schedule (cf. §3.2.4.2), which requires a related-key
assumption. We implement both CRF instantiations and compare their run-time to
an instantiation using SHA-256 in the same setting as the previous section §3.5.4 and
give the results in Figure 3.5.

In the LAN setting, the AES-based CRF instantiations improve the time by fac-
tor 5× for our passive secure protocol and by factor 4× for the protocol of [KK13]
compared to a SHA-256-based instantiation. The most notable observation is that
when using the AES-based CRF instantiation within our protocol, its run-time does
not decrease at all when increasing the number of threads. This means that even a
single-threaded execution of our

(
2
1

)
OT extension implementation generates data at a

faster rate than can be sent over a Gigabit network. The run-time of the [KK13] OT
extension protocol, on the other hand, is decreased by factor 3× and thereby achieves
a better run-time than our protocol when increasing the number of threads to 4, which
is due to its reduced communication overhead. The results in the WAN setting confirm
this observation: The run-time of our passive secure protocol only decreases slightly for
the AES-based CRF instantiation, even though the computation complexity is drasti-
cally reduced. The run-time of the [KK13] protocol, on the other hand, is decreased by
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factor 3× when using the AES-based CRF instantiation and is slightly more decreased
when using multiple threads, outperforming our

(
2
1

)
OT protocol by nearly factor 2×.

In the following chapter on generic secure two-party computation protocols, we use
the AES-based CRF instantiations due to their high efficiency.
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Figure 3.5: Run-time for passive secure R-OT extension on 1-bit strings using a SHA-
256 and AES-based CRF instantiation in the LAN (a,b) and WAN (c,d)
settings using 1 (a,c) and 4 (b,d) threads. The time for 224 OTs is given
in {}.





4 Communication-Efficient Generic
Secure Two-Party Computation

So far, research on practical secure two-party computation has focused mostly on
Yao’s garbled circuits protocol. The GMW protocol, which was proposed around the
same time as Yao’s garbled circuits protocol, was mostly neglected since it requires
communication rounds linear in the function’s multiplicative depth and heavily relies
on OTs which were believed to be expensive. In this chapter, we refute this belief and
outline protocols and optimizations that can make GMW a valid alternative to Yao’s
garbled circuits protocol. We then go a step further and introduce several OT-based
special-purpose protocols that we combine with generic secure computation techniques
using mixed-protocols.

Remark. Parts of this chapter have and will be published in [SZ13, ALSZ13, DSZ15,
ALSZ16, DKS+17]. The author of this thesis has significantly contributed to those
research results of these publications that are given in this thesis. For contributions
of our co-authors such as the public-key-based multiplications and their comparison
in [DSZ15] and automatically compiling high-level function representations into LUT-
based representations in [DKS+17], we refer to the respective papers. The implemen-
tations are available online at http://encrypto.de/code/ABY and form the basis for
the compiler for privacy-preserving applications within project E3 of the collaborative
research center CROSSING.

4.1 Motivation

Generic secure two-party computation allows two parties to jointly compute any func-
tion on their private inputs without revealing anything but the result. Interestingly,
two different approaches have been introduced at around the same time in the late
eighties: Yao’s garbled circuits [Yao86] and the protocol of Goldreich-Micali-Wigderson
(GMW) [GMW87, Gol04]. Both protocols allow secure evaluation of a function that
is represented as a Boolean circuit and, in their basic form, provide security against
semi-honest adversaries who honestly follow the protocol but try to learn additional
information from the observed messages (cf. §2.1.4) – this widely used model allows
to construct highly efficient protocols and is the focus of this chapter.

Many subsequent works presented improvements to Yao’s protocol (cf. §2.4.1.2)
and showed that it can be made practical and applied to a large variety of privacy-
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preserving applications, e.g., [MNPS04, LPS08, KS08, PSSW09, HKS+10, SKM11,
HEKM11, Mal11, HCE11, SK11, HEK12, KSS12, BHKR13, HS13, KMR14, ZRE15,
GLNP15]. These optimizations have shifted the bottleneck in Yao’s garbled circuits
towards the communication side. For instance, the implementation of [BHKR13] com-
putes at the speed of 2Gbit/s per thread [BK15], which is twice the speed of even a
Gigabit Ethernet connection. However, the work of [ZRE15] has shown that nearly all
recent garbling techniques have hit a lower bound on the communication of two κ-bit
ciphertexts per AND gate, where κ is the symmetric security parameter.

The practical improvements on the two-party GMW protocol have been less nu-
merous. In [CHK+12], it was shown that by implementing the OT extension protocol
of [IKNP03], securely evaluating a function represented as Boolean circuit using the
GMW protocol can outperform protocols that use an arithmetic circuit representation
for n ≥ 3 parties. However, for the two-party case, the authors of [CHK+12] state
that they expect their GMW implementation to be roughly a factor 2× slower than the
comparable Yao’s garbled circuits implementation of [HEKM11]. In fact, since Yao’s
protocol has a constant number of rounds and requires OTs only for the inputs of one of
the parties it was believed to be more efficient than the GMW protocol, which requires
an interactive OT for each AND gate (see for example [HL10, Sect. 1.2]). In addition,
GMW needs to send twice the data and perform nearly twice the number of symmetric
cryptographic operations per AND gate as Yao’s garbled circuits (cf. §2.4.3).

4.1.1 Our Contributions

In light of our efficiency improvements on OT extension from §3 we re-evaluate the
practical efficiency of the GMW protocol and propose several optimizations that reduce
the communication and round complexity of GMW. Our optimizations are tailored to
different aspects of the GMW protocol: Improving the online phase using efficient
circuit constructions (§4.2), improving the setup phase using efficient pre-computation
protocols (§4.3), and improving the complexity for dedicated operations using special-
purpose protocols (§4.4). We combine our special-purpose and optimize generic secure
computation protocols in a framework, called ABY, which allows to “mix” secure
computation techniques (§4.5). Finally, we evaluate our protocols on several standard
operations (§4.6) and typical secure computation applications (§4.7).

We summarize our contributions by contrasting the local computation time and
communication complexity of some protocols on a single machine and compare them
to Yao’s garbled circuits with and without IPP (cf. §2.4.1.2) when evaluating the AES
circuit in Figure 4.1. 2-MT (§4.3.2) and N-MT (§4.3.3) are two pre-computation
methods for GMW that pre-compute multiplication triples (MTs, cf. §2.4.2) based on(

2
1

)
OT extension and

(
N
1

)
OT extension, respectively, and present a trade-off between

communication and computation. Setup-LUT (SP-LUT) (§4.4.2.3) is a special-purpose
protocol that abstracts from 2-input Boolean gates to multi-input gates and reduces
communication and round complexity while similar computation complexity asN -MT.
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Figure 4.1: Local computation time (x-axis) and communication (y-axis) per AES cir-
cuit (5 120 AND gates) for state-of-the-art Yao’s garbled circuits with and
without inter party parallelization (IPP) [BK15], our 2-MT and N -MT
pre-computation methods for GMW, and our SP-LUT special-purpose pro-
tocol, amortized over 8 192 parallel evaluations of the AES circuit. The
number of communication rounds in the online phase is given in {}. Local
computation time was measured on a Desktop PC with an Intel Haswell
i7-4770K CPU and AES-NI support.

From the results we can observe that Yao’s garbled circuits and GMW with 2-MT
require the same communication but Yao’s garbled circuits with IPP has faster local
computation than 2-MT which again has faster local computation than Yao’s gar-
bled circuits without IPP. GMW using our N -MT protocol for pre-computation has
4× more computation overhead but requires only approximately half of the commu-
nication. Finally, our special purpose SP-LUT protocol has slightly less computation
complexity than the generic N -MT and again approximately half of the communication
of N -MT. We give our contributions in more detail next.

Circuit-based Optimizations (§4.2). The main performance overhead in Yao’s
garbled circuits and the GMW protocol comes from evaluating AND gates in the
circuit. In order to reduce this overhead for Yao’s garbled circuits, several works
have introduced circuits with small size (i.e., small number of AND gates) for various
standard functionalities [KSS09, HEKM11, HEK12]. However, in contrast to Yao’s
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garbled circuits, where only the circuit size affects the performance, the performance
in the GMW protocol is also affected by the circuit’s depth, since both parties need to
communicate for each layer. The additional low depth requirement is disadvantageous
in two ways. Firstly, most of the previous size-optimized circuit constructions have
high depth, achieving very poor performance when evaluated using GMW. Secondly,
the whole circuit must be held in memory to group gates that can be evaluated in the
same communication round, which drastically reduces the scalability of GMW.

We tackle both problems using circuit-based optimizations. We give an overview
of size- and depth-optimized circuit constructions for several standard functionali-
ties (§4.2.1), which achieve better performance when evaluated using GMW. To im-
prove the scalability of the GMW protocol, we show how to build Single-Instruction
Multiple Data (SIMD) circuits (§4.2.2) that drastically reduce the memory footprint
of the circuit.

Optimized Pre-Computation (§4.3). The GMW protocol allows to pre-compute
the computation and communication-intensive operations in the form of multiplica-
tion triples (MTs) during the setup phase, leaving only very efficient one-time pad
operations in the online phase. In the work of [CHK+12], this pre-computation is
done via the

(
4
1

)
OT1

1 extension protocol of [LLXX05], which requires 4(κ + 1) bits
communication – twice as much as Yao’s garbled circuits.

We improve the communication overhead in the setup phase by utilizing our ef-
ficient OT extension protocols from §3.2. We first observe that the roles in the
GMW protocol are symmetric, which allows to evenly balance the workload during
pre-computation (§4.3.1). Next, we outline our 2-MT pre-computation method that
is based on

(
2
1

)
R-OT2

1 and reduces the communication per AND gate from 4(κ + 1)

to 2(κ − 1) (§4.3.2). We then introduce N-MT, which utilizes the
(
N
1

)
OT extension

protocol to further reduce the communication for MT pre-computation to nearly a
single ciphertext (138 bit for κ = 128) at the cost of increased computation (§4.3.3).

Special-Purpose Optimizations (§4.4). While representing the functionality as
Boolean circuit indeed allows to capture a large variety of functions, it adds a high
overhead for some functionalities such as integer multiplication (O(`1.585) AND gates
for `-bit inputs using the Karatsuba multiplication circuit [KO62, HKS+10]).

In order to avoid this overhead, we introduce three special-purpose protocols that
improve the performance for certain functions: Vector MTs (§4.4.1), Setup-LUT (SP-
LUT) (§4.4.2) and OT-based multiplication (§4.4.3). Vector MTs allow to combine
multiple AND gates which have one input wire in common and thereby reduce the pre-
computation costs for multiple such AND gates to that of a single AND gate. SP-LUT
is based on

(
N
1

)
OT extension and abstracts from 2-input Boolean gates to multi-input

lookup tables (LUTs) which can be evaluated in a single communication round and
whose complexity only depends on the number of inputs and outputs and not on the
internal logic representation. The OT-based multiplication protocol achieves efficient
`-bit integer multiplication using O(`) OTs and can be used to evaluate functions
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represented as arithmetic circuit consisting of addition and multiplication gates.

Mixed-Protocol Secure Computation (§4.5). The protocols that we introduce
have different features, making them favorable in specific settings and for specific
functions. In order to achieve the benefits of different protocols, the TASTY frame-
work [HKS+10, KSS13b] proposed to combine different secure computation protocols
based on Yao’s garbled circuits and homomorphic encryption.

We improve and extend the work of [HKS+10, KSS13b]. We first formalize and cat-
egorize the underlying secret-sharing schemes of GMW, Yao’s garbled circuits, and our
special-purpose protocols (§4.5.1). Then, we give improved protocols for transforming
between different secret-sharing schemes (§4.5.2). We implement our protocols in a
framework called ABY, which allows a developer of secure computation protocols to
arbitrarily mix these protocols and to flexibly change the assignment of operations to
underlying protocols.

Empirical Evaluation (§4.6 and §4.7). We perform an extensive empirical eval-
uation of our protocols. We first evaluate and compare our depth-optimized circuit
constructions with their size-optimized counterparts (§4.6.1). We then compare our
optimized pre-computation methods for the GMW protocol to a state-of-the-art Yao’s
garbled circuits implementation (§4.6.2). Next, we compare our special-purpose pro-
tocols against generic secure techniques on standard operations (§4.6.3) and evalu-
ate the performance of our protocols for transforming between secure computation
protocols (§4.6.4). Finally, we use our resulting ABY framework to give protocol
instantiations for two different applications in secure computation: Private set inter-
section (§4.7.1) and biometric matching (§4.7.2).

4.1.2 Previous Works

In the following, we review previous work on generic secure computation frameworks.
We first describe frameworks that implement Yao’s garbled circuits (§4.1.2.1) and
secret-sharing techniques (§4.1.2.2). Then, we outline mixed protocol frameworks,
which allow to combine different secure computation techniques (§4.1.2.3). Finally, we
give an overview of secure computation protocol compilers, which translate a high-level
function description into a Boolean circuit (§4.1.2.4)

4.1.2.1 Secure Computation Frameworks based on Yao’s Garbled Circuits

We present secure computation frameworks based on Yao’s garbled circuits in the
semi-honest model and in the malicious model separately.

Semi-Honest Adversaries. The first practical framework that implemented Yao’s
garbled circuits was Fairplay [MNPS04], which compiled functions from a high-level
language into a Boolean circuit. Fairplay was extended from two to multiple par-
ties by FairplayMP [BNP08]. The FastGC [HEKM11] framework greatly improved
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the efficiency and scalability of Yao’s garbled circuits using pipelining techniques, and
evaluates circuits with billions of gates at rates of up to ∼ 100 000 AND gates per
second. The JustGarble [BHKR13] framework introduced fixed-key AES garbling
techniques (cf. §2.2.4) and showed that the local computation of circuits alone can
be done at the speed of several million AND gates per second.

Covert- and Malicious Adversaries. In parallel to the improvements on semi-
honest Yao’s garbled circuits, several works improved the efficiency of Yao’s garbled
circuits with security against covert- and malicious adversaries. Most schemes are
based on the cut-and-choose paradigm [LP07, Lin13], where several copies of the same
circuit are generated, a fraction of them is opened, and the remaining circuits are
combined and evaluated. The framework of [KSS12, SS13] used a cluster with hundreds
of machines to demonstrate the practicality of evaluating billion gate circuits with
security against malicious adversaries. The work of [FN13, FJN14] introduced several
protocol optimizations and used the GPU to parallelize the computational work in
Yao’s garbled circuits protocol. The BlazingFast framework [HKK+14, LR14, LR15b]
yields further efficiency improvements when multiple evaluations of the same function
are performed and reduces the overhead compared to semi-honest secure computation
to approximately factor 3×. LEGO-style protocols [NO09, FJN+13, FJNT15, NST17]
perform the cut-and-choose approach on the gate level instead of the circuit level,
which allows a batch computation even if the functionality is evaluated only once.
Another technique that achieves security against covert- and malicious adversaries is
the dual execution technique [MF06], where a malicious garbler is able to learn some
bits of its choice in the circuit. The framework of [HKE12] implemented the dual
execution technique and showed that it achieves very little overhead compared to a
semi-honest evaluation at the cost of a single bit leakage. The framework of [RR16,
KMRR15] combined the dual execution technique, the cut-and-choose approach, and
the batch-execution model of [LR14, HKK+14] and allows secure evaluation of an AES
circuit in only single milliseconds.

4.1.2.2 Secure Computation Frameworks based on Secret Sharing

We present secure computation frameworks based on secret sharing techniques in the
semi-honest model and in the malicious model separately.

Semi-Honest Adversaries. The Sharemind [BLW08, BJL12] framework allows se-
cure three-party computation on arithmetic circuits with up to one corrupted party and
has been used for various practical secure computation projects [BoSV15, BKK+16,
BBG+16]. The VIFF framework [DGKN09] implements secure t ≥ 3-party computa-
tion on arithmetic circuits in asynchronous networks, and achieves semi-honest security
if n < t/2 of the parties are corrupted and active security if n < t/3 parties are cor-
rupted. The SEPIA framework [BSMD10] implements secure multi-party computation
on arithmetic circuits based on the BGW protocol [BGW88] in the semi-honest model.
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The multi-party GMW framework of [CHK+12] operates on Boolean circuits, achieves
semi-honest security even if all except one party are corrupted, and shows that for
certain functions a Boolean circuit can be more efficient than an arithmetic circuit.
The three-party computation framework of [AFL+16] proposes a more efficient of non-
linear gates and shows that secure evaluation of the AES circuit can be done in the
order of millions per second. Finally, [BLO16] shows how to efficiently instantiate the
BMR protocol [BMR90] for constant-round secure multi-party computation using the
BGW protocol [BGW88] and GMW protocol [GMW87] for pre-computation.

Covert- and Malicious Adversaries. The following multi-party frameworks all
achieve active security, even if all except one party have been corrupted, and work
in the pre-computation model (cf. §2.1.5). SPDZ [DPSZ12, DKL+13, KSS13a] works
on arithmetic circuits and uses somewhat-homomorphic encryption in order to pre-
compute arithmetic MTs. In [LPSY15], the SPDZ framework has been used to im-
plement the constant round generic secure multi-party protocol of [BMR90], which
works by emulating the role of the garbler in Yao’s garbled circuits using a multi-
party secure computation protocol. TinyOT [NNOB12, LOS14, BLN+15] works on
Boolean circuits and uses active secure OT extension in order to pre-compute MTs.
Finally, the MiniMac [DLT14, DZ13, DZ16] protocol also works on Boolean circuits,
uses error-correcting codes to encode multiple shares, and a implementation, tailored
to AES, has been shown to achieve very good performance. In [FKOS15] it was shown
how to use OT extension for pre-computation in TinyOT, SPDZ, and MiniMac, which
all use message authentication codes (MACs) to achieve security against malicious
adversaries.

4.1.2.3 Mixed-Protocol Secure Computation

In order to evaluate a function, many secure computation protocols represent the func-
tion either as arithmetic or Boolean circuit. However, for some functions, one of these
circuit representations can be much more efficient than the other, which greatly ben-
efits the respective secure computation protocols. I.e., the multiplication of two `-bit
values requires a Boolean circuit with at least O(`1.585) AND gates (cf. [HKS+10]) but
an arithmetic circuit with only a single multiplication gate. In order to achieve the
benefits of both representations, mixed-protocols were introduced that allow to com-
bine secure computation protocols working on different representations. The TASTY
framework [HKS+10, KSS13b] outlines how to transfer from a Boolean circuit, eval-
uated using Yao’s garbled circuits protocol, to an arithmetic circuit, evaluated using
additively homomorphic encryption, and vice versa, and shows that secure compu-
tation protocols that mix Yao’s garbled circuits with homomorphic encryption can
achieve better overall performance for some function classes. The ObliVM [LWN+15]
framework outlines how to combine Yao’s garbled circuits protocol with oblivious RAM
(ORAM) techniques and, for functions that require many oblivious data accesses on
large arrays, achieves much better performance than a pure Yao’s garbled circuits
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evaluation.

4.1.2.4 Compilers for Secure Computation

The Fairplay framework [MNPS04] allows a developer to specify the function to be
computed in a high-level language called Secure Function Definition Language (SFDL),
which is compiled into a Boolean circuit. Optimization techniques and a compiler that
optimizes programs written in SFDL by automatically inferring which parts of the
computation can be performed on plaintext values, were presented in [Ker11]. A
memory-efficient compiler that allows to compile SFDL programs into circuits even
on resource-constrained mobile phones was presented in [MLB12]. The VIFF frame-
work [DGKN09] provides a secure computation language and uses a scheduler, which
evaluates gate when the inputs become available. The CBMC-GC compiler [HFKV12]
allows to compile a C program into a size-optimized Boolean circuit. The Billion-Gate
compiler [KSS12] uses unused gate removal, constant propagation, and gate dedupli-
cation techniques to reduce the size of Boolean circuits and improve scalability. The
Portable Circuit Format (PCF) [KMSB13] represents Boolean circuits as a sequence
of instructions and can be compiled from a C program. The PICCO compiler [ZSB13]
performs a source-to-source compilation, supports parallelization of operations to de-
crease the number of communication rounds, and generates secure multi-party com-
putation protocols based on linear secret sharing. Wysteria [RHH14] is a strongly
typed high-level language for the specification of secure multi-party computation pro-
tocols. A mixed-protocol secure computation compiler was given in [KSS14], which
performs automatic partitioning of a function by expressing it as sequence of primitive
operations that are then assigned to different secure computation protocols using a
method based on integer programming and another method based on a heuristic. The
TinyGarble compiler [SHS+15] uses hardware-synthesis tools generate Boolean circuits
from high level descriptions. The ParCC compiler [BK15] detects parallelizable oper-
ations in high-level function descriptions and translates these to parallel sub-circuits.
The Sharemind framework [BLW08] represents functionalities in a domain-specific lan-
guage [BLR13, LR15a] which can be optimized using compilers. The Frigate com-
piler [MGC+16] uses automatic verification techniques to ensure the correctness of the
compiled circuits.

4.1.3 Follow-Up Works

Our ABY framework has been used for evaluation in [ARS+15, DDK+15, KS16,
CDC+16, PKUM16, BHWK16]. The work of [DDK+15] extends the TinyGarble com-
piler [SHS+15] with our depth-optimized circuit constructions in §4.2, automatically
generates and optimizes circuits with regards to depth, and evaluates them using
our ABY framework. The CheapSMC [PKUM16] framework uses our ABY frame-
work to automatically generate mixed-protocols that achieve low cost overhead when
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evaluated on virtual machines in a cloud setting. The depth-efficient compiler Shal-
lowCC [BHWK16] showed that the Ladner-Fischer adder, outlined in §4.2.1.2, can be
built more efficiently, reducing its depth by half from 2dlog2 `e+ 1 to dlog2 `e+ 1. An
active secure OT-based multiplication protocol was given in [KOS16], which, in its
passive secure form, equals our OT-based protocol in §4.4.3.

4.2 Circuit Optimizations

Finding an efficient Boolean circuit representation for the function to be computed is a
crucial task in secure computation. In this section, we outline size- and depth efficient
circuit constructions for standard operations (§4.2.1) and describe how to reduce the
memory footprint of the Boolean circuit, which allows secure computation protocols
to scale to process much larger functions (§4.2.2).

4.2.1 Circuit Constructions with Low Depth and Size

In this section, we give circuit constructions with low depth and size. These circuit
constructions are later used as building blocks in our protocols. We summarize the
circuit constructions and their corresponding size and depth in Table 4.1. In the
following, we write x` to say that a variable x has ` bits and OP(`,n)(x`1, ..., x

`
n) to say

that an operation OP is evaluated on n inputs x`1, ..., x
`
n of `-bit length. If the number

of inputs is clear from the context, we shorten the notation to OP`.

4.2.1.1 Multiplexer

The multiplexer circuit z` = MUX`(x`, y`, c) chooses one of two inputs x`, y` as out-
put z` depending on selection bit c:

MUX`(x`, y`, c) =

{
x` , if c = 0
y` , if c = 1

A MUX circuit was outlined in [KS08] that computes: z[i] = x[i] ⊕ c ∧ (x[i] ⊕ y[i]).
This MUX circuit construction has size S(MUX`) = ` and depth D(MUX`) = 1.

4.2.1.2 Addition

We describe three adders: The ripple-carry adder with linear size and linear depth, the
Ladner-Fischer adder with log-linear size and logarithmic depth, and the carry-save
adder which represents the sum of three values as the sum of two with linear size and
constant depth.

Ripple-Carry Adder. The ripple-carry adder ADD`
RC adds two `-bit unsigned in-

tegers x`, y` and is composed from a chain of 1-bit full-adders, as depicted in Fig-
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Circuit Size S Depth D
Addition

Ripple-carry ADD/SUB
`
RC ` `

Ladner-Fischer ADD`
LF 1.5`dlog2 `e+ 1 2dlog2 `e+ 1

LF subtraction SUB`LF 1.5`dlog2 `e+ ` 2dlog2 `e+ 2

Carry-save ADD
(`,3)
CSA ` + S(ADD`) D(ADD`)+1

RC network ADD
(`,n)
RC `n− `+ n− dlog2 ne − 1 dlog2 n− 1e+ `

CSA network ADD
(`,n)
CSA

`n− 2`+ n− dlog2 ne dlog2 n− 1e
+S(ADD

`+dlog2 ne
LF ) +D(ADD

`+dlog2 ne
LF )

Multiplication

RCN school method MUL`RC 2`2 − ` 2`− 1

CSN school method MUL`CSN 2`2 + 1.5`dlog2 `e − 2`+ 3 3dlog2 `e+ 4

RC squaring SQR`
RC `2 − ` 2`− 3

LF squaring SQR`
LF `2 + 1.5`dlog2 `e − 2.5`− 1 3dlog2 `e+ 3

Comparison

Equality EQ` `− 1 dlog2 `e
Sequential greater than GT`S ` `

D&C greater than GT`DC 3`− dlog2 `e − 2 dlog2 `e+ 1
Selection

Multiplexer MUX` ` 1

Minimum MIN(`,n) (n− 1)(S(GT`)+`) dlog2 ne(D(GT`)+1)

Minimum index MIN
(`,n)
IDX (n− 1)(S(GT`)+`+ dlog2 ne) dlog2 ne(D(GT`)+1)

Set Operations
Set union ∪` ` 1
Set intersection ∩` ` 1

Set inclusion ⊆` 2`− 1 dlog2 `e+ 1
Count

Full Adder count CNT`FA 2`− dlog2 `e − 2 dlog2 `e
Boyar-Peralta count CNT`BP `− dH(`) blog2 `c
Distances

Manhattan distance DST`M 2S(SUB`)+S(ADD(`,3))+1 D(SUB`)+D(ADD(`,3))+1

Euclidean distance DST`E
2S(SUB`)+2S(SQR`) D(SUB`)

+S(ADD(2`,4))+2S(MUX`) +D(SQR`)+3
AES S-Box
Size-efficient SBoxS 32 6
Depth-efficient SBoxD 34 4

Table 4.1: Size and depth of circuit constructions (dH : Hamming weight).

ure 4.2(a). Each full-adder takes as input three bits x[i], y[i], and c[i] and produces a
parity bit p[i] = x[i]⊕y[i]⊕c[i] and a carry bit c[i+1] = c[i]⊕((x[i]⊕c[i])∧(y[i]⊕c[i]))
[BP06, KSS09], with c[1] = 0. The sum s`+1 = x` + y` is obtained by setting s[i] = p[i]
for 1 ≤ i ≤ ` and s[`+ 1] = c[`+ 1]. The ripple-carry adder has linear size S(ADD`

RC)
= ` and depth D(ADD`

RC) = `.

Ladner-Fischer Adder. The Ladner-Fischer adder ADD`
LF [LF80] (also referred to
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Figure 4.2: Size - and depth efficient addition circuits for two (three) four-bit values.

as the Sklansky adder [Skl60]) is a so-called parallel prefix adder that adds two `-bit
values x` and y` in logarithmic depth. The idea of parallel prefix adders is to evaluate
multiple carry-bits in parallel. An example of a Ladner-Fischer adder can be seen in
Figure 4.2(b). During the computation of the sum, the Ladner-Fischer adder computes
a parity bit pj[i] and a carry bit cj[i] in each node at bit position i (1 ≤ i ≤ `) and level j
(0 ≤ j ≤ dlog2 `e). At level 0, the Ladner-Fischer adder computes p0[i] = x[i]⊕y[i] and
c0[i] = x[i]∧y[i]. Then, for every node at level j > 0, the parity is pj[i] = pj−1[i]∧pj−1[k]
and the carry bit is cj[i] = (pj−1[i]∧cj−1[k])∨cj[i], where k is the node that propagates
the carry-bit to position i. Lastly, at level dlog2 `e + 1, the sum s`+1 is computed as
s[` + 1] = cdlog2 `e[`], si = p0[i] ⊕ cdlog2(i−1)e[i − 1] for 1 < i ≤ `, and s[1] = p0[1]. The

Ladner-Fischer adder has size S(ADD`
LF ) = 1.5`dlog2 `e + 1 and depth D(ADD`

LF )
= 2dlog2 `e+ 1.

Carry-Save Adder. The carry-save adder CSA(`,3) converts the sum of three `-
bit unsigned integers x`, y`, z` into two (` + 1)-bit unsigned integers p`+1 and c`+1

such that p`+1 + c`+1 = x` + y` + z`. An example of the carry-save adder can be
seen in Figure 4.2(c). The carry-save adder is composed from ` 1-bit full-adders
that compute the parity p[i] and the carry c[i + 1] of three bits x[i], y[i], z[i] in
parallel for every position i. Finally, p[` + 1] and c[1] are set to 0. The carry-save
adder has linear size S(CSA(`,3)) = ` and constant depth D(CSA(`,3)) = 1. The re-
sult of the addition of x`, y`, and z` can then be obtained by adding p`+1 and c`+1

using the ripple-carry adder or the Ladner-Fischer adder. This results in a circuit
ADD

(`,3)
CSA(x`, y`, z`) = ADD`(CSA(`,3)(x`, y`, z`))1 with S(ADD

(`,3)
CSA) = `+S(ADD`) and

D(ADD
(`,3)
CSA)=D(ADD`)+1.

1Due to the appended 0 in the result of the CSA, we only require a Ladner-Fischer adder for ` bit.
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4.2.1.3 Addition Networks

While the addition of two numbers requires a rather high depth, the addition of n > 2
values can be done at a much lower increase in depth and linear size. In the follow-
ing, we first describe the carry-save adder for the addition of n = 3 `-bit unsigned
integers and then summarize the ripple-carry network and the carry-save network for
the addition of an arbitrary number of unsigned integers. The difference between
the two addition networks is that the carry-save network can be extended using a
Ladner-Fischer adder, which allows the addition of multiple values in sublinear depth.

