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Abstract - English

In 2013, the Portable Circuit Format (PCF) project was started to improve the way circuits for secure
computation can efficiently be built, stored and evaluated. Secure computation is a growing field of
cryptography, especially in the last decade and allows two or more parties to jointly evaluate a common
function over their inputs without the need to disclose any information but the final result of the cal-
culation. To allow an evaluation in such an oblivious way, the common function is first translated into
a circuit, that consists of the combination of many connected Boolean gates. These - usually very big -
circuits have to be processed efficiently, which is a known problem of secure computation, but necessary
to make it usable for a bigger audience and hence assist in its dissemination.

In the course of this thesis, all components of the PCF project are described as well as their relation
to each other. In addition, different improvements for the project have been implemented with regard
to recent researches. The existing implementation that is used for the function evaluation based on the
known approach of Yao’s Garbled Circuits (GC). We add an implementation of the Goldreich, Micali
and Wigderson (GMW) protocol, since the GMW approach provides a more efficient function evaluation
for certain circuits. With the aim to support different arithmetic operations in addition to the existing
Boolean ones, we introduce some new expressions for the circuit evaluation description. The advantages
and disadvantages of all implemented project modifications are presented in detail in the course of this
thesis.

Abstract - German

Die vorliegende Thesis beschäftigt sich mit verschiedenen Aspekten des Portable Circuit Format (PCF)
Projektes, mit dessen Hilfe sich Circuits für Secure Computation effizienter aufbauen, speichern und
verarbeiten lassen. Secure Computation bezeichnet ein in den letzten Jahren wachsendes Feld der Kryp-
tographie, bei dem zwei oder mehr Parteien gemeinsam eine Funktion auf ihren Eingaben auswerten,
ohne Informationen über ihre Eingaben preisgeben zu müssen. Lediglich die Funktionsausgabe ist am
Ende allen Parteien bekannt. Um eine solche Berechnung zu ermöglichen, übersetzen viele bekannte
Verfahren die Funktion zuerst in einen Circuit, eine Struktur aufgebaut aus der Verknüpfung Boolescher
Gates. Diese - meist riesigen - Circuits effizient zu verarbeiten ist ein bekanntes Problem von Secure
Computation, aber auch Voraussetzung, um es für einen größeren Kreis von Entwicklern und deren An-
wendungen verfügbar zu machen.

Die einzelnen Komponenten des PCF Projektes werden im Rahmen dieser Thesis vorgestellt sowie deren
Zusammenspiel beschrieben. Darüber hinaus wurden verschiedene Verbesserungen für das Projekt re-
alisiert, welche neuere Forschungsergebnisse berücksichtigen. Wir ergänzen die vorhandene Implemen-
tation der Funktionsauswertung, welche auf dem Verfahren von Yao’s Garbled Circuits (GC) basiert,
um das Verfahren von Goldreich, Micali and Wigderson (GMW), einer in vielen Fällen effektiveren
Möglichkeit Funktionen nach dem Secure Computation Prinzip auszuwerten. Zudem verbessern wir
die Möglichkeiten die Auswertung des Circuits zu beschreiben, indem wir arithmetische Operationen
neben den vorhandenen Booleschen einführen. Die Vor- und Nachteile aller Projektmodifikationen wer-
den im Verlauf dieser Thesis ausführlich dargestellt.
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1 Introduction
Privacy protection is an important topic for many technologies and products nowadays. More and more
technical devices, which collect and handle our private data continually, are ubiquitous in our everyday
life. Most people appreciate the advantages of these devices, like smartphones, but also want to retain
control over their data. They want to decide, who is allowed to use their data and for example un-
der what circumstances the data may be used or shared with third parties. Existing practices for dealing
with private data are often not transparent for customers and mainly based on confidence in the provider.

Secure computation could play an important role to give people back more control over the process-
ing of their private data. It is a field of cryptography, in which a lot of research has been done during the
last decade and deals with a problem Andrew C. Yao has introduced in 1986 [Yao86]. Nowadays it is
receiving more and more practical relevance: How can n parties with inputs x i (i ∈ {1,2, ..., n}) jointly
compute a function f (x1, x2, .., xn) without revealing any information but the output of the function,
especially no information about other parties’ inputs? Additionally, secure computation does not need a
trusted third party to be involved, which simply could compute and share the function output.