Ripple-Carry Network. Multiple values can be added in a straight forward way
using multiple ripple-carry adders, assembled as a tree. Hence, a ripple-carry network
ADD

(`,n)
RC for adding n unsigned integers x`1...n of `-bits can be built as ADD

(`,n)
RC (x`1...n)

= ADD
(`+dlog2

n
2
e)

RC (ADD
(`,dn

2
e)

RC (x`L), ADD
(`,bn

2
c)

RC (x`H)), where x`L = x`1...dn
2
e and x`H =

x`dn
2
e+1...n. The overall circuit consists of n

2
ADD`

RC circuits, n
4

ADD`+1
RC circuits, n

8

ADD`+2
RC circuits, and so on. This yields size S(ADD

(`,n)
RC ) = (`−1)(n−1)+

∑dlog2 ne
i=0 i n

2i
=

(` − 1)(n − 1) + n(2 − dlog2 ne+2

2dlog2 ne
) ≈ `n − ` + n − dlog2 ne − 1. The depth of ADD

(`,n)
RC

is determined by the longest path from the carry bit of the least significant bit to the
carry bit of the most significant bit in the result, i.e., D(ADD

(`,n)
RC ) = `+ dlog2 n− 1e.

Carry-Save Network. Using the carry-save adder, a carry-save network CSN(`,n)

can be built that converts n unsigned `-bit integers to two unsigned (`+ dlog2 ne)-bit
unsigned integers. The standard construction method [Sav97] results in a carry-save

network CSN
(`,n)
SAV of size S(CSN(`,n)) = (`−1)(n−2) +

∑dlog2 n−1e
i=0 in−1

2i
≈ `n−2`+n−

dlog2 ne and depth D(CSN(`,n)) = dlog2 ne
dlog2 1.5e + 1 ≈ dlog1.5 ne + 1 (see [Sav97] for more

details). The depth of the carry-save network can be further decreased by using the
outputs of the same depth as inputs into subsequent carry-save adders. This optimized
interconnection method reduces the depth of the carry-save network to D(CSN(`,n))
= dlog2 n− 1e, while maintaining the same size.

The carry-save network can be extended to compute the sum of the addition using
a Ladner-Fischer adder to add the last two values. This yields a carry-save network

addition circuit ADDCSA with size S(ADD
(`,n)
CSA) = S(CSN(`,n))+S(ADD

(`+dlog2 ne)
LF ) and

depth D(ADD
(`,n)
CSA) = D(CSN(`,n))+D(ADD

(`+dlog2 ne)
LF ). Note that using a ripple-carry

adder for the addition of the last two values would result in a circuit which is larger and
deeper than ADD

(`,n)
RC . We therefore only use the Ladner-Fischer adder to instantiate

ADDCSA and use ADDRC as size-optimized addition network.

4.2.1.4 Subtraction

A circuit SUB`(x`, y`) for subtracting a value y` from a value x` can be constructed
using the 2-complement of y` (i.e., (y`⊕1`)+1) by computing x`+(y`⊕1`)+1. Note that
the addition of 1 can be included into the addition of x` and (y`⊕1`) for the ripple-carry
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adder (cf. §4.2.1.2) and the carry-save adder (cf. §4.2.1.3) by setting the least significant

carry bit c[1] = 1. Thus, we have S(SUB
`)
T )=S(ADD`

T ) and D(SUB`
T )=D(ADD`

T ),
where T ∈ {RC,CSA}.

A Ladner-Fischer subtracter SUB`
LF requires the evaluation of an additional carry-

save adder that converts x` + (y` ⊕ 1`) + 1 to c`+1 + p`+1. This yields SUB`
LF (x`, y`)=

ADD`
LF (CSA(`,3)(x`, (y` ⊕ 1`), 0`−1||1)) with S(SUB`

LF ) = 1.5`dlog2 `e + ` + 1 and
D(SUB`

LF ) = 2dlog2 `e+ 2.

4.2.1.5 Multiplication

In the following, we summarize the school method for multiplying and a compact
circuit for squaring two unsigned integers.

School Method. The school method multiplication MUL`(x`, y`) multiplies two `-bit
unsigned integers x`, y` by computing x`y` =

∑`
i=1 2i−1(x`y[i]), i.e. (1) multiplying

each y[i]x` = z`i , (2) shifting each z`i left by i− 1 positions, and (3) adding all result-
ing z`i . The multiplications (1) can be done using `2 AND gates. Shifting (2) the bit
sequences is done by rewiring the outputs. Adding the resulting bit products (3) can
be done using an addition network (cf. §4.2.1.3).

The values in step (3) can either be added using a ripple-carry network ADDRC

or a carry-save network ADDCSA. Note that both networks can be optimized to add
the shifted `-bit values more size-efficiently. Using a ripple-carry network results in
the circuit MULRC with S(MUL`RC) = 2`2 − ` and D(MUL`RC) = 2`− 1 [KS08]. The
carry-save network multiplication circuit MULCSA is constructed similarly, requiring
(`−2) carry-save adders of (`−1)-bit length, ` half adders, and a final addition of two
`-bit values. Thus we have S(MUL`CSA) = 2`2 + 1.5`dlog2 `e− 2`+ 3 and D(MUL`CSA)
= 3dlog2 `e + 4. The school multiplication method can be used within the Karatsuba
multiplier [KO62, HKS+10], which breaks the multiplication of larger numbers down to
the multiplication of smaller numbers and scales with O(`log2 3) for `-bit inputs. It was
shown in [HKS+10] that for ` ≥ 19 bit integers, the Karatsuba multiplication circuit
has fewer AND gates than the school method circuit. However, we omit the Karatsuba
multiplication method due to its complex design when considering depth-efficiency.

Squaring. Although the square of a number can be computed with a multiplication
circuit, a squaring circuit is smaller by a factor of about 2×. The school method
multiplication circuit MUL` computes the product x`x` as

∑`
i=1 2i−1(x`x[i]). Since

each xjxi with i 6= j is computed twice, x[j]x[i] + x[i]x[j] can be simplified to 2x[i]x[j]
and x[i]x[i] can be replaced by x[i] [YSG95].

We obtain a squaring circuit SQR` with S(SQR`) = `2−`
2

+S(ADD(2`,`/2)) and depth

D(SQR`)=D(ADD(2`,`/2))+1. Similar to the multiplication circuit, the size and depth
of the addition network can be improved since not all operands are 2`-bit long. The
ripple-carry version SQR`

RC evaluates to S(SQR`
RC) = `2 − ` and D(SQR`

RC) = 2` −
3. The corresponding depth-efficient squarer circuit SQR`

LF has size S(SQR`
LF ) =
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`2 + 1.5`dlog2 `e − 2.5`− 1 and depth D(SQR`
LF )=D(ADD

(2`,d`/2e)
CSA )+D(ADD2`

LF )+1 =
3dlog2 `e+ 3.

4.2.1.6 Integer Equality

The EQ` circuit computes whether two bit strings x` and y` are equal:

EQ`(x`, y`) =

{
1 , if x` = y`

0 , if x` 6= y`.

For this, the circuit checks whether the bits are equal in each position using z[i] =
x[i]⊕y[i]⊕1 and outputs

∧`
i=1 z[i]. To reduce the depth of the circuit, the AND between

the z[i] can be computed in a pairwise tournament fashion. The overall circuit has
size S(EQ`) = ` − 1 and depth D(EQ`) = dlog2 `e. We note that inequality can be
computed with the same complexity as 1⊕EQ`(x`, y`).

4.2.1.7 Integer Comparison

In the following, we describe a size-optimized greater-than circuit with linear size
and depth and a depth-optimized greater-than circuit with larger size but logarithmic
depth. The greater than operation GT`(x`, y`) takes as input two bit sequences x`

and y` and computes:

GT`(x`, y`) =

{
1 , if x` > y`

0 , if x` ≤ y`.

We note that the greater equals operation can be computed with the same size and
depth complexity as GE`(x`, y`) = 1⊕GT`(y`, x`).

Sequential Greater Than. A size-optimized greater than circuit GTS was in-
troduced in [KSS09]. The circuit computes the greater than operation using only
the carry bits of a ripple-carry subtraction circuit for x` − y` − 1, i.e. g = c`+1,
ci+1 = xi ⊕ ((xi ⊕ ci) ∧ (yi ⊕ ci)) for 1 ≤ i ≤ `, and c1 = 0. Since this circuit is the
same as the subtraction circuit without the parity bits, it has the same size S(GT`

S)
= ` and depth D(GT`

S) = `.

Divide-And-Conquer Greater Than. A depth optimized greater than circuit
GT`

DC was described in [GSV07] and is depicted in Figure 4.3. GT`
DC utilizes the

divide-and-conquer approach to reduce the computation of the greater than for two `-
bit variables to the computation of two greater than operations for `

2
-bit variables. The

reduction is recursively applied until it can be performed on bit-level. More precisely,
let x` = (xH ||xL) and y` = (yH ||yL) be two `-bit integers with xH , yH being d `

2
e-bit



75 4.2 Circuit Optimizations

and xL, yL being b `
2
c-bit unsigned integers. GT`

DC is then recursively computed as:

GT`
DC(x`, y`) = GT

d `
2
e

DC(xH , yH)⊕ EQd
`
2
e(xH , yH) ∧GT

b `
2
c

DC(xL, yL)

until x and y are one bit values on which GT1
DC can be computed as:

GT1
DC(xi, yi) = xi ∧ (yi ⊕ 1).

Note that the EQ circuit can be computed independently of and in parallel to GT and
that it can re-use parts of values that have already been computed in a deeper level of
recursion. As the EQ circuits require `−dlog2 `e−1 AND gates, the bitwise comparisons
in the leaf nodes require ` AND gates, and the recursions together also require ` − 1
AND gates, the total size of the circuit is increased to S(GT`

DC) = 3` − dlog2 `e − 2
while its depth is reduced to D(GT`

DC) = dlog2 `e+ 1.

GT (x    y   )
4...14...1

2

4

12
GT (x x ,y y )

4 43 3

2

EQ (x x ,y y )
4 43 3

2

GT (x x ,y y )
2 1

GT (x ,y )4

1

4
GT (x ,y )3

1

3
GT (x ,y )2

1

2 GT (x ,y )1

1

1EQ (x ,y )4

1

4
EQ (x ,y )2

1

2

Figure 4.3: Depth-optimized greater than circuit on two 4-bit values.

4.2.1.8 Minimum/Maximum

The minimum operation MIN(`,n)(x`1...n) takes as input a sequence of n unsigned `-bit
integers x`1...n and outputs their minimum value z` = min(x`1...n). The circuit can be
constructed recursively as described in [KSS09]:

MIN(`,n)(x`1...n) = MIN(`,2)(MIN(`,n
2

)(x`L)),MIN(`,n
2

)(x`H)),

where x`L = x`1...dn
2
e and x`H = x`dn

2
e+1...n. At the base of the recursion the minimum of

two inputs x`i , x
`
j is computed as:

MIN(`,2)(x`i , x
`
j) = MUX`(x`i , x

`
j,GT`(x`i , x

`
j)).
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The circuit has size S(MIN(`,n)) = (n − 1)(S(GT`) + `) and depth D(MIN(`,n)) =
dlog2 ne(D(GT`) + 1). When using the size-optimized GT`

S for GT` we obtain a cir-

cuit MIN
(`,n)
S with small size S(MIN

(`,n)
S ) = 2`(n − 1) but large depth D(MIN

(`,n)
S )

= dlog2 ne(`+ 1). When using the depth-optimized GT`
DC for GT` we obtain MIN

(`,n)
DC

with slightly larger size S(MIN
(`,n)
DC ) = (4` − dlog2 `e − 2)(n − 1) but smaller depth

D(MIN
(`,n)
DC ) = dlog2 ne(dlog2 `e + 1). A similar circuit that computes the maximum

can be obtained by swapping the order of the inputs into GT`.
Some applications additionally require the index of the minimum. For these applica-

tions, we build the index of minimum circuit MIN
(`,n)
IDX , where k is the bit-length of the

index by building an additional pairwise tournament circuit for the index, using again
the output of each GT` circuit. The index of minimum circuit evaluates to S(MIN

(`,n)
IDX)

= S(MIN(`,n))−` + (n − 1)dlog2 `e and D(MIN
(`,n)
IDX) = D(MIN(`,n)). A more efficient

construction for the MINIDX circuit which requires the indices to correspond to their
positions in the sequence has been given in [KSS09].

4.2.1.9 Count

The count circuit CNT` computes the Hamming weight dH of a bit sequence x`, i.e.,
CNT`(x`) = dH(x`) =

∑`
i=1 xi.

Addition Tree. In [CHK+12], a circuit CNT`
AT was described that computes the

Hamming weight of x` using a ripple-carry network on ` 1-bit values ADD
(1,`)
RC (x1...`).

The size of this circuit is S(CNT`
AT ) = S(ADD

(1,`)
RC ) = 2`− dlog2 `e − 2 and its depth

is D(CNT`
AT ) = D(ADD

(1,`)
RC ) = dlog2 `e.

Improved CNT. Boyar and Peralta [BP06] propose an improved circuit CNT`
BP for

computing the Hamming weight of x` and prove that its multiplicative size matches the
theoretical lower bound. The structure of CNT`

BP also follows a divide-and-conquer
approach, however they split a value x` into three parts of length m = d `−1

2
e, n = b `−1

2
c,

and one bit, respectively: x` = (xm||xn||x1). CNT`
BP is then recursively computed as:

CNT`
AT (x`) = ADD

dlog2 `e
RC (CNTm

AT (xm),CNTn
AT (xn), x1).

As the addition of x1 can be performed using it as carry-input of the addition circuit
(instead of fixing this to be 0), the size of the circuit is reduced to S(CNT`

BP ) = `−dH(`)
and the depth is reduced to D(CNT`

BP ) = blog2 `c.

4.2.1.10 Set Operations

Set operations are commonly used in the area of privacy preserving computation, e.g.
for computing common contacts [CMP11, CHK+12], privately scheduling a meeting
[BJH+11], or privacy preserving genome testing [BBC+11]. As proposed in [HEK12],
a set whose elements are chosen from a small domain of ` elements can be represented
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as a binary sequence x` where xi denotes whether the element i is contained in the
set (xi = 1) or not (xi = 0). In the following, we explain how to use the described
building blocks in order to construct depth-efficient set operations.

Set Intersection and Union. Set intersection ∩`(x`, y`) (set union ∪`(x`, y`)) be-
tween two sets x` and y` of size ` can be computed in parallel using the bitwise AND
(OR). I.e., we compute ∩`(x`, y`) = x` ∧ y` and ∪`(x`, y`) = x` ∨ y`. Thus, we have
S(∩`) = S(∪`) = ` and D(∩`) = D(∪`) = 1.

Set Inclusion. Set inclusion ⊆`(x`, y`) outputs a bit c that indicates whether a set x`

is a subset of y` (c = 1) or not (c = 0). We use the variant of [CHK+12] that computes
the set inclusion by computing si = 1⊕ (xi ∧ (1⊕ yi)). The resulting si are then used
as leafs of a tree of AND gates, where the root node is the output of ⊆`(x`, y`). The
size and depth of ⊆` evaluate to S(⊆`) = 2`− 1 and D(⊆`) = dlog2 `e+ 1.

Set Size. The size of a set x` can be computed using the CNT` circuit (cf. §4.2.1.9).

4.2.1.11 Distance Metrics

Another application scenario for privacy preserving protocols are proximity-based ser-
vices [MBF+09]. An example for a proximity-based service is the identification of
friends in close proximity without revealing the actual position of the user. There
exist several distances that can be used to measure the proximity: The Hamming
distance, the Manhattan distance, and the Euclidean distance. In the following, we
describe the distance circuits assuming a two-dimensional space and identify a point
in this space as p = (x`, y`).

Hamming Distance. The Hamming distance HD` between two `-bit sequences x`

and y` can be computed as HD`(x`, y`) = CNT`(x` ⊕ y`) (cf. §4.2.1.9).

Manhattan Distance. The Manhattan distance DST`
M between two points p1 =

(x`1, y
`
1) and p2 = (x`2, y

`
2) is the distance in a two dimensional space allowing only

horizontal and vertical moves and is computed as |x`1 − x`2|+ |y`1 − y`2|. [CHK+12] give
such a circuit DST`

M,C with size S(DST`
M,C) = 9` and depth D(DST`

M,C) = 2` + 2.

They use 4 multiplexer circuits MUX` (cf. §4.2.1.1), 2 GT`
S circuits (cf. §4.2.1.7), 2

SUB`
RC circuits (cf. §4.2.1.4), and one ADD`

RC circuit (cf. §4.2.1.2).
We build a more efficient Manhattan distance circuit DST`

M as:

x`+1 = SUB`(x`1, x
`
2), y`+1 = SUB`(y`1, y

`
2)

b`1 = (x`+1||x`+1||...)` ⊕ (x`...1)`, b`2 = (y`+1||y`+1||...)` ⊕ (y`...1)`

DST`
M(p1, p2) = ADD(`,3)(b`1, b

`
2, 0

`−2||x`+1 ∧ y`+1||x`+1 ⊕ y`+1).

We can choose between the size-optimized ripple-carry and the depth-optimized Ladner-
Fischer instantiations of SUB` and ADD`. Using the ripple-carry adder yields DST`

M,RC

with S(DST`
M,RC) = 4` + 1 and D(DST`

M,RC) = 2` + 2. The Ladner-Fischer variant
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DST`
M,LF has approximately S(DST`

M,LF ) = 4.5`dlog2 `e + 3` + 4 and D(DST`
M,LF )

= 4dlog2 `e+ 6.

Euclidean Distance. The Euclidean distance DST`
E between two points p1 = (x`1, y

`
1)

and p2 = (x`2, y
`
2) is computed as

√
(x`1 − x`2)2 + (y`1 − y`2)2. Since computing the square

root is very inefficient, the square of the Euclidean distance is often used as output
instead (cf. [EFG+09]).

We propose an efficient (squared) Euclidean distance circuit DST`
E as:

x`+1 = SUB`(x`1, x
`
2), y`+1 = SUB`(y`1, y

`
2)

a` = (x`+1||x`+1||...)` ⊕ (x`...1)`, b` = (y`+1||y`+1||...)` ⊕ (y`...1)`

c` = MUX`((0||0||...)`, a`, x`+1), d` = MUX`((0||0||...)`, b`, y`+1)

DST`
E(p1, p2) = ADD(2`,4)(SQR`(a`), c`||x`+1, SQR`(b`), d`||y`+1).

Note that adding c`||x`+1 and d`||y`+1 in the last step can be done as part of an
addition network (cf. §4.2.1.3), requiring only 2` + 2 additional AND gates and a
constant overhead in depth. DST`

E can be instantiated with size- or depth-efficient
addition circuits. The size-efficient variant DST`

E,RC uses the ripple-carry adder and

has size S(DST`
E,RC) = 2`2 + 6` + 2 and depth D(DST`

E,RC) = 3` + 2. The depth-

efficient variant DST`
E,LF uses the Ladner-Fischer adder and has S(DST`

E,LF ) = 2`2 +

(9`+ 2)dlog2 `e+ 5`+ 1 and D(DST`
E,LF ) = 5dlog2 `e+ 9.

The Euclidean distance circuit can be extended to multiple dimensions by instanti-
ating the SUB` and MUX` in parallel and building one big addition network for adding
the squares and correction values.

4.2.1.12 AES S-Box

AES consists of the four operations AddRoundKey, SubBytes, ShiftRows, and Mix-
Columns that are repeated 10 times and operates on a state of 16 × 8 bits. Among
all operations, the only operation that contains AND gates is the AES S-Box sub-
stitution in SubBytes. The remaining operations can be performed using only XOR
gates [HEKM11].

There exist two efficient S-Box circuits: A size-efficient circuit SBoxS [BP10] and a
depth-efficient circuit SBoxD [BP12]. The size-efficient SBoxS circuit has size S(SBoxS)
= 32 and depth D(SBoxS) = 6, resulting in an AES circuit AESS with size S(AESS) =
5 120 and depth D(AESS) = 60. The depth-efficient SBoxD circuit has size S(SBoxD)
= 34 and depth D(SBoxD) = 4, resulting in an AES circuit AESD with size S(AESD)
= 5 440 and D(AESD) = 40. For both circuits, we assume that the expanded key is
input as plaintext, as was done in [HEKM11].
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4.2.2 Single Instruction Multiple Data (SIMD) Circuits

The Sharemind framework [BLW08, BJL12] for secure three-party computation showed
that Single Instructions Multiple Data (SIMD) circuits can result in substantially
reduced memory footprint. The idea of SIMD circuits is to replace the evaluation of n
identical copies of the same sub-circuit on one-bit values by one evaluation of the sub-
circuit on n-bit values. This optimization reduces the overall computation time and
the memory footprint as the circuit needs to be generated only once. SIMD circuits
are especially beneficial in data mining applications [BJL12], but can also speed up
other applications, e.g., AES where the same S-Box is applied in parallel (cf. §4.2.1.12)
or PSI (cf. §5.3).

We implement the SIMD evaluation by introducing two new virtual gate types that
only require re-wiring of values, depicted in Figure 4.4: A combiner gate and a splitter
gate. The combiner gate combines n one-bit input wires to a n-bit output wire.
Subsequently, AND and XOR gates can be placed as usual to process the n-bit values.
When the SIMD evaluation is done, a splitter gate can be used to convert n-bit wires
back to n one-bit wires (or alternatively to an arbitrary subset or permutation of the
output values).

Efficiency. The efficiency improvements of the SIMD programming style greatly
depends on the function that is evaluated. The biggest efficiency improvements can be
observed if the same function is evaluated on multiple independent inputs in parallel.
In this case, for n independent function evaluations, the memory requirement of the
circuit is reduced by factor n×. For functions where the data needs to be re-arranged
more often, the memory improvement greatly varies. For instance, when evaluating the
sort-compare-shuffle PSI circuit of [HEK12] on sets of 65 536 elements with 32 bit, the
SIMD instructions reduce the memory requirement by factor 30× from 382 million to
12 million gates. The biggest disadvantage of the SIMD programming style, however,
is that it is more complicated than a regular single instruction single data (SISD)
programming style, since the programmer has to consider data-flow dependencies.

4.3 Optimized Pre-Computation

In this section, we show how to improve the pre-computation complexity of GMW using
OT extension. We first show how to equally balance the computation and communica-
tion complexity among both parties (§4.3.1). Then, we show how to pre-compute MTs
in a more communication-efficient manner using

(
2
1

)
R-OT extension (§4.3.2). Finally,

we outline how to further improve communication for pre-computing MTs at the cost
of increased computation complexity using

(
N
1

)
R-OT extension (§4.3.3).
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Figure 4.4: One-time evaluation of identical circuits using SIMD operations.

4.3.1 Load Balancing

The GMW implementation of [CHK+12] implements the
(

4
1

)
OT extension protocol

of [LLXX05] in the setup phase, where the majority of the data is sent by the re-
ceiver (cf. §2.4.3). As the MTs used in the online phase are symmetric (cf. §2.4.2),
we can run the OT extensions to generate them in the setup phase in either direction.
Hence, to balance the communication, we run two instantiations of the

(
4
1

)
OT pro-

tocol (each for half of the AND gates) in parallel with the roles reversed. With this
optimization, each party has the same workload per AND gate. Note that now we also
need to run the base-OT protocol for the seed OTs twice, which however amortizes
fairly quickly (35 ms computation time and 10 KBytes to be transferred).

4.3.2 2-MT: MTs via
(2

1

)
R-OT

An AND gate in the GMW protocol can be computed efficiently using MTs (cf. §2.4.2),
which are bits a0, a1, b0, b1, c0, c1 under the constraint that c0⊕ c1 = (a0⊕ a1)(b0⊕ b1).
Each Pi receives the shares labeled with index i. To pre-compute one MT, the work
of [CHK+12] evaluates

(
4
1

)
OT1

1 using the OT extension protocol of [LLXX05].
In the following, we present our new 2-MT approach for generating MTs that is outlined
in Protocol 12 and uses

(
2
1

)
R-OT2

1 (cf. §3.4.4). The R-OT functionality is exactly the
same as OT, except that the parties have no inputs but the sender gets two random
messages and the receiver gets a random choice bit and corresponding message as
output (cf. §3.4.4).
To understand the high-level idea of our protocol, note that a MT can be re-written as
c0 ⊕ c1 = (a0 ⊕ a1)(b0 ⊕ b1) = a0b0 ⊕ a0b1 ⊕ a1b0 ⊕ a1b1. Both, P0 and P1 can compute
the terms a0b0 and a1b1 locally from their shares. We then compute the mixed-terms
a0b1 and a1b0 using a secure evaluation via

(
2
1

)
R-OT1

1 for each term, where the parties
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hold no inputs. From the first OT they receive ((b0, v0), (a1, u1)) and from the second
OT they receive ((a0, u0), (b1, v1)), under the constraints that a1b0 = u1 ⊕ v0 and
a0b1 = u0 ⊕ v1. Finally, each Pi sets ci = aibi ⊕ ui ⊕ vi.

PROTOCOL 12 (Generating Random MTs from
(

2
1

)
R-OT2

1).

• Oracles: The parties have an oracle access to the
(

2
1

)
R-OT1

1 functionality.

1. P0 and P1 invoke the
(

2
1

)
R-OT1

1 functionality where P0 plays the sender and P1

plays the receiver. P0 receives as outputs two random bits (x0, x1) while P1 receives
a random choice bit a1 and xa1 as output. P0 sets b0 = x0⊕x1 and v0 = x0; P1 sets
u1 = xa1 .
[Note that a1b0 = u1⊕v0 as a1b0 = a1(x0⊕x1) = (a1(x0⊕x1)⊕x0)⊕x0 = xa1⊕x0 =
u1 ⊕ v0.]

2. P0 and P1 again invoke the
(

2
1

)
R-OT1

1 functionality, with reverse roles where P1 plays
the sender and P0 plays the receiver. P1 receives as outputs two random bits (y0, y1)
while P0 receives a random choice bit a0 and ya0 as output. P1 sets b1 = y0⊕ y1 and
v1 = y0; P0 sets u0 = ya0 .
[Note that a0b1 = u0⊕v1 as a0b1 = a0(y0⊕y1) = (a0(y0⊕y1)⊕y0)⊕y0 = ya0⊕y0 =
u0 ⊕ v1.]

3. P0 computes c0 = a0b0 ⊕ u0 ⊕ v0; P1 computes c1 = a1b1 ⊕ u1 ⊕ v1.

• Output: P0 outputs (a0, b0, c0); P1 outputs (a1, b1, c1).

Efficiency. As we have shown in §3.4, R-OT can be instantiated more efficiently than
OT: In comparison to performing

(
4
1

)
OT1

1 using the protocol of [LLXX05], using our(
2
1

)
R-OT2

1 protocol only slightly increases the computation complexity per party from
2.5 to 3 PRG and CRF evaluations (and one additional matrix transposition), but
improves the total communication complexity by a factor of approximately 2× from
4(κ+ 1) to 2(κ− 1).

Correctness. For correctness, observe that c0⊕c1 = (a0b0⊕u0⊕v0)⊕(a1b1⊕u1⊕v1) =
a0b0 ⊕ (u0 ⊕ v1)⊕ (u1 ⊕ v0)⊕ a1b1 = a0b0 ⊕ a0b1 ⊕ a1b0 ⊕ a1b1 = (a0 ⊕ a1)(b0 ⊕ b1), as
required.

Security. In Protocol 12, a1, x0, and x1 are generated randomly by the first R-OT
and a0, y0, and y1 are generated randomly by the second R-OT. By the definition of
OT, P0 gains no information on (a1, y1−a0) and hence b1 = y0 ⊕ y1 and P1 gains no
information on (a0, y1−a1) and hence b0 = x0 ⊕ x1.

4.3.3 N -MT: MTs via
(N

1

)
OT

To improve the communication in secure computation, the work of [KK13] proposed

to use their
(
N
1

)
OT protocol to reduce

(
N
1

)
OT1

log2N
to
(

2
1

)
OT

log2N
1 (cf. §2.3.3 for how
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to convert from
(
N
1

)
OT to

(
2
1

)
OT). They achieved a communication saving of up to

1.6× per
(

2
1

)
OT2

1, from 256 bits to 160 bits, when setting κ = 128 and N = 16.
In the following, we introduce our N−MT protocol which further improves on their

communication savings by using our optimized
(
N
1

)
OT protocol from §3.2.4 to directly

compute a MT, which corresponds to a
(

4
1

)
OT1

1. For this reduction, we evaluate
(
N
1

)
OT1

log4(N) which we can be directly transformed to
(

4
1

)
OT

log4(N)
1 . We vary possible

choices for N in Table 4.2 and observe that the highest improvement of 1.9× is obtained
for N = 16, where one MT can be computed at the cost of 134 bits in the setup phase
(2 MTs at the cost of 268 bits) as shown in Table 4.2. Adding the 4 bits for the
evaluation of AND gates in the online phase, the total communication cost of a single
AND gate is 138 bits.

N 4 8 16 32 64 128 256

#MTs 1 1.5 2 2.5 3 3.5 4

2-MT 256 384 512 640 768 896 1 024

N-MT 194 223 268 339 438 759 1 271

Improvement 1.32 1.72 1.91 1.89 1.75 1.18 0.81

Table 4.2: Communication for generating MTs using 2-MT (cf. §4.3.2) and our N -MT,
based on our optimized

(
N
1

)
OT protocol (cf. §3.2.4) of [KK13]. Best results

marked in bold.

Efficiency. To pre-compute one MT using the N -MT technique, each party has to
perform approximately 0.75 PRG evaluations and 4.25 CRF evaluations, instantiated
using AES-256 with key-schedule (cf. §3.2.4.2), and both parties have to send 134 bits.
In contrast, for 2-MT each party has to perform only 3 CRF evaluations, instantiated
using the more efficient fixed-key AES-128, but both parties have to send 254 bits.
Thus, we obtain a computation vs. communication trade-off, similar as for

(
2
1

)
OT

extension vs.
(
N
1

)
OT extension (cf. §3.5.5).

4.4 Special-Purpose Protocols

Special-purpose protocols that were tailored specifically to one operation often per-
form better than generic techniques such as GMW or Yao’s garbled circuits. In this
section, we outline special-purpose protocols that improve the performance for certain
operations. We first introduce vector MTs that can be used to improve the computa-
tion and communication complexity for the multiplexer operation (§4.4.1). We then
outline the Setup-LUT (SP-LUT) protocol that can be used to evaluate multi-input
lookup tables at much lower communication and round complexity than an equivalent
Boolean circuit evaluation using GMW (§4.4.2). Finally, we give an integer multiplica-
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tion protocol that is based on OT and achieves much better overall performance than
a secure evaluation of a Boolean multiplication circuit using GMW (§4.4.3).

4.4.1 Vector MTs

Many Boolean circuit representations of functions compute the AND between one
fixed wire and many different wires. Consider, for instance, the multiplexer cir-
cuit (cf. §4.2.1.1), which takes as input two `-bit values x and y and one selection
bit s and outputs z = x if s = 0 or z = y if s = 1. Internally, the circuit is of
the form z[i] = x[i] ⊕ s ∧ (x[i] ⊕ y[i]), for all 1 ≤ i ≤ `. Observe that the circuit
computes the AND between one wire for s and ` wires for (x[i] ⊕ y[i]). When using
GMW with 2-MT, these ` AND gates would be evaluated using ` MTs, which requires
R-OT2`

1 (cf. §4.3.2). In this section, we describe how to evaluate such AND gates at a
much lower cost using vector MTs. A vector MT consists of shares a0, a1 ∈ {0, 1} and
b0, b1, c0, c1 ∈ {0, 1}` with c0[j]⊕ c1[j] = (a0 ⊕ a1) ∧ (b0[j]⊕ b1[j]), where Pi holds the
shares labeled with index i, and for 1 ≤ j ≤ `. As described next, these vector MTs
reduce the pre-computation costs for such circuits from R-OT2`

1 to R-OT2
` , making

the pre-computation cost independent of ` and reducing the online communication by
half. A similar construction in the context of private function evaluation was outlined
in [MS13].

Generating Vector MTs. Vector MTs can be pre-computed analogously to regular
MTs using 2-MT (cf. §4.3.2), but using R-OT2

` instead of R-OT2`
1 (cf. §4.3.2). The

parties perform a R-OT1
` with P0 acting as sender and P1 acting as receiver, and a

second R-OT1
` with P1 acting as sender and P0 acting as receiver. From these random

OTs, the sender Pi obtains random (s0
i , s

1
i ) ∈ {0, 1}2` and sets bi = s0

i ⊕ s1
i and vi = s0

i

the receiver P1−i obtains random choice bit a1−i and u1−i = s
a1−i
1−i . Finally, both parties

locally compute ci = aibi⊕ui⊕vi. Note that while it is possible to pre-compute vector
MTs similar to N -MT using

(
N
1

)
OT extension, the communication increases with

O(N`) and hence performs worse for larger ` than using
(

2
1

)
OT extension.

Evaluating Vector MTs. To evaluate an `-bit vector AND gate z[j] = x∧y[j] using
a vector MT, both parties compute di = ai ⊕ xi and ei[j] = bi[j] ⊕ yi[j], exchange di
and ei[j], set d = d1 ⊕ d2, e[j] = e1[j] ⊕ e2[j], and compute zi[j] = (d ∧ e[j]) ⊕ (d ∧
bi[j])⊕ (e[j] ∧ ai)⊕ ci[j].

Efficiency. Generating one `-bit vector MT reduces the communication cost in the
setup phase by factor `×, i.e., from 2`κ bit for R-OT2`

1 to 2κ bit for R-OT2
` . Evaluating

one `-bit vector MT reduces the communication cost in the online phase from 4` to
2`+ 2.

Generalization to arbitrary circuits. Note that our vector MTs can be used in
every circuit where wires are used as input in two or more AND gates. In our evaluation
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in §4.6.3, we apply the vector MT optimization to improve circuits for multiplication,
Ladner-Fischer addition, and the AES S-Box.

4.4.2 Lookup Tables

In this section, we discuss how to abstract from circuits with 2-input Boolean gates
and model the functionality as network of interconnected lookup tables (LUTs) with
multiple input bits (§4.4.2.1). We then give two protocols that allow to evaluate
these LUTs in a constant number of rounds. The first protocol for evaluating LUTs
that we describe is the one-time truth table (OTTT) approach of [IKM+13] with
pre-computation of [DZ16] (§4.4.2.2). We then present our protocol, called Setup-
LUT (SP-LUT), that substantially reduces the communication in the setup phase but
increases the communication in the online phase (§4.4.2.3). Finally, we show how to
optimize the online phase of the SP-LUT protocol to achieve better round complexity
and communication complexity and how to compute LUTs with overlapping inputs
more efficiently (§4.4.2.4). We give a summary of the communication costs for a `-
input LUT using these protocols in Table 4.3. From the table, we can observe that
the online phase of the OTTT protocol, which scales linear with O(`), is much more
efficient than the online phase of our SP-LUT protocol, which scales with O(2`). The
total communication of our SP-LUT protocol, on the other hand, is much better, since
it scales only with O(2`) while the OTTT protocol scales with O(22`).

# Inputs ` 2 3 4 5 6 7 8

Setup Communication [bits]

OTTT [IKM+13] . 29o . 211o . 213o . 214o . 216o . 217o . 218o

SP-LUT (§4.4.2.3) 190 221 236 243 246 247 247

Online Communication [bits]

OTTT 4 6 8 10 12 14 16

SP-LUT 4o+ 2 8o+ 3 16o+ 4 32o+ 5 64o+ 6 128o+ 7 256o+ 8

Total Communication (Setup + Online) [bits]

OTTT [IKM+13] . 29o . 211o . 213o . 214o . 216o . 217o . 218o

SP-LUT (§4.4.2.3) 4o+ 192 8o+ 224 16o+ 240 32o+ 248 64o+ 252 128o+ 254 256o+ 255

Table 4.3: Setup, Online and Total communication for a `-input LUT with o outputs
((`, o)-LUT) for OTTT and Setup-LUT (SP-LUT). Best results marked
in bold.

4.4.2.1 Lookup Tables

For our protocols in this section, we assume that the parties have XOR secret-shared
their private inputs (as in GMW) and represent the functionality as network of lookup
tables (LUTs) and XOR gates (cf. Figure 4.5). In our context, a `-input bit LUT with
o output bits is a table that maps an `-bit secret-shared input to an o-bit secret-shared
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output and can thereby be used to represent any function f : {0, 1}` 7→ {0, 1}o. In
contrast to Boolean circuits based on 2-input gates, LUT-based circuits do not use
internal logic operations to map inputs to outputs and their evaluation costs depend
only on the number of inputs and outputs. We show how to pre-compute and evaluate
a `-bit input LUT in the next sections. XOR gates can be evaluated locally by both
parties XORing their respective shares. Similarly, we can reduce the number of output
bits if one output bit can be computed as a linear combination of two other outputs.

Boolean Circuit Lookup Table

a b c

d

∧ ⊕

∧

a b c

d

LUT

a b c d

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

Figure 4.5: A function with ` = 3 input and o = 1 output bits represented as 2-input
Boolean gate circuit and (3, 1)-LUT.

4.4.2.2 One-Time Truth Tables (OTTT)

In this section we describe the OTTT protocol of [IKM+13] with circuit-based pre-
computation from [DZ16], which is given in Protocol 13. The high-level idea behind
the OTTT protocol is that two parties hold secret shares T0 and T1 of a lookup table T ,
whose entries were randomly rotated across both dimensions using r, s such that T0[i]⊕
T1[i] = T [r ⊕ s⊕ i], for all 0 ≤ i < 2`. Each of the parties knows a secret share of the
truth-table as well as the rotation value, i.e., P0 knows (T0, r) and P1 knows (T1, s).

Pre-Computation. During the setup phase, the truth-table T needs to be shared
such that P0 holds (T0, r) and P1 holds (T1, s). A possible method for pre-computing
the table was outlined in [DZ16]: Both parties evaluate a Boolean circuit representing
the table once for each of the 2` possible inputs, resulting in an overhead of factor
2`× compared to a Boolean circuit evaluation.2 In more detail, the parties represent
the table T as Boolean circuit C : {0, 1}` 7→ {0, 1}o. Then, P0 and P1 choose their
random rotation values r, s ∈R {0, 1}`, securely evaluate C(r⊕ s⊕ i) = zi0⊕ zi1 and set
T0[i] = zi0 and T1[i] = zi1 for all i ∈ [0...2` − 1].

2Note that the evaluated circuit can be optimized by removing duplicate gates [KSS12]. Assuming
that the last gate in the circuit is an AND gate (otherwise, one could remove that last gate from
the LUT), we expect the circuit after the duplicate removal to have at least 2` gates.
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Online Evaluation. In the online phase, the OTTT protocol of [IKM+13] takes
as input two `-bit shared values x0 and x1 such that x = x0 ⊕ x1 and evaluates a
function f , represented as a lookup table T . The parties hold shares (T0, r) and (T1, s)
of a permuted lookup table T such that T0[i]⊕T1[i] = T [r⊕s⊕ i], where r, s ∈R {0, 1}`
and for all 0 ≤ i < 2`. To evaluate T , the parties exchange u = x0 ⊕ r and v = x1 ⊕ s
and compute the shared result z0 = T0[u⊕v] and z1 = T1[u⊕v]. To see that z = T [x] =
z0⊕z1, observe that z0⊕z1 = T0[u⊕v]⊕T1[u⊕v] = T0[r⊕s⊕x]⊕T1[r⊕s⊕x] = T [x].

Efficiency. To pre-compute an OTTT for a `-input to o-out LUT ((`, o)-LUT), the
parties need to securely evaluate 2` copies of the same Boolean circuit C. Assuming the
upper bound of (`−1)o AND gates for C (cf. §2.1.2 for a discussion on an upper bound
on AND gates for arbitrary Boolean circuits) and using the N -MT pre-computation
with GMW with 138-bits per AND gate from §4.3.3, this results in an overall commu-
nication of at most 138 · 2`(` − 1)o bits in the setup phase. The online phase, on the
other hand, is highly efficient, since the parties only need to send 2` bits.

PROTOCOL 13 (Evaluating (`, o)-LUT Using the OTTT Protocol of [IKM+13]).

• Common Input: Input bit-length `; Output bit-length o; N = 2`; Truth-table
T : {0, 1}` 7→ {0, 1}o.

Pre-Computation:

1. The parties represent T as Boolean circuit C : {0, 1}` 7→ {0, 1}o.

2. P0 chooses r ∈R {0, 1}` and P1 chooses s ∈R {0, 1}`.

3. P0 and P1 securely compute zi0 ⊕ zi1 = C(s⊕ r⊕ i) and set T0[i] = zi0 and T1[i] = zi1
for all 0 ≤ i < N .

• Output: P0 outputs (T0, r); P1 outputs (T1, s).
Note: ∀i ∈ [0...N) it holds that T0[i]⊕ T1[i] = T [r ⊕ s⊕ i].

Online Evaluation:

• Input of P0: x0 ∈ {0, 1}`.

• Input of P1: x1 ∈ {0, 1}`.

1. P0 sends u = x0 ⊕ r to P1; P1 sends v = x1 ⊕ s to P0.

2. P0 sets z0 = T0[u⊕ v]; P1 sets z1 = T1[u⊕ v].

• Output: P0 outputs z0; P1 outputs z1 with z0 ⊕ z1 = T [x0 ⊕ x1].

4.4.2.3 Setup-LUT (SP-LUT)

While the OTTT approach achieves a good online communication, its pre-computation
cost scales with at least O(2`κ), where ` is the number of input bits of a LUT. This
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greatly hinders its applicability when pre-computation is not negligible, i.e., when
the parties do not have a pre-established communication channel or when they wish to
perform secure computation ad-hoc. In order to enable LUT-based secure computation
even in settings with no pre-computation, we suggest a new protocol for securely pre-
computing and evaluating LUTs. This protocol, called Setup-LUT (SP-LUT), achieves
much better total communication but increases the online communication compared

to the OTTT protocol. The general idea of SP-LUT is simple: Pre-compute
(

2`

1

)
OT

in the setup phase and obliviously transfer all possible outcomes of the lookup table
in the online phase. We give a full description of the protocol in Protocol 14.

Compared to the OTTT approach, the SP-LUT protocol only requires correlated

randomness in the form of a pre-computed
(

2`

1

)
OT, which requires only little com-

munication in the setup phase at the cost of 2`o bits of communication during the
online phase. However, the total communication of SP-LUT is much lower than that
of OTTT, since only single bits need to be transferred instead of pre-computing MTs
to evaluate the Boolean circuit (cf. Table 4.3 on page 84). The security of the SP-LUT
protocol is similar to that of the GMW protocol [GMW87]: Both parties operate on
secret-shared data by sacrificing a pre-computed OT on random data.

PROTOCOL 14 (Evaluating (`, o)-LUT Using Our Setup-LUT (SP-LUT) Protocol).
Inputs and Oracles:

• Common Input: Symmetric security parameter κ; Input bit-length `; Output bit-
length o; N = 2`; Truth-table T : {0, 1}` 7→ {0, 1}o.

• Oracles: Both parties have access to the
(
N
1

)
R-OT1

o functionality.

Pre-Computation:

1. P0 and P1 invoke the
(
N
1

)
R-OT1

o functionality where P0 plays the sender and P1

plays the receiver. From the OT, P0 receives random bits (m0, ...,mN−1) and P1

receives a random choice s ∈ {0, 1}` and message ms.

2. Output: P0 outputs (m0, ...,mN−1); P1 outputs (ms, s).

Online Evaluation:

• Input of P0: x0 ∈ {0, 1}`.

• Input of P1: x1 ∈ {0, 1}`.

1. P1 sends u = s⊕ x1 to P0.

2. P0 chooses z0 ∈R {0, 1}o and computes and sends V = (v0, ..., vN−1), where vi =
T [i⊕ x0]⊕mi⊕u ⊕ z0.

3. P1 computes z1 = vx1
⊕ms.

• Output: P0 outputs z0; P1 outputs z1 with z0 ⊕ z1 = T [x0 ⊕ x1].
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4.4.2.4 Optimizations

In the following we discuss two optimizations that we use in our SP-LUT protocol:
Switching roles to reduce the round complexity and combining LUTs with overlapping
inputs.

Reducing the Online Round Complexity. The SP-LUT protocol in §4.4.2.3 pre-
computes

(
N
1

)
OT in a setup phase and then uses these pre-computed values in the

online phase to securely evaluate the function. In its vanilla version, the online phase
consists of two rounds. In the first round, the receiver sends its updated choice bits
to the sender. In the second round, the sender rotates its pre-computed masks and
sends the updated correlations to the receiver. Thereby, we overall require 2DL(C)
communication rounds in the online phase, where DL(C) is the highest number of
lookup tables from any input to any output value.

In order to reduce the number of communication rounds, we let both parties switch
roles in the online phase after each communication round, similar to [Hua12] and as
shown in Figure 4.6. More specifically, assume P0 plays the sender and P1 plays the
receiver in the first round. P1 first sends its updated choice bits u1 to P0 (Step 1
of the online evaluation in Protocol 14), who plays the receiver in the second round
and replies with the updated correlations V1 and the updated choice bits of the second
round u2 (Step 2 followed by Step 1 of the next round). P1 then updates its local shares
using V1, switches to the role of the sender and replies with its updated correlations
V2, and then again switches to the role of the receiver and sends its updated choice
bits u3 for the third communication round, etc. Overall, this reduces the number of
communication rounds from 2DL(C) to DL(C) + 1.

P0 P1

u1R 0

V1R 1

u2R 2

R 3

V
DL(C)

R 2DL(C)

P0 P1

u1 R 0

u2, V1
R 1

u3, V2
R 2

R 3

V
DL(C)

R DL(C) + 1

Figure 4.6: Reducing the number of communication rounds for SP-LUT from 2DL(C)
to DL(C) + 1 by flipping roles.

Multi-Out LUTs. Note that in our LUT-based approach, we can efficiently combine
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two or more LUTs that have the same or even only some inputs in common. Consider
a functionality which has o LUTs with one output bit each and the same ` input bits.
When naively applying our approach, we would generate o `-input LUTs, one for each
output bit. However, since we build on a

(
N
1

)
OT protocol, we can amortize the cost for

computing the OT protocol by sending outputs of o bits during the OT protocol. More
specifically, instead of performing

(
N
1

)
OTo

1, we perform
(
N
1

)
OT1

o, thereby saving o−1
executions of the OT protocol. This optimization naturally extends to an arbitrary
number of output bits o. Overall, for a functionality with ` input bits and o output
bits, we thereby decrease the required communication from o(256 + 2`) to 256 + o2`.
We use this optimization to decrease the communication for the 8-input to 8-output
AES S-Box by a factor of 1.8× from 4 096 bit to 2 304 bit. Similarly, we can combine
two or more LUTs which share a sub-set of inputs. For instance, consider the case
where one LUT has `1 = 3 inputs (x0, x1, x2) and a second LUT has `2 = 4 inputs
(x0, x1, x3, x4). In this case, we can combine both LUTs to one LUT with ` = 5 inputs
and thereby reduce

(
N1

1

)
OT1

1 and
(
N2

1

)
OT1

1 to
(
N
1

)
OT1

2, where N1 = 2`1 , N2 = 2`2 , and
N = 2`. Concretely, this reduces the communication by factor 1.56× from 488 bits for
a (3, 1)-LUT and a (4, 1)-LUT to 312 bits for a (5, 2)-LUT (cf. Table 4.3 on page 84).

4.4.3 Multiplication via OT

In generic secure two-party computation, one can either represent the function as
Boolean or arithmetic circuit. While Boolean circuits can be evaluated using Yao’s
garbled circuits or the GMW protocol, arithmetic circuits consist of addition and multi-
plication gates and can be evaluated using additively homomorphic encryption [FNP04,
EFG+09, BBC+10, BG11, HKS+10, KSS13b, KSS14]. More detailed, values are shared
additively between both parties such that addition can be performed locally while
multiplications use homomorphic encryption schemes such as Paillier [DJ01, DJN10,
Pai99] or DGK [DGK08, DGK09]. However, homomorphic encryption becomes pro-
hibitively slow for larger security parameters, compared Boolean circuit-based tech-
niques [KSS14].

Instead of using homomorphic encryption to evaluate multiplications in arithmetic
circuits, we describe a protocol that is based on OT extension and which utilizes
our efficiency improvements, outlined in §3.2. A similar variant of the protocol was
proposed in [Gil99, Sect. 4.1] and used in [BCP+14]. It allows to efficiently compute
the product of two secret-shared values using OT. The protocol we describe in the
following uses more efficient correlated OT extension (C-OT, cf. §3.4.1). Overall, an
`-bit multiplication requires C-OT2`

` (or even on shorter strings, as described below).
In the following, we describe how to compute arithmetic MTs (cf. §2.4.2), which can
be batch pre-computed before the function evaluation.

Generating Arithmetic MTs. The generation of arithmetic MTs c = a · b is similar
to the generation of a Boolean MT using 2-MT (cf. §4.3.2). Observe that we can
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write a · b = (a0 + a1) · (b0 + b1) = a0b0 + a0b1 + a1b0 + a1b1, where all operations are
performed in Z2` . Let P0 randomly generate a0, b0 ∈R Z2` and P1 randomly generate
a1, b1 ∈R Z2` . The terms a0b0 and a1b1 can be computed locally by P0 and P1, respec-
tively. The mixed-terms a0b1 and a1b0 are computed as described next. We detail only
the computation of a0b1, since a1b0 can be computed symmetrically by reversing the
parties’ roles.

Note that, since a0b1 leaks information if known in plain by a party, we compute the
shares u0 + v1 = a0b1 securely, such that P0 holds u0 and P1 holds v1. We have P0 and
P1 engage in a C-OT`

`, where P0 is the sender and P1 is the receiver. In the i-th C-OT,
P1 inputs b1[i] as choice bit and P0 inputs the correlation function f∆i

(x) = (a0 ·2i−x)
mod 2`. As output from the i-th C-OT, P0 obtains (s0

i , s
1
i ) with s0

i ∈R Z2` and s1
i =

f∆i
(s0
i ) = (a0 · 2i − s0

i ) mod 2` and P1 obtains s
b1[i]
i = (b1[i] · a0 · 2i − s0

i ) mod 2`. P0

sets u0 = (
∑`

i=1 s
0
i ) mod 2` and P1 sets v1 = (

∑`
i=1 s

b1[i]
i ) mod 2`.

Analogously, P0 and P1 compute v0 + u1 = a1b0. Finally, Pi sets ci = aibi + ui + vi.
Correctness and security of the protocol directly follow from the protocol and proof

in [Gil99, Sect. 4.1].

Evaluating Arithmetic MTs. Arithmetic MTs can be used to evaluate a multipli-
cation gate z = x ·y with x, y, z ∈ Z2` in a similar fashion as Boolean MTs can be used
to evaluate AND gates (cf. §2.4.2): The parties compute and exchange di = xi − ai
and ei = yi − bi, compute d = d0 + d1 and e = e0 + e1, and set their output shares
as z0 = (d · e) + (b0 · d) + (a0 · e) + c0 and z1 = (b1 · d) + (a1 · e) + c1. Note that all
operations are performed in Z2` .

Efficiency. To generate an `-bit MT, P0 and P1 run C-OT2`
` , where each party eval-

uates 6` symmetric cryptographic operations and sends 2`(κ + `) bits. The commu-
nication can be further decreased by sending only the ` − i least significant bits in
the i-th C-OT, since the i most significant bits are cut off by the modulo operation
anyway. This reduces the communication to C-OT2

` + C-OT2
`−1... + C-OT2

1, which
averages to C-OT2`

(`+1)/2 and requires 2`κ + `+1
2

bits of communication. In contrast,

a Boolean multiplication circuit has 2`2 − ` AND gates (cf. §4.2.1.5) and hence re-

quires R-OT4`2−2`
1 or (4`2 − 2`)κ bits of communication using the GMW protocol,

which is factor ∼ 2`× more than our OT-based multiplication protocol. Furthermore,
we shown in [DSZ15] that our OT-based multiplication protocol outperforms addi-
tively homomorphic encryption-based multiplication protocols by one to three orders
of magnitude.

4.5 Mixed Protocol Secure Computation

In the following, we show how to combine our special-purpose protocols in §4.4 with
generic secure computation protocols to a mixed protocol secure computation frame-
work called ABY. We first categorize the underlying classes of secret-sharing: Arith-
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metic, Boolean, and Yao’s garbled circuits-based (§4.5.1). Then, we show how to
transform between these classes of secret-sharing (§4.5.2), which achieves better run-
time for secure evaluation of certain operations. An outline of our ABY framework can
be found in Figure 4.7 and our ABY framework is available as open source project on
GitHub at https://github.com/encryptogroup/aby. The code includes most of the
protocols and optimizations, referred to in this section as well as most of the circuit
constructions, outlined in §4.2.1. The remaining N -MT and SP-LUT protocols will be
made available upon publication of the respective paper [DKS+17].

A (§4.5.1.1)

C

B (§4.5.1.2) Y (§4.5.1.3)

A2Y (§4.5.2.3)B2A (§4.5.2.5)

Y2B (§4.5.2.1)

B2Y (§4.5.2.2)

(§4.5.1.1)

(§4
.5.

1.2
) (§4.5.1.3)

Figure 4.7: Overview of our ABY framework that allows efficient conversions between
Cleartext values and secure computation protocols that use Arithmetic or
Boolean secret-sharing or Yao’s garbled circuits.

4.5.1 Representations

In order to combine different secure computation schemes, we formalize the format in
which the values are shared. In the following, we categorize protocols for three different
sharing types: Arithmetic sharing (§4.5.1.1), Boolean sharing (§4.5.1.2), and Yao
sharing (§4.5.1.3). For each sharing type we describe the semantics of the sharing and
how standard operations are evaluated. Throughout this section and §4.5.2, we denote
a value x that is shared with an arithmetic, Boolean, or Yao’s garbled circuits-based
secret-sharing scheme as 〈x〉A, 〈x〉B, or 〈x〉Y and the respective shares of Pi as 〈x〉Ai ,
〈x〉Bi , and 〈x〉Yi , for i ∈ {0, 1}. We denote by ShrSi (x) the process of secret-sharing a
variable x that is held by Pi and by RecSi (x) the process of disclosing the plaintext
value of x to Pi in the respective secret-sharing scheme S ∈ {A,B, Y }.

https://github.com/encryptogroup/aby
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4.5.1.1 Arithmetic Sharing

In the arithmetic sharing, an `-bit value x is shared additively in the ring Z2` (integers
modulo 2`) as the sum of two values. The protocols described in the following are
based on [ABL+04, PBS12, KSS14]. First we define the sharing semantics and then
the operations. We assume all arithmetic operations to be performed in the ring Z2` ,
i.e., all operations are (mod 2`).

Sharing Semantics. Arithmetic sharing is based on additively sharing private values
between the parties as follows.

• Shared Values. For an `-bit arithmetic sharing 〈x〉A of x we have 〈x〉A0 +〈x〉A1 ≡ x
(mod 2`) with 〈x〉A0 , 〈x〉A1 ∈ Z2` .

• Sharing. ShrAi (x): Pi chooses r ∈R Z2` , sets 〈x〉Ai = x − r, and sends r to P1−i,
who sets 〈x〉A1−i = r.

• Reconstruction. RecAi (x): P1−i sends its share 〈x〉A1−i to Pi who computes x =
〈x〉A0 + 〈x〉A1 .

Operations. Every arithmetic circuit is a sequence of addition and multiplication
gates, evaluated as follows:

• Addition. 〈z〉A = 〈x〉A + 〈y〉A: Pi locally computes 〈z〉Ai = 〈x〉Ai + 〈y〉Ai .

• Multiplication. 〈z〉A = 〈x〉A · 〈y〉A: Multiplication is performed using a pre-
computed arithmetic MT that can be pre-computed using our OT-based multi-
plication protocol from §4.4.3.

4.5.1.2 Boolean Sharing

The Boolean sharing uses an XOR-based secret sharing scheme to share a variable. We
represent functions as a network of Boolean gates, evaluated using GMW with 2-MT
and N -MT pre-computation (cf. §4.3.2 and §4.3.3) and our vector MTs (cf. §4.4.1),
and LUTs, evaluated using our SP-LUT protocol (cf. §4.4.2.3). We first define the
sharing semantics, and then describe how operations are evaluated.

Sharing Semantics. Boolean sharing uses an XOR-based secret sharing scheme. To
simplify presentation, we assume single bit values; for `-bit values each operation is
performed ` times in parallel.

• Shared Values. A Boolean share 〈x〉B of a bit x is shared between the two parties,
such that 〈x〉B0 ⊕ 〈x〉B1 = x with 〈x〉B0 , 〈x〉B1 ∈ Z2.

• Sharing. ShrBi (x): Pi chooses r ∈R {0, 1}, computes 〈x〉Bi = x ⊕ r, and sends r
to P1−i who sets 〈x〉B1−i = r.
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• Reconstruction. RecBi (x): P1−i sends its share 〈x〉B1−i to Pi who computes x =
〈x〉B0 ⊕ 〈x〉B1 .

Operations. Every efficiently computable function can be expressed as a Boolean
circuit consisting of XOR and AND gates which can be combined into LUTs for more
complex functionalities. We detail the evaluation of these operations in the following.

• XOR. 〈z〉B = 〈x〉B ⊕ 〈y〉B: Pi locally computes 〈z〉Bi = 〈x〉Bi ⊕ 〈y〉Bi .

• AND. 〈z〉B = 〈x〉B ∧ 〈y〉B: AND is evaluated using a Boolean MT that can be
pre-computed using our 2-MT (cf. §4.3.2) or N -MT (cf. §4.3.3) pre-computation
methods.

• LUTs. 〈z〉B = T [〈x〉B]: A LUT is evaluated using SP-LUT (cf. §4.4.2).

• MUX. For multiplexer operations we use vector MTs (cf. §4.4.1).

• Others. For standard functionalities we use the depth-optimized circuit construc-
tions summarized in §4.2.1.

4.5.1.3 Yao Sharing

In Yao’s garbled circuits protocol, the garbler encrypts a Boolean function to a garbled
circuit, which is evaluated by the evaluator (cf. §2.4.1). In the following, we assume
that P0 acts as garbler and P1 acts as evaluator and detail the Yao sharing assum-
ing a garbling scheme that uses the free-XOR [KS08], point-and-permute [MNPS04],
and half-gates [ZRE15] optimizations. Using these techniques, the garbler randomly
chooses a global κ-bit string R with R[0] = 1. For each wire W , the wire keys are
kW0 ∈R {0, 1}κ and kW1 = kW0 ⊕ R. The least significant bit kW0 [0] resp. kW1 [0] =
1 − kW0 [0] is called permutation bit. We point out that the Yao sharing can also be
instantiated with other garbling schemes.

Sharing Semantics. Intuitively, P0 holds for each wire W the two keys kW0 and kW1
and P1 holds one of these keys kWw without knowing the actual value of w. To simplify
presentation, we assume single bit values; for `-bit values each operation is performed
` times in parallel.

• Shared Values. A garbled circuits share 〈x〉Y of a value x is shared as 〈x〉Y0 = k0

and 〈x〉Y1 = kx = k0 ⊕ xR.

• Sharing. ShrY0 (x): P0 samples 〈x〉Y0 = k0 ∈R {0, 1}κ and sends kx = k0 ⊕ xR to
P1. ShrY1 (x): Both run C-OT1

κ where P0 acts as sender, inputs the correlation
function fR(x) = (x ⊕ R) and obtains (k0, k1 = k0 ⊕ R) with k0 ∈R {0, 1}κ and
P1 acts as receiver with choice bit x and obliviously obtains 〈x〉Y1 = kx.



Chapter 4 Communication-Efficient Generic Secure Two-Party Computation 94

• Reconstruction. RecYi (x): P1−i sends its permutation bit π = 〈x〉Y1−i[0] to Pi who
computes x = π ⊕ 〈x〉Yi [0].

Operations. Using Yao sharing, a Boolean circuit consisting of XOR and AND gates
is evaluated as follows:

• XOR. 〈z〉Y = 〈x〉Y ⊕ 〈y〉Y is evaluated using the free-XOR technique [KS08]: Pi
locally computes 〈z〉Yi = 〈x〉Yi ⊕ 〈y〉Yi .