For a secure process, a secure computation protocol has to guarantee particular properties, including
privacy and correctness. No information but the function’s output should be leaked during the proce-
dure and as a result of correctness, all parties can be sure to obtain the correct output at the end of the
joint evaluation. This kind of evaluation is called Secure Function Evaluation (SFE). However, many
existing secure computation projects assume specialized knowledge for their procedure, which prevent
their dissemination. Other approaches do not scale very well and hence are not usable for many func-
tions of practical interest.

In 2013, a new approach was presented by a developer team from Virginia and Oregon [KsMB13a].
The project is named after a newly developed format called Portable Circuit Format (PCF), which allows
a compact and efficient description of a function used for SFE. The following thesis is based on this
project. Compared to prior works, the PCF project tries to enable both, good scalability and an usage
without specialized knowledge. Using PCF, it is easy for developers to work in their known language
and compile any function to a secure computation protocol. Many optimizations have been included
in the compiling process. Once the function is compiled, the SFE works similar to a program that is
building and evaluating a Boolean circuit at runtime. This approach provides an promising way to work
efficiently with circuits and thereby has a good scalability. Altogether, the PCF project has potential to
increase the usage of secure computation.

1.1 Motivation

Although described first in the 1980s, due to the high performance secure computation needs, it has
rather been of a theoretical issue for a long time. But for the last years many researchers tried to im-
prove existing protocols or their implementations or create new ones with regard to performance issues,
especially for SFE. In addition, computational resources of electronic devices as well as communication
bandwidth is growing rapidly every year and as a consequence even mobile devices are in focus of secure
computation developers nowadays. Moreover, many people have become more sensitive in dealing with
their private data in technical devices in recent years.
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The PCF project attempts to provide a practical application, but it is a young project and further improve-
ments are needed. Because of its early stage of development, the components belonging to the project
require more tests. Although their conceptual elaboration is described in detail and well-conceived, the
practical implementation needs further improvements, too. A set of various instructions is supported
by the project to describe any Boolean circuit, but unfortunately, no assistance or reference for the in-
structions exist so far. That makes it even more difficult to understand and hence improve the procedure.

This thesis describes supplementary improvements within the project’s design and implementation. The
PCF project applies Yao’s Garbled Circuits (GC), one of the most established and efficient approach for
secure two-party computation today. As recent researches [CHK+12], [SZ13] have shown that the ap-
proach of Goldreich, Micali and Wigderson (GMW) provides a better performance for circuits with low
depth, we would like to add GMW as another backend. Another improvement we have implemented
concerns the provided expressions. Because PCF only allows Boolean operations within its circuit de-
scription, we want to extend the format in order to support arithmetic ones as well. This could facilitate
developers and users to get a better understanding of PCF and hence increase its usability.

1.2 Contributions and Outline

This thesis is concerned with the PCF project, especially with its interpreter part and its interaction with
different approaches for secure computation. At first, an overview on the fundamental concepts of secure
computation, which are significant to this thesis, is given in Chapter 2. Afterwards, a number of related
works are presented in Chapter 3.

Chapter 4 introduces and explains the main components of the existing PCF project, its compiler and
interpreter. Their relation to each other is shown as well as the advantages of them. In the next chapters
we describe the two project versions, that have been published until now.

Chapter 5 describes PCF version 1, its functionality and interpreter part with focus on the Java im-
plementation. Since the PCF developer did not publish a documentation about the meaning of each
instruction, we have written a documentation that illustrates the existing PCF 1 instruction set. We ex-
plain all instructions and give a short example for each of them. After that, we add our newly written
implementation of GMW to the existing PCF backend. This modification is tested and compared to the
prior implementation and supplemented by a summary of the advantages and disadvantages of our new
backend as well as an overview of future works on this topic.

Chapter 6 focuses on PCF version 2 and is structured similar to Chapter 5. The interpreter part,
written by the PCF developers in C and C++, is described first. We show the differences to the pre-
vious version, as well. In the next section, we present our documentation about the existing instruction
set of PCF 2 including an example for each instruction. Our subsequent modifications for the PCF 2
interpreter are twofold: at first we add our newly written GMW implementation as another backend.
Afterwards, we extend the instruction set to enable the evaluation of arithmetic operations in addition to
the Boolean ones. We therefore modify several parts of the existing components. The last section gives a
discussion about the advantages of our arithmetic operations and its future work.