• AND. 〈z〉Y = 〈x〉Y ∧〈y〉Y is evaluated as follows: P0 creates a garbled table using
Gb〈z〉Y0

(
〈x〉Y0 , 〈y〉Y0

)
, where Gb is a garbling function as defined in [BHKR13]. P0

sends the garbled table to P1, who decrypts it using the keys 〈x〉Y1 and 〈y〉Y1 .

• Others. For standard functionalities we use the size-optimized circuit construc-
tions summarized in §4.2.1.

4.5.2 Transformations

In this section, we detail methods to convert between different secure computation
sharings that we denote as s2d with s, d ∈ {A,B, Y } and s 6= d. We start by explain-
ing already existing or straight-forward conversions: Y 2B (§4.5.2.1), B2Y (§4.5.2.2),
A2Y (§4.5.2.3), and A2B (§4.5.2.4). We then detail our improved constructions for
B2A (§4.5.2.5) and Y 2A (§4.5.2.6). We summarize the complexities of the sharing,
reconstruction, and conversion operations in Table 4.4.

Comp. [# sym] Comm. [bits] # Msg

Y2B 0 0 0

Shr
A/B
∗ , Rec∗∗ 0 ` 1

ShrY0 ` `κ 1

B2A, Y2A 6` `κ+ (`2 + `)/2 2

B2Y, ShrY1 6` 2`κ 2

A2Y, A2B 12` 6`κ 2

Table 4.4: Total computation (# symmetric cryptographic operations), communica-
tion, and number of messages in online phase for sharing, reconstruction,
and conversion operations on `-bit values.

4.5.2.1 Yao to Boolean Sharing (Y2B)

Converting a Yao share 〈x〉Y to a Boolean share 〈x〉B is the easiest conversion and
comes essentially for free. The key insight is that the permutation bits of 〈x〉Y0 and 〈x〉Y1
already form a valid Boolean sharing of x. Thus, Pi locally sets 〈x〉Bi = Y 2B(〈x〉Yi ) =
〈x〉Yi [0].
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4.5.2.2 Boolean to Yao Sharing (B2Y)

Converting a Boolean share 〈x〉B to a Yao share 〈x〉Y is very similar to the ShrY1
operation (cf. §4.5.1.3): Assume that x is a single bit; for `-bit values, each operation
is done ` times in parallel. Let x0 = 〈x〉B0 and x1 = 〈x〉B1 . P0 samples 〈x〉Y0 = k0 ∈R
{0, 1}κ. Both parties run OT1

κ where P0 acts as sender with inputs (k0 ⊕ x0R; k0 ⊕
(1 − x0)R), whereas P1 acts as receiver with choice bit x1 and obliviously obtains
〈x〉Y1 = k0 ⊕ (x0 ⊕ x1)R = kx. Note that we also use this protocol for switching roles
in IPP [BK15].

4.5.2.3 Arithmetic to Yao Sharing (A2Y)

Converting an arithmetic share 〈x〉A to a Yao share 〈x〉Y was outlined in [HKS+10,
KSS13a, KSS14] and can be done by securely evaluating an addition circuit. More
precisely, the parties secret share their arithmetic shares x0 = 〈x〉A0 and x1 = 〈x〉A1 as
〈x0〉Y = ShrY0 (x0) and 〈x1〉Y = ShrY1 (x1) and compute 〈x〉Y = 〈x0〉Y + 〈x1〉Y .

4.5.2.4 Arithmetic to Boolean Sharing (A2B)

Converting an arithmetic share 〈x〉A to a Boolean share 〈x〉B can either be done using
a Boolean addition circuit (similar to the A2Y conversion described in §4.5.2.3) or by
using an arithmetic bit-extraction circuit [ST06, DFK+06, CH10, CS10]. As summa-
rized in §4.2.1, a Boolean addition circuit can either be instantiated as size-optimized
variant with O(`) size and depth, or as depth-optimized variant with O(` log2 `) size
and O(log2 `) depth (cf. §4.2.1.2). Since the Y2B conversion is for free, we simply
compute 〈x〉B = A2B(〈x〉A) = Y 2B(A2Y (〈x〉A)), as our evaluation in §4.6.2 shows
that Yao sharing is often more efficient for smaller circuits. In case a higher num-
ber of rounds can be tolerated, a lower communication can be achieved using the
size-optimized addition circuit (cf. §4.2.1.2) and N -MT (cf. §4.3.3).

4.5.2.5 Boolean to Arithmetic Sharing (B2A)

A simple solution to convert an `-bit Boolean share 〈x〉B into an arithmetic share 〈x〉A
is to evaluate a Boolean subtraction circuit where P0 inputs 〈x〉B0 and a random r ∈R
{0, 1}` and sets 〈x〉A0 = r and P1 inputs 〈x〉B1 and obtains 〈x〉A1 = x − r. However,
evaluating such a Boolean subtraction circuit would either have O(`) size and depth
or O(` log2 `) size and O(log2 `) depth (cf. §4.2.1).

To improve the performance of the conversion, a technique similar to the arithmetic
MT generation described in §4.4.3 can be used. The general idea is to perform an OT
for each bit where we obliviously transfer two values that are additively correlated by
a power of two. The receiver can obtain one of these values and, by summing them
up, the parties obtain a valid arithmetic share.
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More detailed, P0 acts as sender and P1 acts as receiver in the OT protocol. In the
i-th OT, P0 randomly chooses ri ∈R {0, 1}` and inputs (s0

i , s
1
i ) with s0

i =
(
1− 〈x〉B0 [i]

)
·

2i − ri and s1
i = 〈x〉B0 [i] · 2i − ri, whereas P1 inputs 〈x〉B1 [i] as choice bit and receives

s〈x〉B1 [i] =
(
〈x〉B0 [i]⊕ 〈x〉B1 [i]

)
· 2i − ri as output. Finally, P0 computes 〈x〉A0 =

∑`
i=1 ri

and P1 computes 〈x〉A1 =
∑`

i=1 s〈x〉B1 [i] =
∑`

i=1

(
〈x〉B0 [i]⊕ 〈x〉B1 [i]

)
· 2i −

∑`
i=1 ri =∑`

i=1 x[i] · 2i −
∑`

i=1 ri = x − 〈x〉A0 . Security and correctness are similar to the OT-
based multiplication protocol in §4.4.3.

Efficiency. Observe that, since we transfer one random element and the other as
correlation and only require the `− i least significant bits in the i-th OT, we can use
C-OT and the same trick outlined in §4.4.3, resulting in (on average) C-OT`

(`+1)/2 and
a constant number of rounds. In comparison, when evaluating a subtraction circuit
using Boolean sharing, the parties would need to evaluate O(` log2 `) R-OTs for a
circuit with depth O(log2 `) or 2` R-OTs for a circuit with depth `. Our conversion
method is also cheaper than converting to Yao shares (which already requires C-OT2`

κ )
and doing the subtraction within a garbled circuit.

4.5.2.6 Yao to Arithmetic Sharing (Y2A)

A conversion from a Yao share 〈x〉Y to an arithmetic share 〈x〉A was described in
[HKS+10, KSS13a, KSS14]: P0 randomly chooses r ∈R Z2` , performs ShrY0 (r), and
both parties evaluate a Boolean subtraction circuit with 〈d〉Y = 〈x〉Y − 〈r〉Y to obtain
their arithmetic shares as 〈x〉A0 = r and 〈x〉A1 = RecY1

(
〈d〉Y

)
.

In case the communication is the bottleneck, we compute 〈x〉A = Y 2A
(
〈x〉Y

)
=

B2A
(
Y 2B

(
〈x〉Y

))
. In case the round complexity is the bottleneck, we use the existing

solution of [HKS+10] based on a Boolean subtraction circuit.

4.6 Evaluation

In this section, we evaluate our improved secure computation protocols and circuit con-
structions. We first compare our depth-efficient circuit constructions from §4.2.1 with
their size-optimized counterparts (§4.6.1). We then evaluate our 2-MT and N -MT pre-
computation methods for GMW from §4.3.2 and §4.3.3 and compare their efficiency
with a state-of-the-art implementation of Yao’s garbled circuits protocol (§4.6.2). Next,
we evaluate our special-purpose protocols, outlined in §4.4, and compare them to an
evaluation using GMW (§4.6.3). Finally, we evaluate the efficiency of the transforma-
tions between secure computation technique representations from §4.5 (§4.6.4).

We stress that our results provide a reasonably fair comparison even though all
results are implementation dependent, since all protocols were implemented in the
same programming language, use the same underlying libraries and primitives, and
were implemented on a similar optimization level. The results of our experiments can
be summarized as follows:
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1. §4.6.1: For GMW, the depth-optimized circuit constructions perform better than
the size-optimized constructions, even in low-latency networks. However, the
size-optimized circuit constructions scale better when the number of parallel
operations is increased.

2. §4.6.2: The comparison between 2-MT and N -MT translates to a trade-off be-
tween computational power and bandwidth: 2-MT generates MTs three times
as fast as N -MT (4.1 million per second for 2-MT vs. 1.4 million per second
for N -MT, cf. Table 4.8) but N -MT requires only half of the communication of
2-MT (128 bit per party for 2-MT vs. 69 bit per party for N -MT, cf. Table 4.7)
and hence N -MT scales better to settings with high computational power and
low bandwidth.

3. §4.6.2: Yao’s garbled circuits has a more computation efficient setup phase than
GMW with 2-MT but requires more bandwidth per AND gate, making it slower
even in a Gigabit Ethernet network (cf. Table 4.7 and Figure 4.9). Yao’s garbled
circuits with inter party parallelization (IPP) requires the same bandwidth per
AND gate in the setup phase as 2-MT and performs similar to 2-MT in the WAN
setting but outperforms 2-MT by nearly factor 2× in the LAN setting. In the
online phase, Yao’s garbled circuits scales in the circuit size while GMW scales
mostly in the circuit depth and hence GMW becomes more efficient if the same
circuit is evaluated many times in parallel.

4. §4.6.3 and §4.6.4: Our special-purpose protocols can improve the overall run-
time for certain operations by up to factor 30× in some settings (cf. Figure 4.11)
and can be “mixed” with generic secure computation techniques to achieve up to
factor 4× better overall run-time for a single amortized evaluation of standard
operations (cf. §4.6.4).

Benchmark Settings. We implement all protocols in C++ and use our semi-honest
OT extension implementation from §3 where we process the OTs in blocks of 215.
For all protocols, we separate the run-times into the setup phase, where the parties
know the function but the inputs are not available, and the online phase, where the
inputs become available and the function is evaluated. For the GMW-style protocols,
the setup phase gives the time for performing the OTs and the online time gives the
time for evaluating the function. For Yao’s garbled circuits, we use state-of-the-art
optimizations (cf. §2.4.1) without pipelining and hence the setup phase consists of
the time for garbling and sending the circuit while the online time consists of the
time for evaluating the garbled circuit. We give separate timings when using the IPP
optimization for Yao’s garbled circuits, where each party garbles half of the circuit
and evaluates the other half, which reduces the overall time for secure computation
by nearly half (cf. §4.6.2). The base-OTs require 295 ms for the

(
2
1

)
OT extension

protocol and 584 ms for the
(
N
1

)
OT extension protocol but are omitted from the
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results, since they present a constant overhead and amortize with growing circuit size.
All operations are benchmarked on 32-bit inputs, except for the AES S-Box, which
operates on 8-bit inputs. Throughout this section, we assume that the inputs are pre-
shared and the outputs remain in a secret-shared form in order to focus on the actual
evaluation time of the operation. We instantiate the CRF in Yao’s garbled circuits and
GMW with 2-MT pre-computation using fixed-key AES (cf. §2.2.4) and in GMW with
N -MT pre-computation using AES-256 with key schedule (cf. §3.2.4). All run-times
are averaged over 10 executions and, except where explicitly stated, all benchmarks
are performed in a single-threaded fashion by bounding the process to one CPU core
using the Linux command taskset.

Benchmark Environment. For our evaluation, we assume two benchmark settings
summarized in Table 4.5: A LAN setting and a WAN setting. The LAN setting
consists of two Desktop PCs (Intel Haswell i7-4770K CPU with 4 cores and 16 GB
RAM) that are connected by Gigabit Ethernet. The WAN setting corresponds to a
conservative setting where the parties are run on an Amazon EC2 c3.xlarge instance
(2.5 GHz Intel Xeon E5-2680v2 CPU, 4 virtual CPUs and 7.5 GB RAM) located
in Frankfurt and a Google Compute n1-standard-4 instance (Intel Xeon E5v1-v4, 4
virtual CPUs and 15 GB RAM) located in central US with 28 MBit bandwidth and
a 112 ms ping latency. We argue that the WAN setting presents a practical MPC
setting, since the machines are controlled by two different cloud providers and located
on two different continents.

Name Server P0 Client P1 Bandwidth Latency

LAN Haswell i7-4770K CPU (4 cores) 876 MBit/s 0.2 ms

WAN
Amazon EC2 Google Compute

28 MBit/s 112 ms
c3.xlarge (4 vCPUs) n1-standard-4 (4 vCPUs)

Table 4.5: Summary of our benchmark environments, bandwidth was measured us-
ing iperf and latency was measured using ping.

4.6.1 Circuit Evaluation

In the following, we compare our depth-efficient circuit constructions to existing size-
efficient constructions when evaluated using GMW with our 2-MT pre-computation
method (cf. §4.3.2). We omit a comparison using N -MT pre-computation (cf. §4.3.3),
since only the setup times would vary compared to 2-MT while the overall the results
would be similar. We evaluate the addition (ADD), multiplication (MUL), greater-
than (CMP) and S-Box (S-Box) from §4.2.1. We benchmark the circuits in two settings:
A sequential execution setting, where the operation is evaluated 1 000 times sequen-
tially, and a parallel execution setting, where the operation is evaluated 1 000 times
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in parallel. An overview of the size and depth of the circuits is given in Table 4.6 and
the benchmark results are given in Figure 4.8.

From the results, we can observe that the depth-efficient circuits (D) have a lower
total run-time than the size-efficient circuits (S) in both sequential settings and the
parallel WAN setting, even though they have up to factor 8× more AND gates. The
reason for the better overall run-time of the depth-efficient circuits is that the online
time dominates the setup time, due to the latency. In the parallel LAN setting, on
the other hand, the setup time is much higher than the online time and hence the
size-efficient circuits have a better overall run-time. Clearly, when further increasing
the number of parallel operations, the size-efficient circuits also would perform better
than the depth-efficient circuits in the WAN setting.

Circuit ADD MUL CMP S-Box
Version S D S D S D S D

Size 31 272 1 489 1 730 32 89 32 34
Depth 31 11 32 12 32 6 6 4

Table 4.6: Circuit size and depth for the size- (S) and depth-optimized (D) circuit
constructions outlined in §4.2.1 on 32-bit inputs (8-bit for the AES S-Box).

4.6.2 Evaluation of GMW vs. Yao

In the following, we compare the efficiency of Yao’s garbled circuits protocol without
and with IPP to the GMW protocol using the 2-MT and N -MT pre-computation pro-
tocols. We first conceptually compare the protocols by separating the complexities into
computation, communication, and interaction rounds (§4.6.2.1). We then analyze the
potential performance of the protocols by running them on one machine with a single
thread per party, which allows us to estimate the run-time of the protocols in different
environments (§4.6.2.2). Finally, we evaluate the performance of the protocols in our
benchmark settings and compare our estimations with the actual run-times (§4.6.2.3).
The conceptual comparison can be found in Table 4.7, the potential performance anal-
ysis is given in Table 4.8, and the empirical evaluations in our benchmark settings are
given in Figure 4.9 and Table 4.9.

4.6.2.1 Conceptual Comparison

We conceptually compare Yao’s garbled circuits without and with IPP and GMW
using 2-MT and N -MT pre-computation in Table 4.7 and graphically arrange them
based on their local computation and communication complexities when evaluating
the AES circuit in Figure 4.1 on page 63. From the asymptotic complexities, we can
observe that, on average, Yao’s garbled circuits requires half of the fixed-key AES-128
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Figure 4.8: Setup time (black) and online time (white) per operation of size (S) and
depth (D) efficient circuit constructions (§4.2) using the GMW protocol
with 2-MT generation (§4.3.2) in the LAN (a,b) and WAN setting (c,d)
amortized over 1 000 sequential operations (a,c) and over 1 000 parallel
operations (b,d).

evaluations of GMW with 2-MT pre-computation. GMW with 2-MT pre-computation
is again much faster than GMW with N -MT pre-computation, which requires a similar
number of more expensive evaluations of AES-256 with key schedule (cf. §3.2.4.2). In
terms of communication, Yao’s garbled circuits without and with IPP has the same to-
tal communication as GMW with 2-MT pre-computation and both have roughly twice
the communication of GMW with N -MT pre-computation. The number of interaction
rounds for Yao’s garbled circuits is constant, independently of the function, while the
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GMW protocol requires D(C) communication rounds in the online phase, where D(C)
is the multiplicative depth of the circuit C. Compared to the previous state-of-the-
art GMW implementation of [CHK+12] (cf. §2.4 on page 22), our 2-MT and N -MT
pre-computation methods increase the computation by at least one additional AES
evaluation but reduce the communication by factor 2× and 4×, respectively.

Complexity
Yao Yao-IPP 2-MT N-MT

P0 P1 P0 & P1 P0 & P1 P0 & P1

Computation 4 AES 2 AES 3 AES 6 AES 0.75 AES + 4.25 AES256

Data Sent [Bytes] 258 0 129 129 69

Rounds O(1) O(1) D(C) D(C)

Table 4.7: Asymptotic complexities per AND gate for Yao’s garbled circuits without
and with IPP (cf. §2.4.1.2) and the GMW protocol using 2-MT (cf. §4.3.2)
and N -MT pre-computation (cf. §4.3.3) given separately for both parties.
AES refers to an evaluation of fixed-key AES-128 and AES256 refers to AES-
256 with key-schedule (cf. §3.2.4.2). Note that we count the communication
for Yao’s garbled circuits including the permutation bit of the point-and-
permute technique (cf. §2.4.1.2) which is added to each garbled table entry.

4.6.2.2 Potential Performance

To obtain more accurate performance estimations of the protocols, we run the protocols
on one machine in our LAN setting with a single thread, which resembles an idealized
network with 72.3 GBit/s bandwidth and 0.01 ms ping latency. We then use these
performance numbers to estimate the run-times in different benchmark scenarios. We
evaluate 8 192 parallel AES circuits with size-optimized S-Box circuits (cf. §4.2.1.12),
which have a total of 42 million AND gates and a depth of 60. Note that we evaluate
functionalities multiple times in parallel instead of sequential to keep the circuit depth
and hence the communication rounds for GMW constant. A sequential instead of
parallel circuit evaluation would increase the online time of GMW linear in the depth
overhead (cf. §4.6.1) but would not change the setup run-time, which is independent
of the circuit structure. We give the resulting run-times, the number of AND gates
per second for the setup and online phase, and the generated communication overhead
in the setup phase in Table 4.8.

Protocol Run-Times. Our first observation from the local run-times, is that the
total run-time for 2-MT is lower than that for Yao’s garbled circuits without IPP, even
though each party has more computational workload in 2-MT. This can be explained
by our load balancing optimization (cf. §4.3.1), which allows the parties to compute
fully in parallel to each other while for Yao’s garbled circuits, the evaluator has to wait
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Complexity
Yao Yao-IPP 2-MT N-MT

P0 P1 P0 & P1 P0 & P1 P0 & P1

Setup Time [s] 9.04 0 4.66 10.16 30.14

Online Time [s] 0 3.88 1.87 0.04

Total Time [s] 12.92 6.53 10.20 30.18

Setup [ANDs / s] 4.6 · 106 0 9.0 · 106 4.1 · 106 1.4 · 106

Setup Data Sent [MBit / s] 1 133 0 1 099 504 89

Online [ANDs / s] 0 10.8 · 106 22.4 · 106 1 049 · 106

Table 4.8: Run-time for a local evaluation of 8 192 parallel AES circuits with 42 million
AND gates for Yao’s garbled circuits without and with IPP (cf. §2.4.1.2)
and the GMW protocol using 2-MT (cf. §4.3.2) and N -MT pre-computation
(cf. §4.3.3) with a single thread per party.

for the garbler to finish the circuit garbling.3 This is improved on by Yao with IPP,
where both parties evenly distribute and perform the workload in parallel, reducing
the total run-time by nearly factor 2× compared to Yao without IPP. Yao with IPP
overall performs better than 2-MT, due to its efficient setup phase, which is more than
factor 2× better than the setup phase of 2-MT. N -MT is the slowest protocol, with
a factor 3× more total run-time than 2-MT and nearly factor 5× more run-time than
Yao with IPP. The high run-time of N -MT can be explained by the expensive CRF
instantiation using AES-256 with key schedule (cf. §3.2.4.2). However, both 2-MT and
N -MT have a very fast online run-time, compared to Yao’s garbled circuits, since the
online phase consists only of efficient one-time pad operations on single bits and the
latency is low due to the execution on the same machine. In contrast, in the online
phase of Yao’s garbled circuits, the evaluator has to process symmetric keys using more
expensive symmetric cryptographic operations.

Performance Estimations. Given the run-times on the same machine, we can
estimate the performance of each protocol in different settings. We assume that the
computation time on all machines in our benchmark settings is similar and that a
multi-threaded evaluation achieves perfect parallelization.
As a first observation, note that Yao’s garbled circuits without and with IPP generates
more than one GBit per second of data that needs to be sent over the network. Hence,
we estimate that both protocols achieve lower performance in all of our benchmark
environments, where the highest bandwidth is 876 MBit/s for the LAN setting. Using
a multi-threaded evaluation of Yao’s garbled circuits would decrease the online time

3Note that the total run-time for Yao’s garbled circuits could be improved using a pipelined gar-
bling and evaluation approach [HEKM11, HS13], which we omitted due to our use of the pre-
computation model.



103 4.6 Evaluation

but not the setup time since a single thread is sufficient to fully utilize the bandwidth
in all settings.
2-MT generates data at a rate of 504 MBit/s in the setup phase and a two-threaded
evaluation of the setup phase would hence improve performance in the LAN setting
but not in the WAN setting. However, 2-MT can at most achieve the same setup time
as Yao’s garbled circuits with IPP, since both protocols have the same communication
overhead.
N -MT achieves the lowest performance in the setup phase but has the highest potential
for parallelization. Assuming perfect parallelization,N -MT would require 10 threads to
fully utilize the bandwidth in the LAN setting, and would then achieve nearly twice the
performance of Yao with IPP in the setup phase, corresponding to its communication
advantage. In the WAN setting, a single thread for N -MT would suffice to fully utilize
the bandwidth. Furthermore, note that if the available bandwidth in the execution
environment is low, which is the case for our WAN setting, our N -MT protocol would
perform best among all protocols even when using only a single thread. Based on the
performance numbers, we estimate that N -MT would perform best if the bandwidth is
lower than 170 MBit/s, at which both Yao’s garbled circuits and 2-MT would process
the same number of AND gates per second in the setup phase as N -MT.

4.6.2.3 Performance Evaluation

We verify our performance estimations of the protocols by evaluating the AES circuit
using a single-threaded evaluation in our LAN and WAN settings and a multi-threaded
evaluation in our LAN setting. We omitted the multi-threaded evaluation in the WAN
setting, since the run-times did not change compared to a single-threaded evaluation.
We simulated a multi-threaded evaluation of Yao’s garbled circuits by running multiple
program executions on the respective fraction of circuits. The single-threaded results
in the LAN and WAN setting for 20 (= 1) to 213 (= 8 192) parallel AES evaluations
are given in Figure 4.9 while the multi-threaded run-times for 213 parallel AES circuits
are given in Table 4.9.

Single-Threaded Run-Times (Figure 4.9). The single-threaded evaluations con-
firm our estimations: The setup time for both Yao’s garbled circuits without and with
IPP increases in the LAN setting by factor ∼ 1.3×, corresponding to the decrease in
available bandwidth, while the online time for both remains similar. On the other
hand, the setup time for 2-MT and N -MT increases only by factor ∼ 1.06× but both
their online times increase by factor 5×, which is due to the added latency. These
trends are even more visible in the WAN setting, where the setup time of both Yao’s
garbled circuits protocols is increased by factor 30× and their online times are in-
creased by factor 3× while the setup times of 2-MT and N -MT is increased by factor
20× and 3×, respectively, but their online times are increased by factor 22× due to
the higher latency.
Regarding the online time, we can observe that in both, the LAN and WAN settings,
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Figure 4.9: Single-threaded setup and online time when evaluating 20 to 213 parallel
AES circuits (5 120 AND gates per AES circuit) using Yao’s garbled circuits
protocol without and with IPP (§2.4.1.2) and the GMW protocol with 2-
MT (§4.3.2) and N -MT generation (§4.3.3) in the LAN (a,b) and WAN
(c,d) setting for increased number of parallel encryptions. The time in {}
gives the run-time for performing 213 parallel encryptions.

GMW outperforms Yao’s garbled circuits with increasing number of parallel encryp-
tions. This can be explained by the high impact of the latency on GMW, which
presents a constant overhead but amortizes with increasing number of parallel circuits
while Yao’s garbled circuits needs to perform work linear in the number of gates. In
the WAN setting, the break-even point in the online phase happens much later than
in the LAN setting, due to the higher latency.
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Protocol 1 Thread 2 Threads 3 Threads 4 Threads Imp. 4 7→ 1

Setup Time

Yao 12.07 11.73 11.72 11.72 1.03×
Yao-IPP 6.13 5.96 5.94 5.94 1.03×
2-MT 10.87 5.95 5.77 5.77 1.88×
N-MT 30.40 15.23 10.15 7.79 3.90×
Online Time

Yao 4.03 2.11 1.39 1.05 3.84×
Yao-IPP 2.10 1.12 0.80 0.67 3.13×
2-MT & N-MT 0.16 0.16 0.16 0.16 1.00×

Table 4.9: Setup and online time for an increasing number of threads and time im-
provement of 4 threads over 1 thread when evaluating the AES circuit 213

(= 8 192) times in parallel in the LAN setting.

Multi-Threaded Run-Times (Table 4.9). We increase the computational power
in the LAN setting by increasing the number of threads from one to four and give
the setup and online time for evaluating the AES circuit 213 times in parallel. The
results are also in line with our expectations: The setup time for Yao’s garbled circuits
hardly decreases with multiple threads, 2-MT achieves a speed-up of nearly factor 2×,
and N -MT achieves nearly linear speed-up in the number of threads. For the online
time, both Yao’s garbled circuits with and without IPP achieve a speed-up of more
than factor 3×, since the online phase only involves local computation. The online
phase of the GMW protocol does not improve when using multiple threads, since the
implementation is single-threaded as the main bottleneck in the GMW online phase is
the network latency.

4.6.3 Evaluation of Special-Purpose Protocols

We introduced three special-purpose protocols that can be used to improve the per-
formance for certain operations: Vector MTs (cf. §4.4.1), SP-LUT (cf. §4.4.2.3), and
our OT-based multiplication protocol (cf. §4.4.3). In this section, we empirically eval-
uate the performance gains of these protocols on two example functionalities: The
AES circuit and the integer multiplication circuit. We give the resulting run-times
in Figure 4.10 and Figure 4.11.

Vector MTs (§4.4.1). Vector MTs can be used together with GMW and reduce the
number of AND gates whenever the same wire is used in multiple AND gates. We apply
our vector MT optimization to several circuits described in §4.2.1 and give the resulting
efficiency gains in Table 4.10. The best improvement can be seen for the multiplexer
circuit, where for `-bit inputs, the number of AND gates is reduced by factor `×.
Other than the multiplexer, the vector MT optimization can be applied to the size-
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Circuit Size Regular Size Vector MT Improvement

Ladner-Fischer ADD 272 192 1.42×
Ripple-Carry Network MUL 1 489 993 1.50×
Carry Save Network MUL 1 730 1 234 1.40×
MUX 32 1 32.00×
Depth-Optimized AES S-Box 34 23 1.48×

Table 4.10: Regular and vector MT optimized circuit sizes for circuits from §4.2.1 with
32-bit inputs (8-bit for the AES S-Box).

and depth-optimized multipliers, the Ladner-Fischer adder, and the AES S-Box, where
it reduces the number of AND gates by factor ∼ 1.4×. We empirically evaluate and
show the performance gains for GMW with 2-MT using the S-Box circuit within the
AES application in Figure 4.10 and for the multiplication circuit in Figure 4.11.

From the empirical results we can observe that the setup run-time for 2-MT with
vector MTs improves roughly linear with the reduced number of AND gates. The
online time in the LAN setting increases when using vector MTs, since our vector
MT implementation processes bits individually, whereas the standard 2-MT generation
processes multiple bits in parallel. Also note that the vector MT optimization improves
the online time of the AES circuit in the WAN setting, since we optimize and use the
depth-efficient S-Box with depth 4, whereas the 2-MT routine uses the size-efficient
S-Box with depth 6 (cf. §4.2.1.12), which scaled better for larger number of parallel
encryptions.

SP-LUT (§4.4.2.3). In contrast to the previous experiments, our SP-LUT protocol
represents the functionality as a network of multi-input lookup tables (LUTs) that are
evaluated securely. A functionality that can be expressed easily as such a network of
LUTs is the AES S-Box, which has 8 input and output bits. We represent the AES
circuit as a LUT network by building a 8-input to 8-output LUT for the AES S-Box,
which we evaluate securely using our SP-LUT protocol. The remaining operations
in AES can be done via local XOR operations or remapping wires and hence can
be done locally by each party. Hence, for each S-Box, our SP-LUT protocol needs to
perform 256 CRF evaluations, instantiated by AES-256 with key-schedule (cf. §3.2.4.2),
send 255 bits in the setup phase and 2 048 bits in the online phase, and perform 11
communication rounds in the online phase (cf. Table 4.3 on page 84). We compare
our SP-LUT protocol to an evaluation using Yao’s garbled circuits with IPP and GMW
with 2-MT with and without vector MTs in the LAN and WAN setting. The results
can be found in Figure 4.10.

From our results we can observe that our SP-LUT protocol performs worse than all
other protocols in the LAN setting, which is due to its high computation overhead. In
the WAN setting, however, our SP-LUT protocol is the overall fastest protocol due to
its low communication. In contrast to the other protocols, our SP-LUT protocol has a
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fast setup phase but an inefficient online phase, which is due to its high communication
overhead (per S-Box 255 bits in the setup phase and 2 048 bit in the online phase).

0.001

0.01

0.1

1

10

100

1 000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
un

−
T

im
e 

(s
)

# Parallel Encryptions (2x)

Yao−IPP
2−MT

         2−MT−Vec
SP−LUT

{  6.1 s}
{10.9 s}
{  8.2 s}
{27.3 s}

(a) Setup Time AES LAN

0.001

0.01

0.1

1

10

100

1 000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
un

−
T

im
e 

(s
)

# Parallel Encryptions (2x)

Yao−IPP
2−MT

         2−MT−Vec
SP−LUT

{2.1 s}
{0.2 s}
{0.6 s}
{3.9 s}

(b) Online Time AES LAN

0.001

0.01

0.1

1

10

100

1 000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
un

−
T

im
e 

(s
)

# Parallel Encryptions (2x)

Yao−IPP
2−MT

         2−MT−Vec
SP−LUT

{195.4 s}
{193.6 s}
{139.3 s}
{  18.6 s}

(c) Setup Time AES WAN

0.001

0.01

0.1

1

10

100

1 000

0 1 2 3 4 5 6 7 8 9 10 11 12 13

R
un

−
T

im
e 

(s
)

# Parallel Encryptions (2x)

Yao−IPP
2−MT

         2−MT−Vec
SP−LUT

{  6.7 s}
{  4.5 s}
{  3.6 s}
{65.8 s}

(d) Online Time AES WAN

Figure 4.10: Setup and online run-time for secure evaluation of the AES circuit using
Yao’s garbled circuits with IPP (§2.4.1.2), the GMW protocol with 2-
MT (§4.3.2) with and without our vector MT optimization (§4.4.1) and
our special-purpose SP-LUT protocol (§4.4.2.3) in the LAN (a,b) and
WAN (c,d) setting. The time in {} gives the run-time for performing 213

parallel encryptions.

OT-Based Multiplication (§4.4.3). We evaluate and compare the efficiency of the
Boolean circuit-based integer multiplication with our special-purpose OT-based integer
multiplication protocol. We benchmark Yao’s garbled circuits and GMW with 2-MT
pre-computation with and without vector MTs using the size-optimized Boolean circuit
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Figure 4.11: Run-time for secure evaluation of the integer multiplication circuit using
Yao’s garbled circuits with IPP (§2.4.1.2), the GMW protocol with 2-
MT (§4.3.2) with and without our vector MT optimization (§4.4.1) and
our special-purpose protocols OT-based multiplication protocol (§4.4.3) in
the LAN (a,b) and WAN (c,d) setting. The time in {} gives the run-time
for performing 215 parallel multiplications.

for integer multiplication with 1 489 AND gates and a depth of 32 (cf. §4.2.1.5) and
perform up to 215 (= 32 768) parallel multiplications. For our OT-based multiplication
protocol, we perform up to 219 (= 524 288) parallel multiplications to explicitly show
the amortization. The results can be found in Figure 4.11.

From the results we can observe that our OT-based multiplication protocol out-
performs all other Boolean circuit-based protocols except for the online time of Yao’s
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garbled circuits in the WAN setting when evaluating only few parallel multiplications.
In this case, Yao’s garbled circuits protocol performs better than our OT-based multi-
plication protocol, since it has one communication round less. For a larger number of
multiplications, the OT-based multiplication protocol outperforms the other protocols
by factor 20× to 30×.

4.6.4 Evaluation of Mixed Protocols

An important observation of the previous evaluations is that no protocol consistently
performed best for all operations and benchmark settings. To combine the benefits
of multiple protocols and achieve consistently good performance over multiple bench-
mark settings, we categorized our protocols into different representations (cf. §4.5.1):
Arithmetic (A), Boolean (B), and Yao’s garbled circuits-based (Y), and outlined pro-
tocols for transforming between them (cf. §4.5). In this section, we benchmark three
of the six protocols for transforming between the different representations: Arithmetic
to Yao (A2Y), Boolean to Arithmetic (B2A), and Boolean to Yao (B2Y). The Yao to
Boolean (Y2B) transformation only involves local operations and hence is for free while
the remaining two protocols can be obtained by concatenating two transformations.

Arithmetic
(§4.5.1.1)

Boolean
(§4.5.1.2)

Yao
(§4.5.1.3)

A2Y
Phase LAN WAN Comm.

S 0.021 0.587 2 019

OS 0.209 102.871 1 576
OP 0.017 0.454 1 028

B2A
Phase LAN WAN Comm

S 0.006 0.146 287

OS 0.205 102.384 515
OP 0.005 0.119 260

Y 2B (for free)

B2Y
Phase LAN WAN Comm

S 0.007 0.224 515

OS 0.204 103.248 1 055
OP 0.011 0.344 1 028

Figure 4.12: Setup (S) and online (OS, OP ) time (in ms) and communication (in Bytes)
for transformations from one share representation to another in the LAN
and WAN settings amortized over 1 000 sequential (OS) and 1 000 parallel
operations (OP ).

From the results, we can observe that the transformations all have similar secure eval-
uation costs. Furthermore, some operations can be performed more efficiently by trans-
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forming to another representation, performing the operation in this representation, and
transforming back than by performing the operation in the current representation. For
instance, a single amortized sequential multiplication in Yao’s garbled circuits with IPP
requires 1.443 ms in the setup phase and 0.241 ms in the online phase in the LAN set-
ting. On the other hand, a transformation from Yao’s garbled circuits to the arithmetic
representation, a multiplication in the arithmetic representation, and the transforma-
tion back to Yao’s garbled circuits requires 0.006 + 0.020 + 0.021 = 0.047 ms in the
setup (factor 30× improvement) and 0.205 + 0.117 + 0.209 = 0.531 ms in the online
phase (factor 2× decrease). Overall, this reduces the total run-time by factor 3× from
1.684 ms for Yao’s garbled circuits to 0.578 ms for the full round of transformations.

4.7 Applications

We evaluate the performance of our improved protocols and compare them to state-
of-the-art Yao’s garbled circuits on two typical applications in secure computation:
private set intersection (§4.7.1) and biometric identification (§4.7.2).

4.7.1 Private Set Intersection (PSI)

PSI allows two parties to identify the intersection of their sets X and Y without re-
vealing any element that is not in the intersection. An efficient Boolean circuit that
computes the PSI functionality is the sort-compare-shuffle (SCS) circuit that was in-
troduced in [HEK12] (cf. §5.3.1 for more details on the SCS circuit). The circuit com-
putes the intersection by fist sorting the elements, then comparing adjacent elements,
and finally shuffling the outputs to hide information that could be obtained from the
position of an intersecting element. We build two versions of the SCS circuit: A size-
optimized version for Yao’s garbled circuits that uses the sequential comparison circuit
and has ∼ 3σn log2(2n) AND gates and depth ∼ σ log2 n and a depth-optimized ver-
sion for GMW which uses the divide-and-conquer comparison circuit and vector MTs
and has approximately the same size but depth ∼ log2(σ) log2(n) (cf. §4.2.1.7 for the
comparison circuits). We give the concrete circuit sizes and depths in Table 4.11. We
benchmark and compare state-of-the-art Yao’s garbled circuits with IPP (cf. §2.4.1.2)
to GMW with our 2-MT (§4.3.2) and N -MT (§4.3.3) pre-computation methods using
a single thread. We fix the bit-length of elements to σ = 32 and increase the set sizes
in steps of powers of two from 21 (= 1) to 215 (= 32 768). For Yao’s garbled circuits,
we apply IPP by switching the roles after the sort and before the compare and shuffle
sub-circuits. By switching the roles, we add two additional communication rounds for
Yao’s garbled circuits but achieve nearly factor 2× better run-times due to the load
balancing. We give the resulting setup and online run-times in the LAN and WAN
setting in Figure 4.13.

The results for the PSI circuit are similar to the results for the AES circuit in §4.6.2.3:
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Set Size 21 23 25 27 29 211 213 215

Size Yao 446 3 320 19 424 102 272 507 392 2 422 784 11 264 000 51 347 456

Size GMW 519 3 625 20 417 105 057 513 505 2 426 849 11 198 433 50 757 601

Depth GMW 24 42 60 78 96 114 132 150

Table 4.11: Size in ANDs and depth of the SCS PSI circuit of [HEK12] in a size-
optimized version for Yao’s garbled circuits and a depth-optimized version
for GMW.

While Yao’s garbled circuits performs best overall in both settings for smaller sets,
GMW achieves better overall performance for larger sets.
In the LAN setting, the online phase of GMW scales better with increasing set sizes,
since the circuit depth of log2(σ) log2(n) is comparably high for small values but scales
only with log2(n) while the online phase of Yao’s garbled circuits scales directly in the
circuit size, i.e., with O(n log2 n). For larger set sizes, we can observe that the online
phase of GMW also scales similar to Yao’s garbled circuits, due to the amortization of
the circuit depth by the local computation.
In the WAN setting, the setup and online phase of N -MT scale better with increasing
circuit sizes than Yao’s garbled circuits, due to its smaller communication overhead in
the setup phase and latency dependence in the online phase. Interestingly, the setup
phase of N -MT in the WAN setting first scales rather poorly up to set sizes of 26, then
scales fairly well until the set sizes reach 29, and from then scales similar to the other
protocols. This can be explained by the block-wise evaluation of our OT extension
implementation: Until set sizes of 26, all OTs are evaluated in a single block. From set
sizes 26 to 29, multiple blocks are evaluated in parallel, achieving better throughput
and bandwidth utilization. After set sizes of 29, the bandwidth is saturated, resulting
again in a scaling with O(n log2 n).

4.7.2 Biometric Matching

In the privacy-preserving biometric matching application, one party wants to deter-
mine whether its biometric sample matches one of several biometric samples that are
stored in a database held by another party. Several protocols for privacy-preserving
biometric matching have been proposed, e.g., for face-recognition [EFG+09, HKS+10]
or fingerprint-matching [BG11, HMEK11]. A fundamental building block of these
protocols is to compute the squared Euclidean distance between the query and all bio-
metric samples in the database and afterwards determine the minimum value among
these distances. For our experiments we use similar parameters as [KSS14]: Each
sample has d = 4 dimensions and each element is 32-bit long, but we increase the
database size in powers of two from n = 20 (= 1) to n = 213 (= 8 192) entries. More

specifically, we securely compute min
(∑d

i=1(Si,1 − Ci)2, · · · ,
∑d

i=1(Si,n − Ci)2
)

where

P0 inputs the database Si,j and P1 inputs the query Ci (cf. [KSS14]). We use two sets
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Figure 4.13: Setup and online time for evaluating the PSI circuit of [HEK12] using
Yao’s garbled circuits protocol with IPP (cf. §2.4.1.2) and the GMW pro-
tocol with 2-MT (cf. §4.3.2) and N -MT generation (cf. §4.3.3) in the LAN
(a,b) and WAN (c,d) setting for increasing set sizes. The time in {} gives
the run-time for processing 215 elements.

of protocols to evaluate the biometric matching circuit. In the first set, we compute the
squared Euclidean distance and minimum using Yao’s garbled circuits protocol with
IPP and the GMW protocol with 2-MT and N -MT pre-computation. In the second
set, we compute the squared Euclidean distance using our OT-based multiplication
protocol (cf. §4.4.3) and then use our share transformation protocols (cf. §4.5.2) to
evaluate the minimum using Yao’s garbled circuits or GMW with 2-MT and N -MT.
For Yao’s garbled circuits, we use IPP to evaluate and compute the minimum of two
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halves of the server’s database and then switch roles to identify the smaller of both
minimums, which adds two communication rounds. We give the resulting circuit sizes
of the biometric matching circuit in Table 4.12 and the setup and online run-times for
the LAN and WAN setting in Figure 4.14.

Database Size 21 23 25 27 29 211 213

Pure Instantiation

Size Yao 13 674 54 888 219 744 879 168 3 516 864 14 067 648 56 270 784

Size GMW 10 188 41 022 164 358 657 702 2 631 078 10 524 582 42 098 598

Depth GMW 47 61 75 89 103 117 131

Mixed-Protocol

Size Yao 126 696 2 976 12 096 48 576 194 496 778 176

Size GMW 90 630 2 790 11 430 45 990 184 230 737 190

Depth GMW 15 29 43 57 71 85 99

Table 4.12: Size and depth of the biometric matching circuit in a size-optimized version
for Yao’s garbled circuits and a depth-optimized version for GMW as pure
instantiation and mixed with our OT-based multiplication (cf. §4.4.3).

The results for the biometric matching application show that mixed-protocols always
outperform the pure protocols, both in the setup phase and for most of the protocols
also in the online phase. The only exception is the WAN setting, where the online phase
of Yao’s garbled circuits is more efficient for less than 26 elements in the database, which
is due to the fewer communication rounds (5 rounds for pure Yao IPP and 8 rounds
for Yao IPP with OT-based multiplication). The run-times for the pure protocols are
similar to the run-times for the AES (cf. §4.6.2.3) and PSI (cf. §4.7.1) examples: Yao’s
garbled circuits performs better than GMW for small sizes while GMW performs better
for larger sizes. The results for the mixed-protocols, on the other hand, differ from this
pattern, since mixed-protocols that use Yao’s garbled circuits always perform better
than mixed-protocols that use GMW. This can be explained by the small Boolean
circuit sizes in the mixed-protocols, which only go as high as 800 000 AND gates while
the other circuit sizes go as high as 42 to 56 million AND gates (cf. Table 4.12). If
the server’s database would grow larger, we would see the same pattern also for the
mixed-protocols.
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Figure 4.14: Setup and online time for evaluating the biometric matching circuit using
Yao’s garbled circuits protocol with IPP (cf. §2.4.1.2) and the GMW pro-
tocol with 2-MT (cf. §4.3.2) and N -MT generation (cf. §4.3.3) in a pure
instantiation or as a mixed-protocol using our arithmetic OT-based mul-
tiplication protocol (§4.4.3) in the LAN (a,b) and WAN (c,d) setting for
increasing database size. The time in {} gives the run-time for processing
213 records using the {pure/mixed} protocols.



5 Faster Private Set Intersection

Private set intersection (PSI) is a prominent application in secure computation, for
which several protocols based on different techniques have been proposed. However,
previous protocols are two to three orders of magnitude slower than insecure solutions
that are currently used in practice. In addition, existing protocols were often evaluated
and compared in biased settings, making it hard to identify which protocol to use in
a particular setting. In this chapter, we review, categorize, optimize, and compare
existing PSI protocols. Furthermore, we propose a novel PSI protocol that is based
on our OT extension improvements from §3 and reduces the overhead over insecure
practical solutions to less than a single order of magnitude.

Remark. Parts of this chapter have been published in [PSZ14, PSSZ15] and have
been combined into a journal paper that is currently in submission [PSZ16]. The
novel protocol is the result of extensive research collaborations of the authors from TU
Darmstadt with Benny Pinkas (Bar-Ilan University, Israel) and Gil Segev (The Hebrew
University of Jerusalem, Israel). The implementations are available online at http:

//github.com/encryptogroup/PSI and http://github.com/encryptogroup/ABY.

5.1 Motivation

Private set intersection (PSI) allows two parties P0 and P1 holding sets X and Y
with sizes |X| = n0 and |Y | = n1, respectively, to identify the intersection X ∩ Y
without revealing any information about elements that are not in the intersection. The
basic PSI functionality can be used in applications where two parties want to perform
JOIN operations over database tables that they must keep private, e.g., private lists
of preferences, properties, or personal records of clients or patients. PSI was used in
several research projects for privacy-preserving computation of functionalities such as
relationship path discovery in social networks [MPGP09], botnet detection [NMH+10],
testing of fully-sequenced human genomes [BBC+11], proximity testing [NTL+11], or
cheater detection in online games [BHLB11]. Moreover, the PSI functionality has
several practical applications, of which we list three in the following:

Measuring Ad Conversion Rates. Online advertising, which is a huge business,
typically measures the success of ad campaigns by measuring the success of converting
viewers into customers. A popular method of measuring ad performance is to compare
the list of people who have seen an ad with those who have completed a transaction.

115
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These lists are held by the advertiser (say, Google or Facebook), and by merchants,
respectively. It is often possible to identify users on both ends, using identifiers such
as credit card numbers, email addresses, etc. A simple solution, which ignores privacy,
is for one side to disclose its list of customers to the other side, which then computes
the necessary statistics. Another option is to run a PSI protocol between the two
parties. (The protocol should probably be a variant of PSI, e.g. compute total revenues
from customers who have seen an ad. Such protocols can be derived from basic PSI
protocols.) In fact, Facebook is running a service of this type with Datalogix, Epsilon
and Acxiom, companies which have transaction records for a large part of loyalty card
holders in the US. According to reports1, the computation is done using a variant of
the insecure naive hashing PSI protocol, where the parties hash their elements and
compare the hashes. The ad conversion rate application typically needs to perform
PSI on large sets.

Security Incident Information Sharing. Security incident handlers can benefit
from information sharing since it provides them with a global view during incidents.
However, incident data is often sensitive and potentially embarrassing. The shared
information might reveal information about the business of the company that provided
it, or of its customers. Therefore, information is typically shared rather sparsely and
protected using legal agreements. Automated large scale sharing will improve security,
and there is in fact work to that end, such as the IETF Managed Incident Lightweight
Exchange (MILE) effort. Many computations that are applied to the shared data
compute the intersection and its variants. Applying PSI to perform these computations
can simplify the legal issues of information sharing. Efficient PSI protocols will enable
it to be run often and at large scale.

Private Contact Discovery. When a new user registers to a service it is often
essential to identify current registered users who are also contacts of the new user.
This operation can be done by simply revealing the user’s contact list to the service,
but can also be done in a privacy preserving manner by running a PSI protocol between
the user’s contact list and the registered users of the service. This latter approach is
used by the TextSecure and Secret applications, but for performance reasons they
use the insecure naive hashing PSI protocol.2 In these cases each user has a small
number of records n1, e.g., n1 = 256, whereas the service has millions of registered
users (in our experiments we use n0 = 16 777 216). It therefore holds that n0 � n1.
In our best PSI protocol, the client needs only O(n1 log n0) memory, O(n1) symmetric
cryptographic operations and O(n0) cheap hash table lookups, and the communication
is O(n0 log n0). (The communication overhead is indeed high as it depends on n0, but
this seems inevitable if brute force searches are to be prevented.)

1See, e.g., https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-w

hats-actually-getting-shared-and-how-you-can-opt.
2See https://whispersystems.org/blog/contact-discovery/ and https://medium.com/@davi

dbyttow/demystifying-secret-12ab82fda29f, respectively.

https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-whats-actually-getting-shared-and-how-you-can-opt
https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-whats-actually-getting-shared-and-how-you-can-opt
https://whispersystems.org/blog/contact-discovery/
https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f
https://medium.com/@davidbyttow/demystifying-secret-12ab82fda29f


117 5.1 Motivation

PSI has been a very active research field, and there have been many suggestions
for PSI protocols. The large number of proposed protocols makes it non-trivial to
perform comprehensive cross-evaluations. This is further complicated by the fact that
many protocol designs have not been implemented and evaluated, were analyzed under
different assumptions and observations, and were often optimized w.r.t. overall run-
time while neglecting other relevant factors such as communication. Furthermore, even
though the rich literature on secure PSI protocols, practical applications, including the
ones described above, often compute the intersection of privacy-sensitive lists using
insecure solutions. The reason for the poor acceptance of secure solutions is, among
others, the poor efficiency of existing schemes, which have more than two orders of
magnitude more overhead than the insecure naive hashing solution.

5.1.1 Our Contributions

We survey existing PSI protocols that are secure against semi-honest adversaries. We
first categorize these protocols based on their underlying techniques into: Semi-trusted
third party-based protocols, public-key cryptography-based protocols, generic secure
two-party computation techniques-based (circuit-based) protocols, and OT -based pro-
tocols. We then perform a concrete parameter analysis for hashing to bins tech-
niques (§5.2), improve the performance of existing protocols (§5.3 and §5.4.1) and
introduce a new OT-based PSI protocol (§5.4.2). Finally, we perform an experimental
comparison of the most promising PSI protocols (§5.5). We give our contributions in
more detail next.

Concrete Parameter Estimation for Hashing (§5.2). In [FNP04] the use of
hashing-to-bins was suggested in the context of PSI to reduce the overhead for pairwise
comparisons. However, their analysis of the involved parameters was only asymptotic.
We empirically analyze the hashing-to-bins techniques that were suggested in [FNP04]
and identify concrete parameters (§5.2.1 and §5.2.2). We then utilize the permutation-
based hashing techniques of [ANS10] to reduce the bit-length of the representations
in the bins (§5.2.3). This improves the performance of PSI protocols that require an
overhead linear in the bit-length of elements, e.g., the protocols in §5.3.2 and §5.4.2.

Optimizations of Existing Protocols (§5.3 and §5.4.1). We improve existing
PSI protocols using our optimizations for OT extension from §3 and generic secure
computation from §4. For generic secure computation protocols, we utilize our hash-
ing analysis from §5.2 to show that a pairwise comparison (PWC) circuit achieves
better performance than the previously best PSI circuit of [HEK12] (§5.3.2) and re-
visit and efficiently instantiate the oblivious pseudo random function (OPRF) proto-
col of [PSSW09] (§5.3.3). For OT-based protocols, we utilize the sender random OT
functionality of §3.4.2 to improve the performance of the Bloom-filter-based protocol
of [DCW13] (§5.4.1.3).
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PSI Protocol Naive Server-Aided Public Key Circuit OT+Hashing

[KMRS14] [Mea86] PWC / OPRF (§5.2+§5.4.2)

Equal set sizes n0 = n1 = 220

Run-time (s) 0.7 1.3 818.3 124.7 5.8

Comm. (MB) 10 20 74 14 014 111

Unequal set sizes 224 = n0 � n1 = 212

Run-time (s) 6.1 7.6 12 712.3 7.3 42.6

Comm. (MB) 160 160 593 947 480

Table 5.1: Run-time and transferred data for PSI protocols on sets of equal size (n0 =
n1 = 220) and unequal size (n0 = 224, n1 = 212) with elements of σ = 32-bit
length and 128-bit security with a single thread over Gigabit LAN. Assuming
that for circuit-based PSI the PWC circuit (cf. §5.3.2) is used for n0 = n1

and the OPRF circuit (cf. §5.3.3) is used when n0 � n1.

A Novel OT-Based PSI Protocol (§5.4.2). We present a new PSI protocol that is
based on OT and directly benefits from our OT extension improvements in §3. Our PSI
protocol is based on an efficient OPRF that is instantiated using our optimized

(
N
1

)
OT

extension protocol of [KK13] from §3.2.4 and uses the hashing techniques from §5.2 to
reduce the communication overhead from O(n2) to O(n). The resulting protocol has
very low computation complexity since it mostly requires symmetric key operations
and has even less communication than some public-key-based PSI protocols, which
had the lowest communication before.

A Detailed Comparison of PSI Protocols (§5.5). We conceptually discuss the
most promising candidate PSI protocols (§5.5.1), implement them using state-of-the-
art cryptographic techniques, and empirically compare their performance on one plat-
form (§5.5.2). As far as we know, this is the first time that such a wide comparison
has been made, since previous comparisons were either theoretical, compared imple-
mentations on different platforms or programming languages, or used implementations
without state-of-the-art optimizations. We give a partial summary of our results in
Table 5.1 and describe our most prominent findings next.

• The public-key-based protocol of [Mea86], which was the first PSI protocol, is ac-
tually the most efficient w.r.t. communication (when implemented using elliptic-
curve cryptography). Therefore it is suitable for settings with distant parties
which have strong computation capabilities but limited connectivity.

• Circuit-based protocols achieve an order of magnitude faster run-time than public-
key-based PSI protocols and achieve a similar run-time as the special-purpose
OT-based Bloom filter protocol of [DCW13] for larger security parameters and
given sufficient bandwidth.
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• Compared to the insecure naive hashing solution, previous two-party PSI proto-
cols are at least two orders of magnitude less efficient in run-time or communi-
cation for equal set sizes. Our OT-based PSI protocol reduces this overhead to
less than one order of magnitude in both run-time and communication.

• When intersecting sets with unequal sizes (n0 � n1), the run-times scale similar
to the run-times for equal set sizes (n0 = n1). The only exception is the circuit-
based OPRF protocol (cf. §5.3.3), which achieves similar performance as the
insecure naive hashing and server-aided solutions.

5.1.2 Previous Works

Securely intersecting two sets without leaking any information but the result of the
intersection is a prominent problem in secure computation. Several techniques have
been proposed that realize the PSI functionality, such as the efficient but insecure
naive hashing solution, protocols that require a semi-trusted third party, or two-party
PSI protocols. The earliest proposed two-party PSI protocols were special-purpose
solutions based on public-key cryptography. Later, solutions were proposed using cir-
cuit-based generic techniques for secure computation, that are mostly based on sym-
metric cryptography. The most recent development are PSI protocols that are based on
oblivious transfer (OT) alone, and combine the efficiency of symmetric cryptographic
primitives with special-purpose optimizations.

A Naive Solution. When confronted with the PSI problem, most novices come up
with a solution where both parties apply a cryptographic hash function to their inputs
and then compare the resulting hashes. Although this protocol is very efficient, it is
insecure if the input domain is small or does not have high entropy, since one party
could easily run a brute force attack that applies the hash function to all items that
are likely to be in the input set and compare the results to the received hashes. (When
inputs to PSI have high entropy, a protocol that compares hashes of the inputs can be
used [NCD+13].)

Third Party-Based PSI. Several PSI protocols have been proposed that utilize
additional parties, e.g., [BG85]. This approach was extended to multiple untrusted
hardware tokens in [FPS+11]. Several efficient server-aided protocols for PSI were
presented and benchmarked in [KMRS14].

Public-Key-Based PSI. A PSI protocol based on the Diffie-Hellmann (DH) key
agreement scheme was presented in [Mea86] (related ideas were presented in [Sha80,
HFH99]). Their protocol is based on the commutative properties of the DH function
and was used for private preference matching, which allows two parties to verify if
their preferences match to some degree.

Freedman et al. [FNP04] introduced PSI protocols secure against semi-honest and
malicious adversaries in the standard model (rather than in the random oracle model
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assumed in the DH-based protocol). This protocol was based on polynomial interpola-
tion, and was extended in [FHNP16], which presents protocols with simulation-based
security against malicious adversaries, and evaluates the practical efficiency of the pro-
posed hashing schemes. We discuss the proposed hashing schemes in §5.2. A protocol
that uses polynomial interpolation and differentiation for finding intersections between
multi-sets was presented in [KS05].

Another PSI protocol that uses public-key cryptography (more specifically, blind-
RSA operations) and scales linearly in the number of elements was presented in [CT10]
and efficiently implemented and benchmarked in [CT12]. In [DD15], a family of Bloom
filter-based PSI protocols was introduced that realize PSI, PSI cardinality and authen-
ticated PSI functionalities. These protocols also use public-key operations, linear in
the number of elements.

Circuit-Based PSI. Generic secure computation protocols have been subject to sub-
stantial efficiency improvements in the last decade (cf. §4). They allow the secure
evaluation of arbitrary functions, expressed as arithmetic or Boolean circuits. Sev-
eral Boolean circuits for PSI were proposed in [HEK12] and evaluated using the Yao’s
garbled circuits framework of [HEKM11]. The authors showed that their Java im-
plementation scales very well with increasing security parameter and outperforms the
blind-RSA protocol of [CT10] for larger security parameter.3 We reflect on and present
new optimizations for circuit-based PSI in §5.3.

OT-Based PSI. A recent PSI protocol of [DCW13] uses Bloom filters [Blo70] and the
OT extension protocol of [IKNP03] to obtain very efficient PSI protocols with security
against semi-honest and malicious adversaries. Recently in [Lam16], it was shown
that the Bloom filter-based protocol is insecure with respect to malicious adversaries.
We review and optimize the passive secure Bloom filter-based protocol of [DCW13]
in §5.4.1 and propose a novel OT-based PSI protocol in §5.4.2.

PSI from an OPRF. An oblivious pseudo-random function (OPRF) [FIPR05] F :
({0, 1}κ, {0, 1}σ) 7→ (⊥, {0, 1}`) is a function which, given a κ bit key k from P0

and a σ bit input element e from P1, computes and outputs an ` bit string Fk(e)
to P1. P0 obtains no output and learns no information about e while P1 learns no
information about k. The size of the output ` must be chosen to ensure that no
collision happens except with negligible probability (cf. §2.5). OPRFs can be used
for PSI by first evaluating the OPRF protocol on the set of P1 and then having P0, who
knows the secret key k, evaluate the OPRF locally on its own set, and send the OPRF
output to P1, who computes a plaintext intersection. There exist several instantiations
for OPRFs, described in [FIPR05]: Based on generic secure computation techniques
(using the AES circuit [PSSW09]), based on the Diffie-Hellman assumption, or based

3Subsequent work of [CT12] claimed that the blind-RSA protocol of [CT10] runs faster than the
circuit-based protocol of [HEK12] even for larger security parameter. Their implementation is in
C++ instead of Java.
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on OT. Furthermore, a trusted-third party-based OPRF protocol was given in [HL08],
where a trusted hardware token is used to evaluate an OPRF. In §5.3.3 we analyze the
efficiency of generic secure computation-based OPRF instantiations and in §5.4.2 we
give a more efficient OT-based instantiation.

5.1.3 Follow-Up Works

In [RR16], our OT-based PSI protocol of [PSZ14] was extended to security against
weakly malicious adversaries and used as a building block in a batch dual-execution
Yao’s garbled circuits protocol. In [Lam16], it was shown how to achieve security
against a malicious P1 and a semi-honest P0 for our OT-based PSI protocol in [PSSZ15].