Finally, the results of this thesis are summarized in Chapter 7.
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2 Preliminaries
Generic secure computation protocols can be divided into two main approaches: the concept of Garbled
Circuits, developed by Yao in 1986 [Yao86] and GMW, a protocol designed by Goldreich, Micali and
Wigderson in 1987 [GMW87]. Both approaches are described in the next section. In addition, the
Oblivious Transfer protocol is important for these approaches. It is also explained in the course of the
next section as well as other fundamental concepts playing a significant role in this thesis.

2.1 Adversary Model

An adversary model classifies several attacks against a certain protocol design. In most cases, the attacker
is a regular participant of the system, who attempts to obtain unauthorized information access during
the process. Various models have been developed over the years, not only for cryptographic protocols.
Basically, the attacker’s capabilities are divided into two classifications, a malicious (or active) and a
semi-honest (or passive) behaviour.

Semi-honest A participant is called semi-honest (or passive) adversary, when he complies with the pro-
tocol rules but beyond that tries to receive additional (sensitive) information, whether about the
system itself or another participant. This kind of attack is often used in secure computation as
standard assumption, which each protocol at least has to be secure against.

Malicious A malicious (or active) adversary model describes an attack, where the adversary’s behaviour
includes conscious deviations from protocol rules. The adversary has no restriction in his attempt
or rules of conduct to attain further information, he can send arbitrary messages, abort the protocol
and much more. Providing security against these attacks are much more complicated.

2.2 Boolean Circuits

The function representation for secure computation is often described as Boolean circuit. A Boolean
circuit is composed of Boolean gates and has n inputs and m outputs. An example is shown in Figure 1,
where n = 5 and m = 2.

input5

input3

input4

input1

input2

output2

output1

Figure 1: Boolean circuit example
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Any function can be used for secure computation, if the function has a corresponding Boolean circuit
representation. However, as usually many Boolean gates are required to built a complete function - even
for simple ones - computing and evaluating functions in a secure and oblivious way needs a lot of memory
and computational power. The architecture of Boolean circuits only enables a sequential evaluation, as
each gate depends on another gate’s output. Various techniques exist to find gates that could be grouped
into layers and thereby allow a parallel evaluation. Another issue applies to the identification of reusable
parts within the Boolean circuit, a technique that would reduce the memory consumption. Creating an
optimal Boolean circuit for a function, which has the lowest possible depth and thereby enables good
prerequisites for a parallel evaluation, is a known optimization problem of secure computation, but not
part of this thesis.

2.3 Oblivious Transfer

Oblivious Transfer (OT) is a protocol that allows two parties, a sender and a receiver, to exchange in-
formation with minimal exposure. The first description of OT was written by Rabin in 1981 [Rab81]. A
few years later, Even, Goldreich and Lempel published their work, describing a different approach of OT
and classifying the functionality most of OT researches are based on today [EGL85]. They used public
key cryptography for their implementation.

Basically, OT deals with the following issue: let us assume that the sender holds a number of mes-
sages, in most cases represented as bit strings, while the receiver wants to obtain one or multiple of the
sender’s messages. Using an OT protocol for exchange, the sender does not get any information about
which messages the receiver has picked, and the receiver learns no information about the messages
that he did not choose. OT protocols are usually named after the number of messages and choices, for
example if a sender holds n messages of which a receiver wishes to obtain k (k < n), we denote the
protocol as k-out-of-n OT protocol. OT is very important for secure computation and is used by most
SFE implementations during their execution. For Yao’s GC (cf. Section 2.4), a 1-out-of-2 OT protocol is
needed to exchange the encrypted keys for each parties’ input. GMW, which is summarized in Section
2.6 uses a 1-out-of-4 OT protocol during its evaluation to handle AND gates within the circuit.

Due to its relevance, a lot of research has focused on OT optimization in the last years. Naor and
Pinkas published several efficient OT protocols in 2001 [NP01], which are one of the best known ap-
proaches until now. Their protocol ensures security against a semi-honest adversary and focuses on
applications, "which require two or more parties to perform many oblivious transfers of strings"1, such
as Yao’s GC. A few years later, Naor and Pinkas described and compared different OT protocols and their
improvements [NP05].