An improved version of our OT-based PSI protocol in [PSSZ15] is given in [KKRT16],
which presents an efficient construction of an OPRF using the OT extension protocol
of [KK13]. The main observation of the authors is that the [KK13] OT does not
require an error correcting code but can instead use a pseudo-random code, which
can be generated from a pseudo-random generator. The authors then apply their
efficient OPRF construction to our [PSSZ15] protocol and thereby achieve performance
independent of the bit-length of elements σ. The OPRF construction of [KKRT16] is
similar to our new OPRF construction described in §5.4.2. The idea of both works
is to instantiate the OPRF that is implicitly used in the [PSSZ15] OT-based PSI
protocol using larger codes. However, while [KKRT16] replace the error correcting
code with a pseudo-random code, we keep the error correcting code. Thereby, our
OPRF construction achieves better communication for smaller values of σ − log2 n1

when using custom-tailored error correcting codes (e.g., 271 bits for 13 = σ − log2 n1

using the codes of [SS06] instead of ≥ 424 bits in [KKRT16]) but does not achieve
performance independent of σ.

The works of [OOS17, PSS17] describe how to more efficiently instantiate the one-
sided malicious secure version of our [PSSZ15] PSI protocol, outlined in [Lam16].
Both works showed how to achieve active security for the

(
2
1

)
OT extension protocol

of [KK13] and applied their protocols to the PSI protocol of [Lam16]. Furthermore,
independently and concurrently to our work, [OOS17] also suggested that using a
linear BCH code instead of a Walsh-Hadamard code in the

(
N
1

)
OT extension protocol

of [KK13] can greatly improve its efficiency for longer input elements (cf. §3.2.4.1
and §5.4.2).

5.2 Hashing Schemes and PSI

Computing the plaintext intersection between two sets is often done using hashing
techniques. The parties agree on a publicly known random hash function to map
elements to a hash table, which consists of multiple bins. If an input element is in
the intersection, both parties map it to the same bin. Hence, the parties only need
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to compare the elements that are in the same bin to identify intersecting elements.
Thereby, the average number of comparisons between elements can be reduced from
O(n2) to O(n) for pairwise comparisons.

In a similar fashion, PSI protocols that privately compute the equality between val-
ues can use hashing techniques in order to reduce the number of comparisons [FNP04,
FHNP16]. Examples for such private equality test protocols are [FNP04, HEK12,
CADT14], the circuit-based protocol in §5.3.2 or our OT-based protocol in §5.4.2.
When naively using hashing techniques, if n items are mapped to n bins then the
average number of items in a bin is O(1), checking for an intersection in a bin takes
O(1) work, and hence the total number of comparisons is O(n). However, privacy
requires that the parties hide from each other how many of their inputs were mapped
to each bin.4 As a result, we must calculate in advance the number of items that will
be mapped to the most populated bin (w.h.p.), and then set all bins to be of that size.
(This can be done by storing dummy items in bins which are not fully occupied.) This
change hides the bin sizes but also increases the overhead of the protocol, since the
number of comparisons per bin now depends on the size of the most populated bin
(worst case) rather than on the actual number of items in the bin (average case).

In fact, this worst case analysis is key to balancing security and efficiency. On
the one hand, if the estimation is too optimistic, the probability of a party failing to
perform the mapping becomes intolerable. As a result, the output might be inaccurate
(since not all items can be mapped to bins), or one party needs to request a new hash
function (a request that leaks information about the input set of that party). On the
other hand, the number of comparisons and hence the protocol overhead can become
prohibitive if the analysis is too pessimistic. The work of [FNP04, FHNP16] gave
asymptotic values for this analysis and of the resulting overhead. They left the task
of setting appropriate parameters for the hashing schemes to future work.

In this section, we revisit the simple hashing (§5.2.1) and Cuckoo hashing (§5.2.2)
schemes, used in [FNP04, FHNP16]. We describe how to use both hashing schemes
in the context of PSI and give a concrete parameter analysis that balances security
and efficiency. Finally, we show how the bit-length of the representations that are
stored in the bins can be reduced using permutation-based mapping, which improves
the performance of some PSI protocols (§5.2.3).

Note that, for our hashing failure analysis, we use a dedicated hashing failure param-
eter φ, which is different from the statistical security parameter λ. We use a dedicated
parameter since our analysis requires running empirical experiments for determining
concrete numbers. Running the analysis on 240 iterations in the Amazon EC2 cloud
would have cost several hundred thousand USD. Hence, we perform the experiments
and give concrete numbers for φ = 30 and interpolate from these results to φ = 40.

4Otherwise, and since the hash function is public, some information is leaked about the input. For
example, if no items of P0 were mapped to the first bin by the hash function h, then P1 learns
that P0 has no inputs in the set h−1(1), which covers about 1/n of the input range.
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5.2.1 Simple Hashing

In the simplest hashing scheme, the hash table consists of b bins B1...Bb. Hashing
is done by mapping each input element e to a bin Bh(e) using a hash function h :
{0, 1}σ 7→ [1, b] that was chosen uniformly at random and independently of the input
elements. An element is always added to the bin to which it is mapped, regardless of
whether other elements are already stored in that bin.

5.2.1.1 Simple Hashing for PSI

To apply simple hashing in the context of PSI, both parties map their elements to b
bins. The intersection is then computed by having both parties separately compare
the items mapped to bin i ∈ [1, ..., b]. In order to hide the number of elements that
were mapped to a bin, the parties need to pad their bins using dummy elements
to contain maxb elements. This maximum bin size must ensure that except with
probability < 2−φ, no bin will contain more than maxb real elements.

5.2.1.2 Simple Hashing Parameter Analysis

Estimating maxb has been subject to extensive research [Gon81, RS98, Mit01]. When
hashing n elements to b = n bins, [Gon81] showed that maxb = lnn

ln lnn
(1 + o(1)) w.h.p.

In this case, there is a difference between the expected and the maximum number of
elements mapped to a bin, which are 1 and O( lnn

ln lnn
), respectively. Let us revisit the

analysis of [MR95] that examines the probability of the following event, “n balls are
mapped at random to b bins, and there exists a bin with at least maxb balls”:

P (”∃ bin with ≥ maxb elements”) ≤
b∑
i=1

P (”bin i has ≥ maxb elements”)

= b · [P (”bin 1 has ≥ maxb elements”)]

= b ·
[
(

n∑
i=maxb

(
n

i

)(
1

b

)i(
1− 1

b

)n−i]
. (5.1)

Case n = b. We calculate maxb when mapping n ∈ {28, 212, 216, 220, 224} elements to
b = n bins using Equation 5.1, choose the minimal value of k that reduces the failure
probability to below 2−30 and 2−40 and depict the results in Table 5.2.

Hash Failure Parameter φ 30 40

Set Size n 28 212 216 220 224 28 212 216 220 224

maxb (Equation 5.1) 13 15 16 17 18 16 17 18 19 20

Table 5.2: Bin sizes maxb required to ensure that an overflow occurs except with proba-
bility ≤ 2−φ when mapping n items to b = n bins, according to Equation 5.1.
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Case n � b. In certain settings, the server P0 has a much larger set than the
client P1. For simple hashing, this translates to the number of elements n being much
larger than the number of bins b. Later in the thesis, we perform experiments for
this setting (cf. §5.5.2.3), where P1 has a set of size n1 ∈ {28, 212}, while P0 has a
set of size n0 ∈ {216, 220, 224} and both map n = 2n0 elements into b = 2.4n1 bins.
To determine maxb in this setting, we evaluate Equation 5.1 with these set sizes and
depict maxb for hashing failure probabilities 2−30 and 2−40 in Table 5.3. From the
results, we can observe that as the fraction n0/n1 grows, the maximum number of bins
grows closer to the expected number of bins.

Set Size n1 28 212

Set Size n0 216 220 224 216 220 224

Hash Failure Parameter φ = 30

maxb (Equation 5.1) 323 3 825 56 196 48 329 3 852

Hash Failure Parameter φ = 40

maxb (Equation 5.1) 338 3 881 56 412 53 344 3 905

Table 5.3: Bin sizes maxb required to ensure that an overflow occurs except with prob-
ability ≤ 2−φ when mapping n = 2n0 items to b = 2.4n1 bins for n0 � n1,
according to Equation 5.1.

5.2.2 Cuckoo Hashing

Cuckoo hashing [PR01] uses k hash functions h1, ..., hk : {0, 1}σ 7→ [1, b] to map m
elements to b = εn bins. The scheme avoids collisions by relocating elements when a
collision is found using the following procedure: An element e is inserted into a bin
Bh1(e). Any prior contents o of Bh1(e) are evicted to a new bin Bhi(o), using hi to
determine the new bin location, where hi(o) 6= h1(e) for i ∈ [1...k]. The procedure is
repeated until no more evictions are necessary, or until a threshold of 1 000 relocations
has been performed. In the latter case, the last element is put in a special stash.
A lookup in this scheme is very efficient as it only compares e to the k items in
Bh1(e), ..., Bhk(e) and to the s items in the stash. The size of the hash table depends
on the number of hash functions k as well as on the stash size s. The higher k is
chosen, the more likely it is that the insertion process succeeds and hence the smaller
the number of bins b becomes. On the other hand, the higher s is chosen, the more
insertion failures can be tolerated.

5.2.2.1 Cuckoo Hashing for PSI

A major problem occurs when using Cuckoo hashing for PSI: Every item can be
mapped to one of k bins, and therefore it is unclear with which of P0’s bins should P1

compare its own input elements. Furthermore, the protocol must hide from each party
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the choice of bins made by the other party to store an item, since that choice depends
on other input elements and might reveal information about them. The solution to
this is that P1 uses Cuckoo hashing whereas P0 maps each of its elements using simple
hashing with each of the k hash functions. In addition, for Cuckoo hashing, we must
ensure that the hashing succeeds except with probability < 2−φ, since a hashing error
on the side of P1 reveals information about its set or results in an incorrect result. As
in PSI with simple hashing (cf. §5.2.1), P0 will need to pad its bins to size maxb using
dummy elements.

5.2.2.2 Cuckoo Hashing Parameter Analysis

Cuckoo hashing has three parameters that affect the hashing failure probability: The
stash size s, the number of hash functions k, and the number of bins b = εn [KMW09].
It was shown in [KMW09] that Cuckoo hashing of n elements into (1 + ζ)n bins with
ζ ∈ (0, 1) for any k ≥ 2(1 + ζ) ln(1

ζ
) and s ≥ 0 fails with probability O(n1−c(s+1)), for a

constant c > 0 and n 7→ ∞. The constants in the big “O” notation are unclear, which
makes it hard to compute a concrete failure probability given a set of parameters.

In the following, we empirically determine the failure probability given the stash
size s, the number of hash functions k, and the number of bins b. We analyze the
effect of all three parameters separately. We first fix the number of bins b = 2.4n and
hash functions k = 2 (as was done in [KMW09]) and determine the necessary stash
sizes s. In order to improve performance, we increase the number of hash functions k
and determine the number of bins b for which no stash is required (i.e., s = 0). While
both approaches achieve good overhead when n0 = n1, they perform poorly when the
parties have unequal set sizes n0 � n1. Hence, in the last step, we show how to obtain
low values for the stash size s and a low number of hash functions k by increasing the
number of bins b = εn, which results in a collection of trade-offs for unequal set size
applications.

Adjusting the Stash Size s. In the following, we identify the exact stash size s that
ensures that the hashing failure probability is smaller than a given 2−φ. To obtain
concrete numbers, we ran 230 repetitions of Cuckoo hashing, where we mapped n
items to b = εn = 2.4n bins, for n ∈ {211, 212, 213, 214}, using k = 2 hash functions and
recorded the stash size s that was needed for Cuckoo hashing to be successful. We
fix ε = 2.4 as was done in the original Cuckoo hashing with a stash paper [KMW09].
The solid lines in Figure 5.1 depict the probability that a stash of size s prevented a
hashing failure.

From the results we can observe that, to achieve 2−30 failure probability of Cuckoo
hashing, we require a stash of size s = 6 for n = 211, s = 5 for n = 212, and
s = 4 for both n = 213 and n = 214 elements. However, in our experiments we need
the stash sizes for smaller as well as larger values of n to achieve a Cuckoo hashing
failure probability of 2−30. To obtain the failure probabilities for these values of n,
we extrapolate the results using linear regression and illustrate the results as dotted
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lines in Figure 5.1. We give the extrapolated stash sizes for achieving a hashing failure
probability of 2−30 and 2−40 for n ∈ {28, 212, 216, 220, 224} in Table 5.4. We observe
that the stash size for achieving a failure probability of 2−30 is drastically reduced for
higher values of n: For n = 216 we need a stash of size s = 4, for n = 220 we need
s = 3, and for n = 224 we need s = 2. This observation is in line with the asymptotic
failure probability of O(n−s).
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Figure 5.1: Error probability when map-
ping n elements to 2.4n bins us-
ing Cuckoo hashing with k = 2
hash functions for stash sizes
1 ≤ s ≤ 6. The solid lines
correspond to actual measure-
ments, the dashed lines were ex-
trapolated using linear regres-
sion. Both axes are in logarith-
mic scale.

# Elements n 28 212 216 220 224

Stash s (φ = 30) 8 5 3 2 1

Stash s (φ = 40) 12 6 4 3 2

Table 5.4: Required stash sizes s to
achieve 2−φ failure proba-
bility when mapping n ele-
ments into 2.4n bins.

Adjusting the Number of Hash Functions k. The original Cuckoo hashing pro-
cedure [PR04] fixed the number of hash functions to k = 2. It was later shown
in [DGM+10] that increasing the number of hash functions to k > 2 achieves much
better utilization of bins in the hash table. I.e., while the average utilization for k = 2
hash functions is around 50%, the utilization increases to 91.8% for k = 3, 97.7%
for k = 4, and 99.2% for k = 5. Hence, higher values of k allow us to drastically
decrease the number of bins. However, similar to the previous stash allocation, the
analysis in [DGM+10] was only asymptotic and does not allow to compute the concrete
hashing failure probability.

In order to determine the concrete failure probability, we again perform 230 iterations
of Cuckoo hashing on n = 1 024 elements using k ∈ {3, 4, 5} hash functions. Our
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goal in this analysis is to determine the minimum number of bins bmin = εminn for
which the hashing procedure succeeds without a stash except with probability 2−30.
In order to determine the value of bmin, we run Cuckoo hashing on an initialization
value εmin = 1.0 and increase εmin by 0.01 each time more than one hashing failure
has occurred. An interesting observation that we made during the experiments with
multiple hash functions was that after a certain threshold value, the hashing failure
probability decreased drastically. E.g., only increasing ε by as little as 0.1 when using
k = 5 hash functions could reduce the required stash size from s = 2 to s = 0. Overall,
we determined the following bin sizes that resulted in a hashing failure probability
of < 2−30: εmin = 1.20 for k = 3, εmin = 1.07 for k = 4, and εmin = 1.04 for k = 5. We
extrapolate the values of εmin for φ = 2−40 by adding an additional security margin
of factor 4/3 to the εmin values for φ = 2−30 which results in: εmin = 1.27 for k = 3,
εmin = 1.09 for k = 4, and εmin = 1.05 for k = 5.

A consequence of increasing the number of hash functions is that the party P0, who
uses simple hashing, needs to increase the maximum bin size maxb. This is due to two
factors: On the one hand, the hash table of P0 contains more elements since P0 needs
to map each element k times to its hash table. On the other hand, the parties decrease
the number of bins due to the reduced ε. We re-compute the maximum bin size of P0

for the set sizes used in our PSI experiments in §5.5 given the increased number of hash
functions using Equation 5.1 and give the results in Table 5.5. Given these results,
we can compute the total number of comparisons by multiplying the number of bins b
with maxb. From these results, we observe that k = 3 achieves the best performance.
In fact, using k = 3 hash functions performs better than using k = 2 hash functions,
even without considering the stash size for k = 2.

Hash Failure Parameter φ 30 40

Set Sizes n0 =n1 28 212 216 220 224 28 212 216 220 224

maxb for k=2 (n = 2n0, b = {2.4/2.4}n1) 13 14 15 16 17 15 16 17 18 19

maxb for k=3 (n = 3n0, b = {1.20/1.27}n1) 19 21 22 23 25 22 23 25 26 27

maxb for k=4 (n = 4n0, b = {1.07/1.09}n1) 23 25 26 28 29 27 28 29 31 32

maxb for k=5 (n = 5n0, b = {1.04/1.05}n1) 26 28 29 31 32 30 31 33 34 36

Table 5.5: Bin sizes maxb required to ensure that an overflow occurs except with proba-
bility≤ 2φ when mapping n items to b bins using k hash functions, according
to Equation 5.1.

Adjusting the Number of Bins b. The required stash sizes for b = 2.4n bins and
k = 2 hash functions are relatively large for small set sizes (e.g., s = 8 for n = 256). In
case of equal set sizes n0 = n1, this does not impact the performance of the protocols
much. In the case of unequal set sizes n0 � n1, however, large stash sizes will greatly
decrease the performance, since each element in the stash needs to be compared with
each item in the large set with possibly millions of elements. Furthermore, even when
increasing the number of hash functions k > 2 to remove the stash, P0 would need to
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map each of its million elements k times into its hash table, which increases maxb and
hence incurs a great overhead.

To improve the performance for unequal set sizes, we fix s ∈ {0, 1, 2, 3, 4} and k = 2
and try to identify b = εn such that the hashing failure probability is less than 2−φ.
Similarly to the previous experiments, we ran 230 repetitions of Cuckoo hashing, map-
ping n items to b = εn bins, for n = 256 and ε = {2.4, 3, 4, 5, 6, 7, 8, 9, 10, 20, 100, 200},
and recorded the stash size s that was needed for Cuckoo hashing to be successful. We
chose n = 256 since it is a good approximation of the number of contacts in a user’s
address book and it is used in our experiments in §5.5.2.3.

The results of our experiments are depicted as solid lines in Figure 5.2. From the
results, we can observe that the probability of requiring a stash size of s decreases
logarithmically with growing ε: While for small ε the probabilities decrease quickly,
they decrease slower for large ε. E.g., when increasing ε from 2.4 to 4, the hashing
failure probability for a stash of size s = 0 decreases from 2−6 to 2−12. If, on the
other hand, ε is increased from 20 to 100, the hashing failure probability for s = 0
only decreases from 2−21 to 2−28. Since we are interested in identifying ε such that
the probability of requiring a stash of size s decreases below 2−φ, we use regression via
a logarithmic function to extrapolate the probabilities. These estimated probabilities
are depicted as dotted lines in Figure 5.2 and the smallest ε for which the hashing
failure probability decreases below 2−30 and 2−40 is given in Table 5.6.

The estimations indicate that, in order to reduce the stash size to s = 0, we need to
set ε = 166 to guarantee 2−30 hashing failure probability and to ε = 2 500 to guarantee
2−40 hashing failure probability. When allowing a bigger stash size s = 1, ε decreases
drastically, allowing us to set ε = 7.8 for 2−30 hashing failure probability and ε = 16
for 2−40 hashing failure probability. In our experiments, the exact choice of ε and s
depends on the difference between the set sizes n0 and n1 as well as the protocol that
is used (cf. §5.5.2.3). I.e., if n1 is only a few hundred while n0 is several million, it can
be more efficient to choose ε = 166 to achieve stash size s = 0.

5.2.3 Permutation-Based Hashing

The overhead of our circuit-based PSI protocols in §5.3.2 and of the OT-based PSI
protocol in §5.4.2 depends on the bit-length σ of the items that the parties map to bins.
The bit-length of the stored items can be reduced using a permutation-based hashing
technique that was suggested in [ANS10] for reducing the memory usage of Cuckoo
hashing. That construction was presented in an algorithmic setting to improve memory
usage. As far as we know this is the first time that it is used in secure computation or
in a cryptographic context.

The construction uses a Feistel-like structure. Let x = xL|xR be the bit representa-
tion of an input item, where |xL| = log b, i.e. is equal to the bit-length of an index of an
entry in the hash table. (We assume here that the number of bins b in the hash table
is a power of 2. It was shown in [ANS10] how to handle the general case.) Let f() be
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bins using Cuckoo hashing with
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Stash Size s 0 1 2 3 4

ε (φ = 30) 166 7.8 4.2 3.4 3

ε (φ = 40) 2 500 16 6.2 4.4 3.8

Table 5.6: Required number of
bins b = 256ε to achieve
< 2−φ hashing failure
probability given a
fixed stash size s.

a random function whose range is [0, b−1]. Then item x is mapped to bin xL⊕f(xR).
The value that is stored in the bin is xR, which has a length that is shorter by log b
bits than the length of the original item. This is a great improvement, since the length
of the stored data is significantly reduced, especially if |x| is not much greater than
log b. As for the security, it can be shown based on the results in [ANS10] that if the
function f is k-wise independent, where k = polylog n, then the maximum load of a
bin is log n with high probability.

The structure of the mapping function ensures that if two items x, x′ store the same
value in the same bin then it must hold that x = x′: if the two items are mapped to
the same bin, then xL ⊕ f(xR) = x′L ⊕ f(x′R). Since the stored values satisfy xR = x′R
it must also hold that xL = x′L, and therefore x = x′.

As a concrete example, assume that |x| = 32 and that the table has b = 220 bins.
Then the values that are stored in each bin are only 12 bits long, instead of 32 bits
in the original scheme. Note also that the computation of the bin location requires a
single instantiation of f , which can be implemented with a medium-size lookup table.
Note that, when mapping an element into a bin using multiple hash functions, e.g.,
when using Cuckoo hashing, the index of the hash function needs to be added to the
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representation in the bin to preserve uniqueness. This observation was pointed out
in [Lam16].

5.3 Circuit-Based PSI

Unlike special-purpose PSI protocols, the protocols that we describe in this section
are based on generic secure computation techniques that can be used for computing
arbitrary functionalities. We outline the sort-compare-shuffle (SCS) circuit of [HEK12],
which is a Boolean circuit of sizeO(n log n) for computing the PSI functionality (§5.3.1).
We then show how to use the hashing methods described in §5.2 to achieve better
complexity than the SCS circuit using a pairwise comparison (PWC) circuit (§5.3.2).
Finally, we revisit the method of [PSSW09] where generic secure computation tech-
niques are used to instantiate an OPRF (cf. §5.1.2), which is used to process the input
elements of one party (§5.3.3).

The usage of generic protocols has the advantage that the functionality of the pro-
tocol can easily be extended, without having to change the protocol or the security
of the resulting protocol. For example, it is straightforward to change the SCS or
PWC circuits to compute the size of the intersection, or a function that outputs if the
intersection is greater than some threshold, or compute a summation of values (e.g.,
revenues) associated with the items that are in the intersection. Computing these
variants using other PSI protocols is non-trivial.

5.3.1 Sort-Compare-Shuffle Circuit for PSI

A Boolean circuit for PSI that has O(n log n) size is the sort-compare-shuffle (SCS)
circuit described in [HEK12]. (We refer here to the SCS circuit that uses the Waks-
man permutation for shuffling). The SCS circuit computes the intersection between
two sets by first sorting both sets into a single sorted list, then comparing all neigh-
boring elements for equality, and finally shuffling the intersecting elements to hide any
information that could be obtained from the resulting order.

Sort. To sort their sets with n = n0 = n1 elements into a single sorted list, both parties
locally pre-sort their sets and merge them using a bitonic merging circuit [Bat68]. In
contrast to a sorting network, a bitonic merging circuit takes advantage of the fact
that the inputs are already sorted and allows the parties to obtain a globally sorted
list of 2n input elements using n log2(2n) sorter circuits. A sorter circuit takes as input
two elements x and y, swapping them if x > y and preserving the order if x ≤ y. Each
sort gate consists of a comparison and a conditional swap sub-circuit.

Compare. All elements in the sorted list are then compared to their neighbors to
determine if a duplicate exists. Since each party’s input consists of different values,
duplicates only occur for items in the intersection of the two inputs. A duplicate item
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is passed on, whereas if no duplicate is found then the item is replaced by a special
dummy element.

Shuffle. Finally, all elements are randomly shuffled using a Waksman permutation
network [Wak68]. An n input Waksman circuit consists of n log2(n) − n + 1 condi-
tional swap gates, which either forward their two input elements or swap their order
depending on the required randomly chosen output permutation. A special-purpose
optimization which allows the workload for the gates to be reduced by a factor 2× was
outlined in [HEK12] but is omitted in this thesis.

Efficiency. The overall size of the SCS circuit for inputs of length σ bit is σ(3n log2 n+
4n)− n AND gates, which is the sum of 2σn log2(2n) AND gates for the sort circuit,
σ(3n − 1) − n AND gates for the compare circuit, and σ(n log2 n − n + 1) for the
shuffle circuit. It is important to note that approximately 2/3 of the AND gates in the
circuit are due to multiplexers. These multiplexer gates can be efficiently evaluated
in GMW using vector MTs (cf. §4.4.1), reducing the pre-computation cost in GMW
from σ AND gates to the equivalent of 1 AND gate for a σ-bit multiplexer.

Instantiation. For our experiments in §5.5, we use GMW to evaluate a depth-
optimized variant of the SCS circuit, where the comparison gates have 3σ− log2(σ)−2
AND gates instead of σ but have a depth of log2(σ) instead of σ for σ-bit val-
ues (cf. §4.2.1.7). Consequently, the size of the SCS circuit is increased from ap-
proximately 3nσ log2 n to 5nσ log2 n, but its depth is decreased from σ log2(n) to
log2(σ) log2(n). Using the vector MTs optimization from §4.4.1, the size of the depth-
optimized SCS circuit is again decreased back to approximately 3σn log2(n).

5.3.2 Pairwise Comparison (PWC) and Hashing

A simpler circuit for performing the PSI functionality is a pairwise comparison (PWC)
circuit, where each element in the set of P0 is compared to each element in the set
of P1. However, this circuit would scale with O(n0n1), making it impractical for larger
sets. Using the hashing methods from §5.2, we can drastically reduce the number of
comparisons. In particular, we let P0 use simple hashing and P1 use Cuckoo hashing
and then evaluate an equality circuit that compares the elements of both parties in
the same bin. We outline the PWC protocol in more detail Protocol 15.

Efficiency. Let b · maxb be the number of element comparisons that are performed
for the hash tables, i.e., for each of the b bins, the parties perform maxb comparisons
per bin. Each element is of length µ bits, which is the reduced length of the elements
after being mapped to bins using permutation-based hashing, i.e. µ = σ − log2 b +
log2 k (cf. §5.2.3). A comparison of two µ-bit elements is done by computing the
bitwise XOR of the elements and then a tree of µ OR gates, with depth dlog2 µe. The
topmost gate of this tree is a NOR gate. Afterwards, the circuit computes the XOR
of the results of all comparisons involving each item of P1. (Note that at most one of
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the comparisons results in a match, therefore the circuit can compute the XOR, rather
than the OR, of the results of the comparisons.) In addition, the parties evaluate sn0

comparison circuits for the σ-bit elements on the stash, which have depth dlog2 σe.
Overall, the circuit consists of about b ·maxb · (µ− 1) + s ·n0 · (σ− 1) non-linear gates
and has an AND depth of dlog2 σe.

PROTOCOL 15 (Our PWC Protocol).

• Input of P0: X = {x1, ..., xn0
}.

• Input of P1: Y = {y1, ..., yn1}.

• Common Input: Bit-length of elements σ; Number of bins b = εn1 (cf. §5.2.2.2);
k random hash functions {h1, ..., hk} : {0, 1}σ 7→ [1...b]; Reduced bit-length of items
in the hash table µ = σ − log2 b+ log2 k; Symmetric security parameter κ; Dummy
elements d0 and d1 with d0 6= d1; Stash size s; Maximum number of elements in a
bin maxb (cf. §5.2.1.2).

1. Hashing:

a) P0 maps the elements in its set X into a two-dimensional hash table T0[ ][ ]
using simple hashing and k hash functions {h1, ..., hk}. The first dimension has
size b and addresses the bin in the table while the second dimension addresses
the elements in the bins. P0 then pads all bins T0[i] with less than maxb
elements to maxb using d0, for 1 ≤ i ≤ b.

b) P1 maps the elements in its set Y into a one-dimensional hash table T1[ ] and
stash S[ ] using Cuckoo hashing and k hash functions {h1, ..., hk}. The hash
table has size b and the stash has size s. P1 then fills all empty entries in T1

and S with d1.

Let |T0[i]| be the number of elements that are stored in the i-th bin of the hash
table T0 and µ be the bit-length of these elements for 1 ≤ i ≤ b.

2. Private Equality Testing (via generic secure computation protocol):
For each bin 1 ≤ i ≤ b, the parties perform the following steps:

a) Let vj = T0[i][j] and w = T1[i] for 1 ≤ j ≤ maxb.
b) The parties evaluate a Boolean circuit using a generic secure two-party

computation protocol that computes and outputs
⊕maxb

j=1 EQµ(vj , w) to P1

(cf. §4.2.1.6). P1 will add the element in bin i to the intersection Z, if the
circuit evaluates to 1.

Stash: For each element in the stash S, the parties repeat the same steps where, for
the i-th stash position P0 and P1 compute the private equality test between S[i] and
all elements in X, which have bit-length σ.

• Output: P0 has no output; P1 outputs Z = X ∩ Y .

Advantages. In the following we describe the advantages of the PWC circuit over
the SCS circuit from §5.3.1:
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• Compared to the number of AND gates in the SCS circuit, which is 3nσ log n,
and recalling that σ′ < σ, and that maxb was shown in our experiments to be
no greater than 2 log n (and not greater than log n asymptotically), the number
of non-linear gates in the PWC circuit is smaller by more than a factor 1.5×
compared to the number of non-linear gates in the SCS circuit (even though
both circuits asymptotically scale the same).

• The main advantage of the PWC circuit is the low AND depth of log2 σ, which
is also independent of the number of elements n. This affects the overhead of the
GMW protocol that requires a round of interaction for every level in the circuit.

• Another advantage of the PWC circuit is its simple structure: The same small
comparison circuit is evaluated for each bin. This property allows for a SIMD
(Single Instruction Multiple Data) evaluation with a very low memory footprint
and easy parallelization (cf. §4.2.2).

• Finally, the efficiency of the SCS circuit is tailored to equal set sizes. For unequal
set sizes, the circuit size does not scale well. The PWC circuit, on the other hand,
scales much better for unequal set sizes.

5.3.3 Secure Evaluation of an OPRF

Another method for circuit-based PSI was outlined in [FIPR05, PSSW09] and uses an
OPRF (cf. §5.1.2). In this protocol, the parties use secure computation to evaluate a
pseudo-random function Fk(y) = z, which takes as input a random key k from P0 and
an element y from P1 and returns the output z to P1. The use of secure computation
guarantees the obliviousness, i.e., that P0 learns no information about y or z while
P1 learns no information about k. The PSI functionality can then be achieved by
evaluating the OPRF on each element in the set of P1 and having P0 locally evaluate
and send Fk(xi) for all elements xi ∈ X. P1 can then identify the intersection by
computing the plaintext intersection between its output of the OPRF with the elements
sent by P0.

Efficiency. The efficiency of the circuit-based OPRF construction depends mainly on
the instantiation of the pseudo-random function F . While it is possible to instantiate F
with a cipher that is optimized for use in secure computation such as [ARS+15], we
consider an AES-based instantiation in our efficiency analysis, since the security of
AES is better established. The number of AND gates in the AES circuit is 5 120
and its multiplicative depth is 60 [BP12] (cf. §4.2.1.12, we use the size-optimized S-
Box circuit, since the circuit needs to be evaluated n1 times in parallel). In total, we
have to perform n1 parallel oblivious AES evaluations, resulting in a total of 5 120n1

AND gates and a depth of 60. P0, on the other hand, can perform a plaintext AES
evaluation on its elements and only needs to send n0 collision-resistant strings of length
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Optimization Party # Bits Sent # Calls to CRF

Original GBF PSI [DCW13]
P0 2mλ 2m

P1 mκ m

Original GBF PSI with OT of §3.2
P0 mλ m

P1 mκ m/2

Optimized Random GBF PSI (§5.4.1.3)
P0 n0` 1.44n1κ/2

P1 1.44n1κ2 1.44n1κ/2

Table 5.7: Communication and computation complexities for Garbled Bloom filter-
based PSI without and with correlated OT extension, and our optimized
random Garbled Bloom filter protocol. (λ: statistical security parameter,
κ: symmetric security parameter, m ≈ 1.44κmax(n0, n1), ` = λ+ log2 n0 +
log2 n1, correlation-robust function CRF).

` = λ+log(n0)+log(n1). Hence, due to the large constants, the OPRF-based approach
is less efficient in concrete terms than the SCS or PWC circuits, even though it scales
with O(n) while both other circuits scale with O(n log n). However, if the set sizes of
the parties greatly differ, i.e., for the mobile messenger application where n0 � n1,
the OPRF-based approach can be more efficient than other circuit constructions and
in fact even more efficient than all other PSI protocols, since the elements in the much
larger set of P0 can be processed at very low cost (cf. §5.5.2.3).

5.4 OT-Based PSI

In this section, we give special-purpose PSI protocols based on OT: The Garbled Bloom
filter protocol of [DCW13] (§5.4.1) and our novel OT-based PSI protocol (§5.4.2).

5.4.1 Bloom Filter-Based PSI

The PSI protocol of [DCW13] uses Bloom Filters (BF) and OT to compute the inter-
section. We summarize Bloom filters in §5.4.1.1 and the PSI protocol of [DCW13] in
§5.4.1.2. We then present a redesigned optimized version of the protocol in §5.4.1.3.
Our optimized protocol reduces the computation and communication complexity by
factor 1.3× to 2× (cf. Table 5.7 and Table 5.11).

5.4.1.1 The Bloom Filter

A BF that represents a set of n elements consists of an m-bit string F and k inde-
pendent uniform hash functions h1, ..., hk with hi : {0, 1}σ 7→ [1,m], for 1 ≤ i ≤ k.
Initially, all bits in F are set to zero. An element x is inserted into the BF by set-
ting F [hi(x)] = 1 for all i. To query if the BF contains an item y, one checks all
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bits F [hi(y)]. If there is at least one j such that BF [hj(y)] = 0, then y is not in
the BF. If, on the other hand, all bits BF [hi(y)] are set to one, then y is in the BF
except for a false positive probability ε. An upper bound on ε can be computed as

ε = pk(1+O(k
p

√
lnm−k ln p

m
)), where p = 1− (1− 1

m
)kn. In the PSI protocol of [DCW13]

the number of hash functions is set to k = 1/ε and the size of the BF is set to
m = kn/ ln 2 ≈ 1.44kn. Setting ε = 2−κ then results in k = κ and a filter of size
m ≈ 1.44κn.5

The intersection between two BFs FX and FY , representing sets X and Y , respec-
tively, can be computed as F(X∧Y ) = FX ∧ FY . However, as described in [DCW13],
F(X∧Y ) has more bits set to one than a BF F(X∩Y ) that was generated from the inter-
section X ∩ Y . For example, assume that there are two sets X = {x} and Y = {y}
with x 6= y. If there exist i, j such that hi(x) = hj(y), we have F(X∧Y )[hi(x)] = 1.
However, the intersection X ∩ Y = ∅, results in F(X∩Y )[hi(x)] = 0. Thus, learning
F(X∧Y ) reveals more information about the set of the other party than is revealed by
only obtaining the result, so a different approach is needed, as described next.

5.4.1.2 Garbled Bloom Filter-Based PSI

To avoid unintentional information leakage when using Bloom filters for PSI, the au-
thors of [DCW13] introduced a variant of the BF, called Garbled Bloom Filter (GBF).
Like a BF, a GBF G uses k hash functions h1, ..., hk, but instead of single bits, it
holds shares of length ` at each position G[i], for 1 ≤ i ≤ m. These shares are chosen
uniformly at random, subject to the constraint that for every element x contained in
the filter G it holds that

⊕κ
j=1 G[hj(x)] = x.

To represent a set X using a GBF G, all positions of G are initially marked as
unoccupied. Each element x ∈ X is then inserted as follows. First, the insertion
algorithm tries to find a hash function t ∈ [1...κ] such that G[ht(x)] is unoccupied (the
probability of not finding such a function is equal to the probability of a false positive
in the BF, which is negligible due to the choice of parameters). All other unoccupied
positions G[hj(x)] are set to random `-bit shares for j 6= t. Finally, G[ht(x)] is set

to G[ht(x)] = x ⊕
(⊕k

j=1,j 6=tG[hj(x)]
)

to obtain a valid sharing of x. We emphasize

that because existing shares need to be re-used, the generation of the GBF cannot be
fully parallelized. We describe below in §5.4.1.3 how the protocol can be modified to
enable a parallel execution. The GBF can then be used to perform PSI as outlined
in Protocol 16.

Optimization. Since one input of the sender in the OT is fixed to zero, the OT
extension protocol can be optimized such that only one value needs to be transferred

5In the GBF-based PSI protocol, ε needs to be set to the computational security parameter κ,
since one of the parties might mount a brute force attack where it attempts to find items that
are mapped to “1” locations in the Bloom filter. The parameters must ensure that the success
probability of this attack is negligible.
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PROTOCOL 16 (Garbled Bloom Filter PSI Protocol of [DCW13]).

• Input of P0: X = {x1, ..., xn0
}.

• Input of P1: Y = {y1, ..., yn1
}.

• Common Input: Symmetric security parameter κ; Statistical security parameter λ;
m = κ ·max(n0, n1)/ ln 2; GBF entry length ` = λ; k = κ random hash functions
{h1, ..., hk} : {0, 1}σ 7→ [1...m].

• Oracles and cryptographic primitives: Both parties have access to a
(

2
1

)
OTm`

functionality.

1. Using the hash functions {h1, ..., hk}, P0 generates a m-bit GBF GX with `-bit entries
from X and P1 generates a m-bit BF FY from Y .

2. The parties invoke the
(

2
1

)
OTm` functionality where, in the i-th OT, P0 plays the

sender and inputs (0`, GX [i]) and P1 plays the receiver and inputs FY [i]. P1 receives
as output the intersection GBF G(X∧Y ) for which G(X∧Y )[i] = GX [i] if FY [i] = 1

and G(X∧Y )[i] = 0` else.

3. P1 computes Z = {yj |yj =
⊕k

i=1G(X∧Y )[Hi(yj)]} for every 1 ≤ j ≤ n1.

• Output: P0 has no output; P1 outputs Z = Y ∩ Y .

from sender to receiver by using the correlated OT flavor of §3.4.1, which reduces the
communication complexity. Additionally, P0 only needs to evaluate the CRF in the
OT for one value, since the other value is ignored, while P1 only needs to evaluate
the CRF in the i-th OT if FY [i] = 1 since GBF(X∧Y )[i] is set to 0` if FY [i] = 0,
for 1 ≤ i ≤ m. To estimate the number of CRF evaluations of P1, we need to
estimate the number of entries in the BF FY that are set to 1. Based on our choice of
parameters, we can approximate the probability that a single bit in the BF is set to 1
as 1− (1− ( 1

m
))kn ≈ 1

2
. Overall, this means that for a BF of size m with k = κ hash

functions, P1 has to perform m/2 CRF evaluations.

Efficiency. The highest cost for the original GBF-based PSI protocol of [DCW13]
comes from the

(
2
1

)
OTm

` . Using our optimized
(

2
1

)
OT extension protocol from §3, P0

has to perform 2m CRF evaluations and send 2m` bits while P1 has to perform m
CRF evaluations and send mκ bits. Using the optimization described above, the
computation is reduced by factor 2× and the communication is reduced by factor 1.3×:
P0 has to perform m CRF evaluations and send m` bits while P1 has to perform m/2
CRF evaluations and send mκ bits.

5.4.1.3 Random GBF-Based PSI

We introduce a further optimization of the GBF-based PSI protocol of [DCW13], which
we call the random GBF protocol. The core idea is to have parties collaboratively



137 5.4 OT-Based PSI

generate a random GBF. This is in contrast to the original protocol where the GBF
had to be of a specific structure (i.e., have the XOR of the entries of x ∈ X be x). The
modified protocol can be based on sender random OT extension (SR-OT, cf. §3.4.2)
and can be further optimized taking into account the constant output, similar to the
original GBF protocol. P0 learns all positions of this random GBF and then sends to P1

the XOR of the GBF values corresponding to each of its inputs, and P1 compares these
values to the XOR of the GBF values of its own inputs. We describe the random GBF
protocol in more detail in Protocol 17.

PROTOCOL 17 (Our Random Garbled Bloom Filter PSI Protocol).

• Input of P0: X = {x1, ..., xn0}.

• Input of P1: Y = {y1, ..., yn1
}.

• Common Input: Symmetric security parameter κ; Statistical security parameter λ;
GBF entry length ` = λ+log2(n0)+log2(n1); m = κ·max(n0, n1)/ ln 2; k = κ random
hash functions {h1, ..., hk} : {0, 1}σ 7→ [1...m].

• Oracles and cryptographic primitives: Both parties have access to a
(

2
1

)
SR-

OTm` functionality.

1. P1 generates a m-bit BF FY from Y using the hash functions {h1, ..., hk}.

2. The parties invoke the
(

2
1

)
SR-OTm` functionality where P0 plays the sender and has

no input while P1 plays the receiver and inputs FY as choice bits. From the i-th
OT, P0 obtains two random strings (mi

0,m
i
1) ∈ {0, 1}2` while P1 obtains mi

FY [i], for
1 ≤ i ≤ m.

3. P0 creates a GBFGX s.t. GX [i] = mi
1 while P1 creates a GBFGY s.t. GY [i] = mi

FY [i]

if FY [i] = 1 and 0` else.

4. P0 computes Mi =
⊕k

l=1GX [hl(xi)] and sends the Mi’s in randomly permuted order
to P1, for every 1 ≤ i ≤ n0.

5. P1 computes Z = {yj |∃i s.t.
⊕k

l=1GY [hl(yj)] = Mi}.

• Output: P0 has no output; P1 outputs Z = Y ∩ Y .

Correctness. For each item in the intersection, P1 gets from P0 the same XOR value
that it computed from its own GBF, and therefore identifies that the item is in the
intersection. For any item which is not in the intersection, it holds with overwhelming
probability that the XOR value computed by P1 is independent of the n0 values received
from P0. The probability of a false positive identification for that value is therefore
n0·2−`. The probability of a false positive identification for any of the values is n0n1·2−`.
To achieve correctness with probability 1-2−λ, we therefore set ` = λ+log2 n0 +log2 n1.

Security. The security of each party can be easily proved using a simulation argument.
P1’s security is obvious, since the only information that P0 learns are the random
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outputs of the SR-OT protocol, which are independent of P1’s input and can be easily
simulated by P0. P0’s security is apparent from observing that the information that
P1 receives from P0 is composed of:

• The XOR values that P1 computed for each item in the intersection.

• The XOR values that P0 computed for its n0 − |X ∩ Y | items that are not in
the intersection. These values are independent of P1’s BF unless one of these
items is a false-positive identification in the filter, which happens with negligible
probability ε.

Therefore, the information received from P0 can be easily simulated by P1 given its
legitimate output, i.e., X ∩ Y .

Optimization. We can apply the same optimizations to our random GBF protocol
as to the GBF protocol. In addition, note that if P0 builds a Bloom filter FX based on
its set X, it can ignore the CRF evaluation in the i-th OT if FX [i] = 0, for 1 ≤ i ≤ m.
Analogue to P1 in the GBF protocol, this reduces the number of CRF evaluations for
P0 from m to m/2.

Efficiency. As shown in Table 5.7 on page 134, our resulting random GBF-based PSI
protocol has less computation and communication complexity than the original GBF
protocol in [DCW13] (even with the optimizations described in §5.4.1.2). In terms of
communication, in our random GBF protocol, P0 has to send the n0`-bit vector mP0

and P1 has to send mκ bits in the SR-OT. (This is compared to 2mλ bits and mκ
bits sent in the original protocol. Later in our experiments in §5.5.2 we show that the
communication is reduced by a factor between 1.3× to 1.5×, cf. Table 5.11).

A main advantage of our protocol is that it allows to parallelize all operations: BFs
can be generated in parallel (bits in the BF are changed only from 0 to 1) and, most
importantly, the random GBF can also be constructed in parallel, in contrast to the
original GBF-based protocol.

5.4.2 PSI via OT-Based OPRF

In this section, we describe our new OT-based PSI protocol, of which an earlier version
appeared in [PSZ14, PSSZ15]. In contrast to the conference versions, we improve our
protocol such that its complexity is now independent of the bit length σ for realistic
set sizes. The core of our OT-based PSI protocol is an efficient OPRF (cf. §5.1.2)
instantiation using our OT extension improvements, in particular the sender random
OT functionality (cf. §3.4.2) and the

(
N
1

)
OT extension protocol (cf. §3.2.4). Our

protocol operates in three steps: The parties hash their elements into hash tables,
mask their elements using the OPRF, and compute the plaintext intersection of these
masks to identify the intersecting elements. In the hashing step we use the methods
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from §5.2 for creating the hash tables. We give a full description of the protocol
in Protocol 18.

PROTOCOL 18 (Our OT-based PSI Protocol).

• Input of P0: X = {x1, ..., xn0
}.

• Input of P1: Y = {y1, ..., yn1
}.

• Common Input: Bit-length of elements σ; Number of bins b = εn1 (cf. §5.2.2.2); k
random hash functions {h1, ..., hk} : {0, 1}σ 7→ [1...b]; Reduced bit-length of items in
the hash table µ = σ − log2 b + log2 k; Symmetric security parameter κ; Statistical
security parameter λ; Mask-length ` = λ + log2(kn0) + log2(n1); N = 2µ; Dummy
element d1; Stash size s.

• Oracles: Both parties have access to a
(
N
1

)
SR-OT1

` functionality.

1. Hashing:

a) P0 maps the elements in its set X into a two-dimensional hash table T0[ ][ ]
using simple hashing and k hash functions {h1, ..., hk}. The first dimension has
size b and addresses the bin in the table while the second dimension addresses
the elements in the bins.

b) P1 maps the elements in its set Y into a one-dimensional hash table T1[ ] and
stash S[ ] using Cuckoo hashing and k hash functions {h1, ..., hk}. The hash
table has size b and the stash has size s. P1 then fills all empty entries in T2

and S with d1.

Let |T0[i]| be the number of elements that are stored in the i-th bin of the hash
table T0 and µ be the bit-length of these elements for 1 ≤ i ≤ b.

2. OPRF evaluation (via OT):
For each bin 1 ≤ i ≤ b, the parties perform the following steps:

a) Let vj = T0[i][j] and w = T1[i] for 1 ≤ j ≤ |T0[i]|.
b) The parties evaluate an OPRF using the

(
N
1

)
SR-OT1

` functionality, where P0

has no inputs and obtains a random N -entry lookup table L and P1 inputs w
as choice bits and obtains a random mask L[w].

c) P0 computes M0[i][j] = L[vj ] and P1 computes M1[i] = L[w].

Stash: For each element in the stash S, the parties repeat the same steps where, for
the i-th stash position, P0 evaluates the OPRF on its whole input set X and obtains
n0 masks MS0

[i] while P1 evaluates the OPRF on S[i] and obtains one mask MS1
[i].

3. Plaintext Intersection:

a) Let V =
⋃

1≤i≤b,1≤j≤|T1[i]|M0[i][j]. P0 randomly permutes and sends V to P1.

b) P1 computes the intersection Z = {T1[i]|M1[i] ∈ V }.
Stash: P0 permutes and sends MS0

[i] to P1, who adds S[i] to Z if MS1
[i] ∈MS0

[i].

• Output: P0 has no output; P1 outputs Z = X ∩ Y .

In the first step of our OT-based PSI protocol, the parties map their elements
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into hash tables T0 and T1 where the elements in the tables have bit-length µ =
σ−log2 b+log2 k due to permutation-based mapping (cf. §5.2.3). P0 uses simple hashing
and hence its hash table T0 has two dimensions, where the first dimension addresses
the bins and the second dimension addresses the elements in the bins. P1 uses Cuckoo
hashing and hence its hash table T1 has only one dimension, which addresses the bins.
Our OT-based PSI protocol then evaluates an OPRF F (cf. §5.1.2) where, for each
bin, P0 samples a random key and P1 inputs the µ-bit element in bin T1[i] and obtains
the resulting mask M1[i] = Fki(T1[i]), for 1 ≤ i ≤ b. The OPRF must ensure that P0

learns no information on the input of P1 and that P1 learns no information except the
outputs that correspond to its elements.

The main observation is that we can instantiate an OPRF for µ-bit inputs using
a
(

2µ

1

)
SR-OT1

` , where P0 plays the sender and obtains a lookup table L : {0, 1}µ 7→
{0, 1}` while P1 plays the receiver who inputs T1[i] and obtains L[T1[i]]. P0 can then
evaluate the OPRF on the elements in its bin T0[i] locally by computing M0[i][j] =
L[T [i][j]], for 1 ≤ i ≤ b and 1 ≤ j ≤ |T0[i]|. After P0 has evaluated the OPRF for all
bins i, it collects the OPRF outputs M0[i] for all |T0[i]| elements in a bin to a set V
and randomly permutes and sends V . P1 identifies whether T1[i] is in the intersection
by checking whether M1[i] matches any element in V . If the element T1[i] matches
any element in T0[i], their OPRF outputs will be equal. If T1[i] matches no element in
T0[i], their OPRF outputs will differ except with probability |T0[i]| · 2−`.

The elements in the stash of P1 are processed independently in a similar fashion:
Both parties evaluate the OPRF, P1 obtains the output for the elements in its stash,
and P0 evaluates the OPRF locally on each element of its set and sends the permuted
outputs to P1, who identifies the intersection.

Efficiency. The main computation and communication overhead comes from the
OPRF evaluation. The efficiency of the OPRF depends greatly on the underlying
instantiation. We instantiate the OPRF that maps µ-bit inputs to `-bit outputs using
our improved

(
2µ

1

)
SR-OT1

` extension protocol from §3.2.4 with the linear BCH code
[277, 512, 129], generated by [MZ06]. This [277, 512, 129] code encodes elements with up
to length µ = 77 bits using ρ = 512 bit codewords with relative Hamming distance κ.
Keeping in mind the hashing to shorter representation techniques in §2.5, this code
allows our protocol to process sets with up to 100 billion (237) elements, independently
of their bit-length σ. Overall, the parties perform s + b OPRF evaluations, which
correspond to

(
2µ

1

)
SR-OTs+b

` , where the stash size s and the number of bins b = εn1 are
chosen to achieve negligible Cuckoo hashing error probability (cf. §5.2.2.2). Regarding
the communication, P1 sends 512(s+ b) bits for the

(
2µ

1

)
SR-OT1

` , while P0 sends k`n0

bits for the permuted OPRF output, where k is the number of hash functions used
for Cuckoo hashing (cf. §5.2.2.2) and ` = λ + log2(kn0) + log2(n1). Regarding the
computation, note that in a naive

(
2µ

1

)
SR-OT1

` evaluation the sender P0 would need
to perform 2µ CRF evaluations, instantiated using SHA-256 (cf. §3.2.4), one for each
message. However, since P0 only needs to obtain the output for actual elements in its
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bins, it only needs to perform (k + s)n0 CRF evaluations.

Correctness. In the following, we analyze the correctness of the scheme. We assume
that in Step 1 in Protocol 18, P0 has used simple hashing to map each element k times
into the hash table T0 while P1 has used Cuckoo hashing to map each element once
into the hash table T1.

If x = y then P0 and P1 will have the same item in a bin in their hash tables (P1 has
mapped the item to one of k bins while P0 has mapped the item to all k bins). For
this bin, P1 obtains Mx = L[x] as output of the OPRF and P0 can locally compute
My = L[y] with Mx = My, and P1 successfully identifies equality.

If x 6= y then the probability that Mx = My is 2−`. However, we require that all
OPRF outputs M1 for elements in the hash table T1 of P1 are distinct from all outputs
M0 for elements in the hash table T0 of P0, which happens with probability kn0n12−`.
Thus, to achieve correctness with probability 1-2−λ, we must increase the bit-length
of the OT outputs to ` = λ+ log2(kn0) + log2(n1).

Security. P1’s security is obvious, since the only information that P0 learns are the
random values chosen in the random OT, which are independent of P1’s input.

As for P0’s security, note that P1’s view in the protocol consists of its outputs M1 of
the

(
N
1

)
SR-OT1

` protocols, and of the values M0 sent by P0. If there are two elements
x ∈ X and y ∈ Y with x = y, then there are outputs Mx = My. Otherwise, for x 6= y,
these values are uniformly distributed and P1 can gain no information about Mx, which
is guaranteed by the properties of the

(
N
1

)
SR-OT1

` protocol. In both cases, the view
of P1 can be easily simulated given the output of the protocol (i.e., knowledge whether
x = y). The protocol is therefore secure according to the common security definitions
of secure computation [Gol04].

5.5 Evaluation

In the following, we experimentally evaluate the most promising PSI protocols of each
category: The naive hashing protocol, the server-aided protocol [KMSB13], the DH-
based protocol [Mea86], the blind-RSA protocol [CT10], the sort-compare-shuffle cir-
cuit (SCS) [HEK12], the pairwise comparison circuit (PWC, cf. §5.3.2), the OPRF
circuit (cf. §5.3.3), the Garbled Bloom filter protocol (GBF) [DCW13], the random
Garbled Bloom filter protocol (random GBF, cf. §5.4.1.3), and our OT-based PSI pro-
tocol (cf. §5.4.2). We first discuss their implementation features and compare the
protocols theoretically (§5.5.1). We then give an empirical performance comparison
between the protocols for different settings (§5.5.2). Throughout the evaluation, we
divide the PSI protocols into four categories, depending on whether the protocol is
based on public-key operations, circuits, OT, or provides limited security and mark
the best result of each category in bold.
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5.5.1 Theoretical Evaluation

Before evaluating the empirical performance of the PSI protocols, we discuss imple-
mentation features of the protocols such as their suitability for large-scale PSI on sets
with several million elements (§5.5.1.1) or the ability of the schemes for paralleliza-
tion (§5.5.1.2), and give their asymptotic computation and communication complexi-
ties (§5.5.1.3).

5.5.1.1 Suitability for Large-Scale PSI

Although hardly discussed, memory consumption poses a very big problem when im-
plementing cryptographic schemes that operate on large amounts of data. As such,
many of the implemented PSI protocols quickly exceeded the main memory, requiring
more engineering effort and a more careful implementation to allow for PSI on larger
sets. In fact, even computing the plaintext intersection for sets of billions of elements
becomes a tedious problem, since at least one set needs to be fully stored at one point
during the execution. In this case, one can store the data on disk, which decreases
performance greatly when arbitrary look-ups are performed.

Limited Security & Public-Key-Based PSI. The naive-hashing, server-aided, and
public-key-based PSI schemes are very memory efficient, since they operate only on
single elements and can be easily pipelined, allowing PSI on millions of elements even
on standard PCs.

Circuit-Based PSI. The circuit-based PSI schemes have a very high memory con-
sumption. In our implementations, we evaluate and delete gates if they are not used
anymore to decrease the memory consumption. Yao’s garbled circuits requires more
memory for pre-computation than GMW, since κ-bit keys have to be stored for each
wire instead of single bits (cf. §2.4.3). A pipelined circuit generation and evaluation,
as is done in VMCRYPT [Mal11], FastGC [HEKM11, HS13], or PCF [KMSB13] would
allow us to perform PSI on larger sets. The main memory limitation of our GMW
implementation comes from the circuit having to be fully built and stored in memory.
To decrease the memory footprint of the circuit, we build circuits that are evaluated
many times in parallel in a SIMD fashion (cf. §4.2.2), which evaluates the circuit on
multiple values in parallel. This SIMD evaluation especially benefits the PWC and
OPRF circuits, since the same circuit is evaluated on all elements in parallel.

OT-Based PSI. The garbled Bloom filter and random garbled Bloom filter PSI proto-
cols have to store the full Bloom filter in memory to identify the intersecting elements.
The garbled Bloom filter holds 1.44nκ entries of at least λ-bit shares, resulting in at
least 875 MB for sets of one million elements. In addition, the parties have to perform
arbitrary element look-ups, which greatly decrease the performance if the Bloom filter
is outsourced to the hard disk.

The main memory limitation of our OT-based PSI protocol are the hash tables,
in particular the Cuckoo hash table. While the hash table for simple hashing can
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be easily stored on disk, the Cuckoo hash table needs to perform arbitrary look-ups
when evicting elements. The Cuckoo hash table holds 1.2n elements of at most ` =
λ + log(n0) + log(n1)-bit length, resulting in 12 MB for sets of one million elements
and hence scales much better than the Bloom filter-based protocols.

5.5.1.2 Parallelizability

The experiments we perform in the empirical evaluation only consider execution using a
single thread. However, if more computational resources are available, the schemes can
be run using multiple threads in order to improve their performance. Note, however,
that the bottleneck for many protocols (i.e., all except the public-key-based protocols)
quickly shifts from computation to communication, since symmetric cryptographic
operations can be evaluated very efficiently using AES-NI. In the following, we discuss
the ability of the schemes to be parallelized.

Limited Security & Public-Key-Based PSI. The naive-hashing, server-aided,
and public-key-based PSI schemes can easily be parallelized since the elements are
processed independently of each other. The main bottleneck for parallelization in all
these schemes is the plaintext intersection of hash values that is done at the end of
each protocol.

Circuit-Based PSI. For a discussion on the parallelizability of Yao’s garbled cir-
cuits and the GMW protocol, see §2.4.3. In summary, the setup phase of the GMW
protocol can be parallelized easily while the parallelizability of Yao’s garbled circuits
depends on the evaluated circuit. The PWC and OPRF circuits can be parallelized
well, since they consist of many independent sub-circuits. The SCS circuit requires
more involved circuit-dependent parallelization methods, since the sub-circuits have
many interconnections. For the SCS circuit, an automatically parallelizing compiler
could be used [BK15].

OT-based PSI. For all OT-based PSI protocols it holds that the underlying OT
extension protocol can be parallelized well. The main differences in parallelizability
are due to the hashing scheme that is used to map the elements into the corresponding
structure. In the GBF-based PSI protocol of [DCW13], P0 has to generate the garbled
Bloom filter in advance, and this step does not parallelize well. This is improved
on by our random GBF protocol from §5.4.1.3, where the GBF is generated as an
output of OT extension and can hence be fully parallelized. In our OT-PSI protocol,
the main bottleneck for parallelization is the Cuckoo-hashing procedure. However,
Cuckoo hashing can be pre-processed since no input of the other party is required.

5.5.1.3 Asymptotic Performance Comparison

We depict the asymptotic computation complexity for the party with the majority of
the workload and total communication complexity of the PSI protocols in Table 5.8.
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Type Protocol Computation [#Ops sym/pk] Communication [bit]

Limited Naive Hashing w sym n0`

Security Server-aided [KMRS14] w sym t +|X ∩ Y |

Public-Key

DH FFC [Mea86] 2t pk tψ + n0`

DH ECC [Mea86] 2t pk tξ + n0`

RSA [CT10] 2t pk tψ + n0`

Circuit

Yao SCS [HEK12] 12wσ logw + 3wσ sym 6wκσ logw + 2wκσ

GMW SCS [HEK12] 18wσ logw sym 6w(κ+ 2)σ logw

Yao PWC (§5.3.2) σ(4εn1maxb + 4sn0 + 3εn1) sym 2εn1κmaxbσ + 3sn0κσ + 2εn1σ

GMW PWC (§5.3.2) 6σ(εn1maxb + sn0) sym 2(2 + κ)σ(εn1maxb + sn0)

Yao OPRF (§5.3.3) 21 760n1 + 3σn1 sym 10 880n1κ+ 2n1κσ + n0`

GMW OPRF (§5.3.3) 32 640n1 sym 10 880n1(κ+ 2) + n0`

OT

GBF [DCW13] 3.6wκ sym 1.44wκ(κ+ λ)

Random GBF (§5.4.1.3) 3.6n1κ sym 1.44n1κ2 + n0`

OT + Hashing (§5.4.2) 3εn1 + (k + s)n0 sym 512εn1 + (k + s)n0`

Table 5.8: Asymptotic complexities for PSI protocols (σ: bit length of set elements;
t = n0 + n1; w = max(n0, n1); pk: public-key operations; sym: symmetric
cryptographic operations; ` = λ + log n0 + log n1; κ, ψ, ξ, λ: security
parameters as defined in §2.1.3; ε, k, s,maxb: Hashing parameters as defined
in §5.2.1 and §5.2.2). Computation gives the number of operations that need
to be performed in sequence.