Most OT protocols are based on expensive public key cryptographic primitives, which limit their per-
formance greatly. OT extension protocols [Bea96], [IKNP03] allow to overcome this bottleneck by
extending few public key based OTs to many OTs using symmetric key cryptography only. More op-
timizations for [IKNP03] was published by Asharov, Lindell, Schneider and Zohner in 2013 [ALSZ13].
They also provide an open source implementation, which is partially based on [CHK+12] and [SZ13].
Again, the protocol is secure against semi-honest adversaries.

2.4 Yao’s Garbled Circuits

Andrew C. Yao was the first researcher, who demonstrated that any polynomial function that can be rep-
resented as Boolean circuit can also be evaluated securely by introducing a secure computation protocol

1 Naor, Pinkas; Page 1, Section 1.2 [NP01]
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called Yao’s Garbled Circuits (GC) [Yao86]. Yao’s GC can only be performed by two parties and is one
of the most established and efficient approaches for secure two-party computation until today. The idea
behind Yao’s GC is based on symmetric cryptography and the OT protocol.

To explain the concept of GC, let us look at an AND gate evaluation. Given a creator (Alice) with
input x ∈ {0,1} and an evaluator (Bob) with input y ∈ {0, 1}, an AND gate with result x ∧ y = z ∈ {0,1}
should be calculated. For the first step, Alice generates six keys for any possible wire and a respective
encrypted truth table for the AND gate (cf. Table 1).

x y z encrypted results
0 0 0 Ekx=0

(Eky=0
(kz=0))

1 0 0 Ekx=1
(Eky=0

(kz=0))
0 1 0 Ekx=0

(Eky=1
(kz=0))

1 1 1 Ekx=1
(Eky=1

(kz=1))

Table 1: Yao’s GC: encrypted truth table

Afterwards, she randomly permutes the table entries to make it impossible for Bob to know the entries
because of their respective line. Then Alice transmits the encrypted results to Bob. Furthermore, she
sends her corresponding key (kx=0 or kx=1) and both parties conduct a 1-out-of-2 OT protocol. Alice
acts as sender (who provides ky=0 and ky=1 as inputs), and Bob (acting as receiver) picks the corre-
sponding key to his own input (ky=0 or ky=1). Now Bob can decrypt the correct line of the truth table
and obtain the correct key (kz=0 or kz=1).

Based on this concept, the entire Boolean circuit is evaluated iteratively. Alice encrypts all gates and
holds their respective keys, but gets no information which ones were received by Bob. Bob only sees the
encrypted results and has no chance to reconstruct Alice’s input. To obtain the outputs, Bob can either
send the resulting key back to Alice or Alice can provide a mapping from keys to bits. The protocol
can be adapted to any circuits. Because all polynomial functions have a corresponding Boolean circuits
representation, Yao’s GC can be used as SFE technique for any polynomial function.

Several improvements for Yao’s GC have been published over time. One of the most important is the
technique for free XOR gates, that was explored by Kolesnikov and Schneider in 2011 [KS08]. Their
work allows a better evaluation of XOR gates (garbling is no longer required). Another improvement
has been published by Huang, Evans, Katz, and Malka [HEKM11], who demonstrate "several techniques
for improving the running time and memory requirements of the garbled-circuit technique"2. Among
others they improve the protocol’s sequence. Prior implementations stipulated, that the creator first gen-
erates encrypted values for the entire circuit. After that the evaluator starts with his part of the protocol.
Huang, Evans, Katz and Malka published an implementation, that allows the protocol to be executed in
a pipelined fashion, where the circuit encryption and evaluation are performed in an interleaved fash-
ion. After the first gate is encrypted, the evaluator can start. This allows the parties to evaluate even
large circuits with billions of gates. Other improvements, like a garbled row reduction (3 instead of 4
table entries) have been published in 2009 [PSSW09]. In 2013, some developers published their work
about fixed-key AES and how it can be used to improve Yao’s GC [BHKR13]. Summarized Yao’s GC is
considered to be very efficient, because it only requires symmetric key primitives and is a constant round
protocol. A comparison between Yao’s GC and GMW is given in Section 3.1.

2 Huang, Evans, Katz and Malka; Page 1, Abstract [HEKM11]
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2.5 Multiplication Triples

A Multiplication Triple (MT) [Bea92] is a triple of bits (a, b, c) satisfying the following equation for two
parties Pi with i ∈ {0, 1}:

c0 ⊕ c1 = (a0 ⊕ a1)∧ (b0 ⊕ b1),

with c = c0 ⊕ c1, b = b0 ⊕ b1 and a = a0 ⊕ a1. As MTs are independent of their respective party’s input,
they can be generated at any time. They even can be retained before the process starts and then be
delivered during the evaluation later. This strategy is used in many GMW (cf. Section 2.6) implementa-
tions, for example in [SZ13], [DSZ14], [ALSZ13]. To hide information about the processed values, it is
necessary that each party only has information about their own MT values. Pi holds shares with index
i and does not know a1−i, b1−i, c1−i. Otherwise, an adversary can draw inferences about a party’s secret
values. Different approaches how two parties can jointly generate MTs are popular. One option is based
on a 1-out-of-4 OT protocol.

MTs play an important role for GMW, specifically for its AND gate evaluation, that requires a MT for
a secure mask generation during the process. For each AND gate, a complete new MT has to be calcu-
lated. GMW is described in the next section. Another technique for a more efficient MT generation based
on random OT extensions and was proposed in 2013 [ALSZ13].

2.6 GMW

Another established approach for Boolean circuit evaluation is the Goldreich, Micali and Wigderson
(GMW) protocol, that was described first in 1987 [GMW87]. Like Yao’s GC, its security is mathemat-
ically proven and it is even usable for more than two parties. Each party has a mutually independent
input, that is represented as bit string with certain length. The GMW protocol provides security against
semi-honest adversaries. Assuming that a participant complies with the protocol rules, but attempts to
obtain more information during the process, he will not be successful.

The GMW protocol can be partitioned into two phases: a setup phase and an online phase. The setup
phase is responsible for the pre-calculation of all required components (for examples MTs), while the
online phase takes care of the input sharing and the joint function evaluation. Since the setup phase is
independent from both, the parties’ inputs and the function itself and therefore can be executed at any
time before the SFE, most developers decide to calculate as much as possible during this phase. As a
consequence, the setup phase takes longer than the evaluation afterwards. The advantage of this prac-
tice is that the function evaluation can be done very fast once the function and its inputs are known and
so the user gets the result in a short time. Two or more parties can participate in the GMW protocol. The
protocol execution between two parties proceeds as follows: let us image two parties Pi with i ∈ {0, 1},
their respective inputs x , y ∈ {0, 1}n with length n bits and an arbitrary function over their inputs f (x , y).

To protect everyone’s privacy, all parties mask their inputs before the evaluation starts. Therefore, they
generate a bit string randomly, perform an XOR operation on their respective random values and inputs
and share the result. This step is shown in Figure 2. For any adversary, it is impossible to recalculate the
origin inputs from the shared values. This step requires only one XOR operation, one random bit string
generation and one communication step. Therefore it can be neglected in consideration of performance.
Now each party knows the shared value and its own random string, which is used locally.

In the next step, the Boolean circuit is evaluated gate by gate. Depending on the gate type, both parties
need to execute a number of different steps for each gate. The GMW protocol only deals with three
different gate types, XOR, AND and NOT gates, but this is not a big problem, because all the other gate
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P0

Calculate
x ⊕ x random = xshare

P1

Calculate
yshare = y ⊕ yrandom

xshare

yshare

Figure 2: GMW Secret Input Sharing

types can easily be assembled by them. An OR gate for example is composed of: a∨ b = a⊕ b⊕ (a∧ b),
NOR consequently with an additional NOT conjunction.

XOR Gates: XOR gates require only a simple execution, since XOR operations are associative and can be
locally evaluated by each party. Because no communication and only one XOR operation is needed,
XOR gates are not critical for performance.

NOT Gates: Similar to XOR gates, any NOT gate can be executed effortlessly during the process, be-
cause NOT can be described as calculation of XOR and the constant 1. ¬a = 1 ⊕ a. Thereby its
performance is uncritical as well (cf. XOR Gate).