The computation complexity is expressed as the number of symmetric cryptographic
primitive evaluations (sym) and the number of asymmetric cryptographic primitive
operations (pk). We assume 3 sym per OT (2.5 sym for the Bloom filter-based
protocols), 4 sym per AND gate in Yao’s protocol, and 6 sym per AND gate in the
GMW protocol. For GMW, we use 2-MT pre-computation (cf. §4.3.2) and omit N -MT
pre-computation (cf. §4.3.3). For a comparison between 2-MT and N -MT refer to §4.6.

The most crucial observation we make from the asymptotic complexities is that,
asymptotically, the performance amongst the schemes with the same type is very sim-
ilar. The naive hashing and server-aided protocol both require 1 sym operation per
element, the public-key-based protocols all require 2 pk operations per element and
need to send two ciphertexts and a hash value, the circuit-based protocols all have
to perform work linear in the number of AND gates in the circuit, and the Bloom
filter-based protocols both have to perform work linear in the size of the Bloom filter.
The main discrepancy can be seen among the OT-based protocols, where the commu-
nication of the Bloom filter-based protocols scales quadratically with the symmetric
security parameter κ while our OT-based PSI protocol scales only linear in the secu-
rity parameter κ (we need 512-bit codewords to achieve relative Hamming distance κ,
cf. §3.2.4.1).
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5.5.2 Empirical Evaluation

We empirically evaluate and compare the performance of the presented semi-honest
PSI protocols. We first describe our benchmarking environment and outline our im-
plementations (§5.5.2.1). We then benchmark the protocols in a LAN and a WAN
setting and give their concrete communication for sets of equal (§5.5.2.2) and unequal
size (§5.5.2.3). Finally, we evaluate the performance on the parallelizability of PSI
schemes (§5.5.2.4) as well as for large-scale PSI (§5.5.2.5).

5.5.2.1 Benchmarking Environment

We ran our experiments in a LAN and a WAN setting. The LAN setting consists of
two PCs (Intel Haswell i7-4770K CPU with 3.5 GHz and AES-NI support and 16 GB
RAM) that are connected via a Gigabit Ethernet. The WAN setting consists of two
Amazon EC2 m3.medium instances (Intel Xeon E5-2670 CPU with 2.6 GHz and AES-
NI support and 3.75 GB RAM) that are located in North Virginia (US east coast) and
Frankfurt (Europe) with an average bandwidth of 98 MBit/s and an average round-trip
time of 94 ms.

We evaluate the performance of the PSI protocols in two scenarios. In the first sce-
nario, P0 and P1 hold the same number of input elements n0, n1 ∈ {28, 212, 216, 220, 224}.
In the second scenario, P0 has a larger set than P1 and we set n0 ∈ {216, 220, 224} and
n1 ∈ {28, 212}. We present the total run-times of the protocols (setup time and online
time). For the SCS and PWC circuit-based protocols whose complexity depends on
the bit-length of elements σ, we fix σ = 32 (e.g., for PSI on IPv4 addresses). We use
the long-term security parameters as described in §2.1.3. We benchmarked the server-
aided PSI protocol of [KMRS14] by executing the trusted server on one machine and
the two clients that wish to compute the intersection on the second machine.

Implementations. The implementation of the blind-RSA-based [CT10] and gar-
bled Bloom filter [DCW13] protocols were taken from the authors, but we used a
hash-table to compute the last step in the blind-RSA protocol that finds the intersec-
tion (the original implementation used pairwise comparisons with quadratic run-time
overhead) and our

(
2
1

)
OT extension implementation from §3 for the Bloom filter

protocol. We use our state-of-the-art Yao’s garbled circuits and GMW protocol im-
plementations with 2-MT pre-computation (cf. §4.3.2) in the C++ ABY framework
from §4. Note, however, that we use Yao’s garbled circuits without inter party paral-
lelization (cf. §2.4.1.2) to analyze the performance, independent of the parallelizability
of the circuit. For Yao’s garbled circuits protocol, we evaluated a size-optimized ver-
sion of the SCS circuit (comparison circuits of size and depth σ) while for GMW we
evaluated a depth-optimized version (comparison circuits of size 3σ and depth log2 σ)
for σ-bit input values (cf. §4.2.1.7). We instantiate the pseudo-random permutation of
the server-aided PSI protocol in [KMRS14] and the CRF in the

(
2
1

)
OT extension with

AES, and the RO and the CRF in the
(
N
1

)
OT extension with SHA-256. We imple-
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Figure 5.3: LAN run-time in s and communication in MBytes of PSI protocols for
n0 = n1 = 220 elements and κ = 128-bit security. Detailed results are
given in Table 5.9 and Table 5.11.

mented FFC (finite field cryptography) using the GMP library (v. 5.1.2), ECC using
the Miracl library (v. 5.6.1), and symmetric cryptographic primitives using OpenSSL
(v. 1.0.1e). We perform all operations in FFC in a subgroup of order q, where |q| = 2κ-
bits. We argue that we provide a fair comparison, since all protocols are implemented
in the same programming language (C/C++), run on the same hardware, and use the
same underlying libraries for cryptographic operations.

For each protocol we measured the time from starting the program until the client
outputs the intersecting elements. All run-times are averaged over 10 executions.

5.5.2.2 PSI with Equal Set Sizes

We evaluate the empirical performance of the PSI protocols in the LAN setting and
give the concrete communication of the protocols. While the LAN setting does not
necessarily represent a real-world setting for PSI, it allows us to benchmark the proto-
cols in an almost ideal network setting and hence focus on the computation complexity
of the protocols. We give a classification for n = 220 element sets in Figure 5.3 and
depict the detailed run-time for the LAN setting in Table 5.9 and for the WAN setting
in Table 5.10. The communication is given in Table 5.11. We now compare the per-
formance of the different types of PSI protocols and then compare the PSI protocols
of the same type.
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Type Set Size n 28 212 216 220 224

Limited Naive Hashing 1 3 38 665 12 368

Security Server-aided [KMRS14] 1 5 78 1 250 20 053

Public-Key

DH FFC [Mea86] 386 5 846 88 790 1 418 772 22 681 907

DH ECC [Mea86] 231 3 238 51 380 818 318 13 065 904

RSA [CT10] 779 12 546 203 036 3 193 920 50 713 668

Circuit

Yao SCS [HEK12] (σ = 32) 320 3 593 74 548 - -

GMW SCS [HEK12] (σ = 32) 361 1 954 40 872 - -

Yao PWC (§5.3.2, σ = 32) 428 2 294 28 491 - -

GMW PWC (§5.3.2, σ = 32) 460 1 324 10 656 124 732 -

Yao OPRF (§5.3.3) 968 12 518 - - -

GMW OPRF (§5.3.3) 690 6 672 101 231 - -

OT

GBF [DCW13] 105 448 4 179 65 218 -

Random GBF (§5.4.1.3) 95 346 2 991 49 171 -

OT + Hashing (§5.4.2) 311 362 702 5 847 86 278

Table 5.9: Run-times in ms for PSI protocols with one thread in the LAN setting. σ:
bit-length of elements. “-” indicates that the execution ran out of memory.

Type Set Size n 28 212 216 220

Limited Naive Hashing 51 119 886 7 277

Security Server-aided [KMRS14] 124 248 1 987 15 578

Public-Key

DH FFC [Mea86] 3 577 56 786 880 075 11 557 061

DH ECC [Mea86] 1 949 28 686 466 606 5 007 681

RSA [CT10] 10 508 166 453 1 356 757 21 094 586

Circuit

Yao SCS [HEK12] (σ = 32) 2 763 20 826 518 136 -

GMW SCS [HEK12] (σ = 32) 5 929 14 415 187 750 -

Yao PWC (§5.3.2, σ = 32) 4 248 17 897 178 522 -

GMW PWC (§5.3.2, σ = 32) 2 872 7 644 59 572 472 687

Yao OPRF (§5.3.3) 6 001 65 156 - -

GMW OPRF (§5.3.3) 6 939 27 660 386 243 -

OT

GBF [DCW13] 1 248 5 424 31 581 345 484

Random GBF (§5.4.1.3) 968 3 863 22 031 220 570

OT + Hashing (§5.4.2) 2 278 2 915 8 215 58 418

Table 5.10: Run-times in ms for PSI protocols with one thread in the WAN setting. σ:
bit-length of elements. “-” indicates that the execution ran out of memory.

Comparison between Types. From Figure 5.3, we can observe that PSI protocols
of the same type have a similar run-time and communication with the exception of the
OT-based PSI protocols. The insecure naive hashing protocol and server-aided PSI
protocol outperform the other PSI protocols by at least an order of magnitude in com-
putation and communication. The public-key-based PSI protocols require only little
communication (especially the DH-ECC protocol), but have the highest run-time. The
circuit-based PWC protocol is the only circuit-based protocol to successfully process
sets of 220 elements and has a faster run-time than the public-key-based protocols but
requires two orders of magnitude more communication. Finally, the OT-based PSI



Chapter 5 Faster Private Set Intersection 148

Type Set Size n 28 212 216 220 224

Limited Security
Naive Hashing 0.002 0.031 0.600 10.000 176.000

Server-aided [KMRS14] 0.003 0.063 1.133 20.125 354.000

Public-Key

DH-based FFC [Mea86] 0.195 3.125 50.000 800.000 12 800.000

DH-based ECC [Mea86] 0.020 0.280 4.560 74.000 1 200.000

RSA-based [CT10] 0.195 3.125 50.000 800.000 12 800.000

Circuit

Yao SCS [HEK12] (σ = 32) 7.522 168.590 3 484.751 - -

GMW SCS [HEK12] (σ = 32) 7.319 162.851 3 348.011 - -

Yao PWC (§5.3.2, σ = 32) 8.833 124.098 1 751.780 - -

GMW PWC (§5.3.2, σ = 32) 5.587 78.229 1 101.383 14 014.427 -

Yao OPRF (§5.3.3) 44.033 704.210 - - -

GMW OPRF (§5.3.3) 43.193 690.890 11 054.050 - -

OT

GBF [DCW13] 1.037 17.314 288.560 4 801.639 -

Random GBF (§5.4.1.3) 0.723 11.574 185.241 2 964.855 -

OT + Hashing (§5.4.2) 0.055 0.456 6.799 111.299 1 828.528

Table 5.11: Concrete communication in MB for PSI protocols. σ: bit-length of ele-
ments. “-” indicates that the execution ran out of memory.

protocols differ in performance: The GBF protocol of [DCW13] has a similar run-time
and communication as the circuit-based PWC protocol and our OT-based PSI proto-
col has a faster run-time than the public-key and circuit-based protocols and requires
at least an order of magnitude less communication compared to the circuit-based pro-
tocols. Among all PSI protocols, our novel OT-based PSI protocol is the fastest and
requires similar communication as the DH-ECC protocol of [Mea86].

Limited Security-Based PSI. The naive hashing protocol outperforms the server-
aided protocol by factor 2× in run-time and communication. However, these protocols
have weaker security guarantees than the other protocols that we describe.

Public-Key-Based PSI. For the public-key-based PSI protocols, we observe that
the DH-based protocol of [Mea86] outperforms the RSA-based protocol of [CT10]
when using finite field cryptography (FFC). The elliptic curve cryptography (ECC)
instantiation of the DH-based protocol becomes even more efficient and outperforms
the FFC instantiation by factor 2×. The advantage of the ECC-based protocol is its
communication complexity, which is lowest among all PSI protocols (cf. Table 5.11).
We note that a major advantage of these protocols is their simplicity, which makes
them relatively easy to implement.

Circuit-Based PSI. We compare the sort-compare-shuffle (SCS) circuit of [HEK12],
our PWC circuit (§5.3.2), and the OPRF circuit (§5.3.3), evaluated using Yao’s garbled
circuits and GMW. We can observe that the PWC circuit scales better than the SCS
and OPRF circuits with increasing set sizes and is at least 3 times more efficient for
sets of 216 elements. Due to its simple functionality, the PWC circuit can scale up to
much larger set sizes and can even process two sets of 220 elements sets using GMW.
The SCS circuit outperforms the OPRF circuit and scales better to larger set sizes due



149 5.5 Evaluation

100

250

500

750

1 000

1 10 100 1 000 10 000 100 000

C
o

m
m

u
n

ic
a

ti
o

n
 (

M
B

y
te

s
)

Run−time (s)

Limited
PK−based

   Circuit
        OT−based

Naive

Server Aided

OT+Hash

DH−ECCGMW OPRF

Yao OPRF

Figure 5.4: LAN run-time in s and communication in MBytes of PSI protocols for
unequal sets of 224 = n0 � n1 = 212 elements and κ = 128-bit security.
Detailed results are given in Table 5.13 and Table 5.15.

to the large constants in the OPRF circuit.

OT-Based PSI. The random GBF protocol in §5.4.1.3 improves the optimized GBF
variant in §5.4.1.2 by around factor 1.5× in run-time and communication.

Our OT-based PSI protocol has a higher run-time than both of the Bloom filter-
based protocols for small set sizes since the number of base-OTs (and hence public-key
operations) that are required for the

(
N
1

)
OT extension is four times higher. However,

this workload is linear in the security parameter and amortizes with increasing set
sizes. For larger set sizes of n ≥ 212, our OT-based PSI protocol is up to 9× more
efficient in terms of run-time than the random GBF protocol and has between factor
12× and 25× less communication.

5.5.2.3 PSI with Unequal Set Sizes

In many applications of PSI, the set sizes of the parties are not equal. In fact, often
a client with a small set of only a few hundred elements wants to perform PSI with a
server, which holds a database of millions of records. We perform PSI with unequal
set sizes n0 ∈ {216, 220, 224} and n1 ∈ {28, 216} using the previously best performing
protocols of each category: Naive hashing, the server-aided protocol of [KMRS14], the
DH-ECC protocol of [Mea86], the PWC (cf. §5.3.2) and OPRF circuits (cf. §5.3.3),
and our OT-based PSI protocol (cf. §5.4.2). We evaluate their performance in the



Chapter 5 Faster Private Set Intersection 150

LAN and WAN setting and graphically compare the protocols based on their run-
time and communication in Figure 5.4, give the resulting run-times in Table 5.13
and Table 5.14, and give the concrete communication in Table 5.15. For the circuit
PWC protocol and our OT-based PSI protocol, which both use hashing techniques,
we used the parameters given in Table 5.12.

Server Set Size n0 216 220 224

Client set size n1 = 28

Parameter k ε s maxb k ε s maxb k ε s maxb

Circuit PWC (§5.3.2, σ = 32) 3 1.27 0 804 3 1.27 0 10 426 2 16 1 8 938

OT + Hashing (§5.4.2) 3 1.27 0 0 3 1.27 0 0 2 2500 0 0

Client set size n1 = 212

Parameter k ε s maxb k ε s maxb k ε s maxb

Circuit PWC (§5.3.2, σ = 32) 3 1.27 0 98 3 1.27 0 816 3 1.27 0 10 488

OT + Hashing (§5.4.2) 3 1.27 0 0 3 1.27 0 0 3 1.27 0 0

Table 5.12: Parameters for circuit PWC and our OT-based protocol used for the un-
equal set size experiments.

Type
Client Set Size n1 28 212

Server Set Size n0 216 220 224 216 220 224

Limited Naive Hashing 30 362 5 965 31 362 6 126

Security Server-aided [KMRS14] 63 515 7 267 65 524 7 571

Public-Key DH ECC [Mea86] 52 073 814 839 12 · 106 52 057 815 715 12 · 106

Circuit

Yao PWC (§5.3.2, σ = 32) 7 468 - - 9 351 - -

GMW PWC (§5.3.2, σ = 32) 2 879 32 879 - 4 915 31 897 -

Yao OPRF (§5.3.3) 996 1 194 3 882 11 414 11 764 14 347

GMW OPRF (§5.3.3) 692 821 3 425 6 283 6 394 8 975

OT OT + Hashing (§5.4.2) 624 2 738 41 815 641 3 197 42 597

Table 5.13: Run-times in ms for PSI protocols with unequal set sizes n0 � n1 in the
LAN setting. σ: bit length of elements. “-” indicates that the execution
ran out of memory.

The results are similar to the equal set size experiments with two notable exceptions.
Firstly, the OPRF circuit performs extremely well and achieves a similar run-time as
the server-aided protocol and even outperforms naive hashing for n0 = 224 and n1 = 28.
This good performance of the OPRF circuit can be explained by the asymmetric costs
for processing the sets of the client and server. While each element in the set of the
client is encrypted by securely evaluating an AES circuit using generic secure compu-
tation techniques, the server only needs to encrypt each element in its set using AES
with a fixed key and send ` = λ+log2(n0)+ log2(n1) bits from the resulting ciphertext
to the client. Since the set size of the client is small, the overhead for the generic
secure computation techniques does not impact the overall run-time significantly.



151 5.5 Evaluation

Type
Client Set Size n1 28 212

Server Set Size n0 216 220 216 220

Limited Naive Hashing 59 1 066 179 1 139

Security Server-aided [KMRS14] 170 1 871 267 1 989

Public-Key DH ECC [Mea86] 156 068 2 451 092 158 159 2 486 141

Circuit

Yao PWC (§5.3.2, σ = 32) 39 815 - 57 581 -

GMW PWC (§5.3.2, σ = 32) 13 879 103 251 16 534 128 972

Yao OPRF (§5.3.3) 6 636 7 947 64 418 67 284

GMW OPRF (§5.3.3) 5 730 7 545 31 653 33 593

OT OT + Hashing (§5.4.2) 2 278 8 721 2 538 11 576

Table 5.14: Run-times in ms for PSI protocols with unequal set sizes n0 � n1 in the
WAN setting. σ: bit length of elements. “-” indicates that the execution
ran out of memory.

Type
Client Set Size n1 28 212

Server Set Size n0 216 220 224 216 220 224

Limited Naive Hashing 0.5 9.0 144.0 0.6 9.0 160.0

Security Server-aided [KMRS14] 0.5 9.0 144.0 0.6 9.0 160.0

Public-Key DH ECC [Mea86] 2.3 30.0 592.0 2.6 37.5 592.3

Circuit

Yao PWC (§5.3.2, σ = 32) 336.3 - - 535.1 - -

GMW PWC (§5.3.2, σ = 32) 204.2 2 643.4 - 333.5 2 778.3 -

Yao OPRF (§5.3.3) 41.0 49.4 184.4 646.7 655.1 790.1

GMW OPRF (§5.3.3) 41.5 49.9 187.4 654.6 663.0 798.0

OT OT + Hashing (§5.4.2) 1.5 27.1 432.0 2.0 27.3 480.3

Table 5.15: Concrete communication in MB for PSI with unequal set sizes n0 � n1. σ:
bit-length of elements. “-” indicates that the execution ran out of memory.

The second exception is our OT-based PSI protocol, which achieves better commu-
nication than even the DH-based ECC protocol of [Mea86]. The low communication
of our OT-based protocol is because the number of OTs, which dominate the com-
munication for equal set sizes, is very low for unequal set sizes since it scales with
the smaller set size n1. The majority of the communication for the unequal set size
experiments comes from the ` = λ+ log2(kn0) + log2(n1) ≈ 80 bit masks that P0 sends
to P1, which are smaller than the elliptic curve field size of 283 bit.

5.5.2.4 Multi-Threaded PSI

We evaluate the parallelizability of the best performing PSI protocol in each category
by running up to four threads in parallel and depict the results in Table 5.16. We
benchmark the FFC instantiation of the DH-based protocol instead of the ECC in-
stantiation since the Miracl library does not allow for easy parallelization. Of special
interest is the last column, which shows the ratio between the run-times with four
threads and a single thread, for an input of 220 elements.
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The DH-based protocol, which is very simple and is easily parallelizable, achieves the
best speedup of 2.8 as computation is the performance bottleneck. The GMW protocol
achieves a speedup of about 1.9 at 2 threads already and, for 3 and 4 threads, does
not decrease much due to the communication bottleneck. Finally, the naive hashing
protocol and our OT-based PSI protocol both achieve a moderate speedup of 1.7 and
1.4, respectively, also due to the communication bottleneck.

Threads 1 2 3 4 Speedup 4 7→ 1

Naive Hashing 0.665 0.494 0.398 0.385 1.73
DH-based FFC [Mea86] 1 418.772 961.123 659.895 509.990 2.78
GMW PWC (§5.3.2, σ = 32) 124.732 66.144 64.814 64.188 1.94
OT + Hashing (§5.4.2) 5.847 4.626 4.193 4.084 1.44

Table 5.16: Run-times in seconds for PSI on sets with sizes n0 = n1 = 220 using
multiple threads.

5.5.2.5 PSI on Billion Element Sets

Finally, we demonstrate the scalability of our OT-based PSI protocol by evaluating
it on sets of a billion σ = 128-bit elements each. For these sizes, the input elements
require 15 GB of storage, which exceeds the main memory of our local servers. In-
stead, the servers store the elements and intermediate values on their respective solid
state drive (SSD). We also benchmark the naive hashing protocol as a baseline for
performance. We refrained from adding more main memory to process these sets, even
though it is the most simple solution, since we are interested in the performance of the
protocols if data needs to be stored on the SSD.

To compute the intersection between two sets of a billion elements, naive hashing
requires 74 min, of which 19 min (26%) are spent on hashing and transferring data and
55 min (74%) are spent on computing the plaintext intersection. Our OT-based PSI
protocol requires 34.2 hours in total, of which 30.0 hours (88%) are spent on simple
hashing (Cuckoo hashing runs in parallel and requires 16.3 hours), 3.0 hours (9%) are
spent on computing the OT routine, and 1.2 hours (4%) are spent on computing the
plaintext intersection.



6 Conclusion

We conclude this thesis by summarizing our results (§6.1) and outlining directions for
future work (§6.2).

6.1 Summary

This thesis addresses the research question “Can OT extension enable more efficient
secure two-party computation?”. We answer this question in the positive by improving
the efficiency of OT extension protocols and showing that OT extension can be used to
enable more communication-efficient generic secure two-party computation and faster
private set intersection. More detailed, our results can be summarized as follows:

Faster OT Extension (§3). We improve the efficiency of OT extension in the semi-
honest and malicious model. We first optimize the 1-out-of-2 OT extension protocol
of [IKNP03] and show that our optimized protocol achieves factor 2× faster run-time
and fully utilizes a Gigabit network using only a single thread. We then optimize the
1-out-of-N OT extension protocol of [KK13] and show that it requires roughly factor
3× more computation complexity than our optimized 1-out-of-2 OT extension protocol
but saves factor 2× communication for 1-out-of-2 OT on short strings.

Communication-Efficient Generic Secure Two-Party Computation (§4). We
show that the communication often is the main bottleneck for generic secure compu-
tation protocols. We demonstrate that Yao’s garbled circuits performs better than the
GMW protocol for small sequential functionalities while the GMW protocol performs
better for functionalities that are evaluated many times in parallel or if the bandwidth
is low. We outline OT-based special-purpose protocols that improve the performance
for various functions and combine them with generic secure protocols using our mixed-
protocol framework called ABY, which results in overall faster protocols.

Faster Private Set Intersection (§5). Our evaluation shows that the first PSI
protocol of [Mea86] outperforms many of the more recent solutions. Our OT-based
PSI protocol improves the run-time compared to existing protocol by around two
orders of magnitude on average and reduces the overhead compared to the insecure
naive hashing protocol that is used in practice from factor 100× for the previous best
protocol to factor 8×. In case the set sizes of the parties greatly differ, protocols based
on generic secure computation techniques even achieve nearly the same performance
as the insecure naive hashing protocol.
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6.2 Future Work

The field of practical secure computation has advanced considerably in recent years
due to many works that have steadily improved the performance. In fact, local com-
putation has been improved by such an extent, that the communication has become
the main bottleneck for many secure computation protocols. In the following, we give
directions for future work on improving the practicality and real-world adoption of se-
cure computation: Further improving the communication and computation complexity
of protocols (§6.2.1), reducing the overhead of a Boolean circuit representation (§6.2.2),
and extending our results to the malicious adversary model (§6.2.3).

6.2.1 Reducing Communication / Computation Complexity

Improving the communication and computation complexity of secure computation pro-
tocol is an important step that helps pushing secure computation closer to adoption
in practice. An obvious way of improving the computation would be to optimize the
implementations. For instance, matrix transposition, required in OT extension pro-
tocols (cf. §3.2.2), has been further improved using Intel AVX instructions [OOS17],
while the JustGarble framework [BHKR13] uses a cache-efficient and highly specialized
architecture that is tailored to Yao’s garbled circuits and achieves nearly twice the lo-
cal garbling speed of our Yao’s garbled circuit implementation within our more generic
mixed-protocol framework (8 million AND/s in the setup phase for JustGarble [BK15]
vs. 4.6 million ANDs/s for our implementation, cf. §4.6.2).

Other than optimizing the implementation, the run-time of protocols can be im-
proved using more efficient instantiations of cryptographic primitives. For instance, our
optimized

(
N
1

)
OT extension protocol from §3.2.4 has a factor 3× higher computation

overhead than our optimized
(

2
1

)
OT extension protocol from §3.2.3, which is due to

the instantiation of the correlation-robust function (CRF) (cf. §2.2.4). More detailed,
while the

(
2
1

)
OT extension protocol allows to instantiate the CRF using fixed-key

AES, the
(
N
1

)
OT extension protocol needs to process values that are larger than the

AES block-length and hence requires more expensive CRF instantiations (cf. §3.2.4.2).
The Simpira family of cryptographic permutations [GM16] allows to process inputs of
length 128b, where b ≥ 1 using only the AES round function and seems like a perfect
fit to improve the computation complexity for

(
N
1

)
OT extension.

In §4.4.2 we show that for some functionalities, the communication complexity can be
decreased using a representation as lookup table. We introduced the SP-LUT protocol,

which for lookup tables with ` input and o output bits, pre-computes a
(

2`

1

)
OT in the

setup phase and sends o2` correction bits in the online phase. An interesting question
for future work is whether it is possible to extend the multiplication triples (cf. §2.4.2)
to arbitrary polynomials with multiple input bits that can be pre-computed using our
improved

(
N
1

)
OT extension protocol to achieve better communication in the online

phase.
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6.2.2 Boolean Circuit Representation

The Boolean circuit representation imposes a limitation on the local computation
and scalability of state-of-the-art secure computation techniques. The limitation on
the local computation is because the parties have to perform memory lookups and
computation linear in the size of the Boolean circuit, i.e., for each gate separately.
The scalability limitation of the Boolean circuit representation is particularly relevant
for multi-round protocol such as GMW, where the parties have to store the full Boolean
circuit in memory during one point of the computation to schedule the gates such that
they are evaluated when the inputs become available [KSS13a, ZSB13].

In the following, we discuss two directions for future research that aim to cope with
these problems: Reducing local computation time using data locality optimizations and
improving scalability using a modular circuit representation. Note that, even though
our SIMD optimization (cf. §4.2.2) can be used to achieve both goals, it only works
for specific functions and does not generalize well to arbitrary functions.

Optimizing Data Locality. Since the cost for evaluating symmetric cryptographic
operations for an AND gate has been drastically reduced [BHKR13, GLNP15], the
memory lookup time for accessing individual gates is increasingly dominating the local
computation time. Indeed, when representing a function as Boolean circuit, each gate
requires a memory lookup, which seems like an inevitable overhead.

In order to reduce the cost for a memory lookup, one could decrease the cache misses
using data locality optimized scheduling techniques (e.g., [WL91]). These techniques
could allow to re-use gates that are held in cache by scheduling the gate evaluation such
that connected gates are evaluated in direct sequence. Related ideas to this approach
were presented but not evaluated in [SHS+15], which introduced a compact circuit
format that reduced the number of cache misses as a side-effect.

Modular Circuit Representation. To achieve communication rounds linear in the
multiplicative depth, the GMW protocol needs to schedule the gates in the circuit layer-
wise. To perform this scheduling, the complete circuit needs to be stored in memory
at one point during the computation [KSS13a, ZSB13]. This approach, however, does
not scale well to large circuits with billions of gates.

To solve this scheduling problem, one could adopt a multi-stage circuit compilation
process together with an in-time circuit substitution. The multi-stage circuit compi-
lation process would allow high level operations, such as additions or multiplications,
to be kept in high-level form that could be scheduled using existing automatic par-
allelization compiler techniques [BK15]. When the circuit is evaluated, the high-level
operations could then be substituted by optimized circuit building blocks during run-
time. This would allow to perform compilation and scheduling on a smaller and more
high-level description of the circuit, without requiring the large memory footprint of a
Boolean circuit representation.
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6.2.3 Extension to Malicious Adversaries

The focus in this thesis has been on protocols that provide security against semi-
honest adversaries. While this model has practical relevance (cf. §2.1.4), its main
goal is to serve as a stepping stone for designing efficient protocols in the malicious
adversary model. Although some of our optimizations directly translate to improve-
ments for protocols in the malicious adversary model, e.g., our algorithmic improve-
ments for OT extension in §3.2 and our circuit-based optimizations in §4.2, most
of our protocols are only secure in the semi-honest model and are non-straight for-
ward to extend. Recent work extended partial results of this thesis to the malicious
model: [KOS16] extended our OT-based integer multiplication from §4.4.3 to mali-
cious adversaries, [OOS17, PSS17] extended the

(
N
1

)
OT extension protocol of [KK13]

to malicious adversaries, and [Lam16] extended our OT-based PSI protocol from §5.4.2
to the setting of malicious client and semi-honest server.

We see it as open problem for future work to extend our N -MT protocol from §4.3.3,
our SP-LUT protocol from §4.4.2.3, and our transformations for realizing mixed-
protocols from §4.5.2 to the malicious model and to achieve full malicious security
for our OT-based PSI protocol from §5.4.2.
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