AND Gates: AND gates need a more complex procedure than XOR gates, because they require interac-
tion. Two different variants have been established for a successful evaluation, one of them uses
MTs, the other uses a 1-out-of-4 OT. Since the MTs (cf. Section 2.5) are more efficient [SZ13], this
approach is described in the following: for each AND gate, a MT is required. First of all, the MTs
are used by both parties to calculate two new values (d and e):

di = x i ⊕ ai (2.1)

ei = yi ⊕ bi (2.2)

di and ei are transmitted to the other party with the result that each party can calculate d and e...

d = di ⊕ d1−i (2.3)

e = ei ⊕ e1−i (2.4)

...and afterwards the output respectively:

z0 = (d ∧ e)⊕ (d ∧ b0)⊕ (e ∧ a0)⊕ c0 (2.5)

z1 = (b1 ∧ d)⊕ (a1 ∧ e)⊕ c1 (2.6)

AND gates and their evaluation are the bottleneck of GMW’s performance. Whereas XOR and NOT
gates need no communication step and thereby are uncritical to performance, AND gates require
an interaction between both parties.

After all gates are evaluated, one last step has to be accomplished. The existing results zi are shared and
XORed again. Its output is the final function result.

The GMW protocol has been improved continuously in the last decade. For example, the OT execu-
tion as well as the MT generation can be performed in parallel to accelerate the procedure [CHK+12],
[SZ13]. Parallelism is an important issue in any case, as a well-conceived circuit structure allows a di-
vision of all gates into different layers and enables a parallel evaluation within their respective layer.
Correspondingly, a low circuit depth is preferable for the GMW approach. Another improvement for the
protocol is the number of AND gates, which should be as small as possible. Various techniques can be
used for this, most are summarized in [SZ13].
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3 Related Work

3.1 Yao’s Garbled Circuits vs. GMW

Yao’s GC has been the first choice for secure computation for a long time. OT protocols were thought
to be costly and GMW requires one round of interaction for each AND layer in the Boolean circuit. But
the research of Schneider and Zohner [SZ13] has shown that with the aid of different optimizations, the
GMW protocol can outperform Yao’s GC under certain conditions.

Yao’s GC uses a number of techniques for its procedure. One party has to encrypt the entire func-
tion during the evaluation. The larger the function is, the greater the effort. Fortunately, symmetric
cryptographic operations can be used for the process, which are executable in an acceptable time nowa-
days. As a consequence, it is not that much critical for performance than prior Yao’s GC implementations.
Using other improvements, XOR gates can be evaluated totally "free" [KS08]. Beyond that, an OT proto-
col is required to exchange keys for the inputs. OT implementations have been improved a lot in the last
years (cf. Section 2.3), for example by replacing prior public key procedures with symmetric cryptogra-
phy. Finally, Yao’s GC can be executed in a constant number of rounds.

On the other hand, for each AND gate that is located in the Boolean circuits, GMW requires an interactive
OT execution. Using OT pre-computation, most of the workload of the OTs can be pre-computed in a
setup phase. The use of MTs instead of OTs even further reduces the number of rounds in the online
phase as well as the amount of data sent. As in Yao’s GC, XOR gates (and therefore NOT gates as well)
are performance uncritical, because they are "free". The main disadvantage of GMW is the number of
communication rounds that the parties need to perform when they jointly evaluate the function. For
each layer of AND gates, the parties have to perform interaction. As a consequence, the performance of
GMW is very dependent on the network latency.

Some projects focus on comparison between both approaches. One of them has been published in
2012 [CHK+12] and describes how a GMW protocol with three or more participants can be imple-
mented much faster than previous techniques. Further research was written by Schneider and Zohner in
2013 [SZ13]. They focus on different methods to improve GMW also for secure two-party computation
and conclude that with their improvements "the GMW protocol is a noticeable alternative to previous
protocols based on garbled circuits"1.

3.2 Practical Secure Computation Projects

In the last years many projects were launched, which implement frameworks enabling the development
of practical SFE applications that can be used with arbitrary functions.

Fairplay [MNPS04] was one of the first projects allowing to translate any function (written in a high
level language) to a suitable circuit. A Yao’s GC implementation was responsible for the circuit evalua-
tion afterwards. Another project called FairplayMP supplemented Fairplay by extending the settings to
allow more than two parties [BDNP08].

1 Schneider and Zohner; Page 276, Section 1.1 [SZ13]
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Two years later in 2010, a group of researchers introduced TASTY [HKS+10], a compiler to gener-
ate efficient secure two-party computation protocols from a high-level description. Compared to prior
works, protocols that were generated with TASTY were based on Yao’s GC, homomorphic encryption or
a combination of both. So TASTY combined the benefits of both approaches. Homomorphic encryption
is next to Yao’s GC and GMW another approach for secure computation. Besides the generation, TASTY
was also able to optimize circuits and execute and benchmark the protocols afterwards.

In 2011, the researchers Huang, Evans, Katz and Malka implemented a generic secure two-party compu-
tation framework [HEKM11], which is based on Yas’s GC. Their work especially improved the scalability
and allowed the evaluation of complex functions in practical applications. Many of their design deci-
sions were based on Fairplay. In the same year, Malka published his work about VMCrypt [Mal11], a
Java library supporting new algorithm for secure computation. To make its usage easier for other devel-
opers, VMCrypt provided an Application Programming Interface (API) for an easy integration in existing
projects as well as a developer manual and different debugging and validation tools.

In 2012, a further modification of Fairplay was developed by Costantino, Martinelli, Sant and Amoruso
[CMSA12]. Their project MobileFairPlay focused on the mobile area and provided a feasible security
framework, that worked in the Android environment. Mood, Letaw and Butler also published their work
in 2012 [MLB12] introducing a compiler for Android, that concentrated on the memory problems mobile
phones have due to their limited resources. Their compiler generated circuits, that were compatible with
Fairplay, but used further memory-efficient technique for the process. Another project in 2012, started by
Kreuter, Shelat and Shen [KsS12], extended prior works about Yao’s GC and provided a secure two-party
computation system, which even guaranteed security against a malicious party. At the same time, the
scalability was not affected much. Choi, Hwang, Katz, Malkin and Rubenstein [CHK+12] were among
the first researchers, who developed a practical GMW implementation. Their work was based on Boolean
circuits and allowed SFE for multiple parties in the presence of a semi-honest adversary.

One year later in 2013, three researchers introduced PICCO [ZSB13], another compiler for generat-
ing secure computation protocols from a high-level description, but with focus on distributed systems,
like a cloud or similar environment. Henecka and Schneider published an improved implementation of
Yao’s GC in 2013 [HS13]. Their work provided protection against the semi-honest adversaries model
and supported several optimizations enabling a better performance (10 time faster) and at the same
time a lower memory consumption than prior works. Multi party computation is another major chal-
lenge for secure computation applications. Keller, Scholl and Smart presented a runtime environment in
2013 for executing secure programs using a multi-party computation protocol [KSS13]. Similar to PCF,
they wrote a special compiler receiving a program description and translated it to bytecode. During the
compilation, they used several techniques to optimize the bytecode and hence the subsequent evaluation.

In 2014, a group of researchers presented a new version of their prior work called CBMC-GC [FHK+14],
an ANSI C compiler for secure computation. Its compilation is divided into various steps including the
translation of a high-level description into an intermediate representation, loop unrolling, circuit gen-
eration and multiple techniques for the circuit optimization afterwards. CBMC-GC works with Boolean
circuits only and supports the Yao’s GC approach. Also this year, a different approach was published by
Rastogi, Hammer and Hicks called WYSTERIA [RHH14]. Instead of writing the function in a known high
level language and then compile it down into its respective circuit representation, WYSTERIA itself is a
high-level functional programming language. Using WYSTERIA, developers can write functions that are
interpreted dynamically at runtime and can be executed in an oblivious way. WYSTERIA supports secure
multi-party computation and uses the GMW approach. An function example is given on their website2.

2 https://bitbucket.org/aseemr/wysteria/wiki/Home

13

https://bitbucket.org/aseemr/wysteria/wiki/Home


4 Portable Circuit Format (PCF)
The Portable Circuit Format (PCF) project has been started by Ben Kreuter, Benjamin Mood, Kevin Butler
and abhi shelat a few years ago to improve the way Boolean circuits for secure two-party computation
can be created, stored and evaluated. First results were published in 2013 [KsMB13a].

As mentioned previously, many functions of practical interest require a huge Boolean circuit consist-
ing of millions of gates, in order to ensure an oblivious process and thereby a secure way to protect
sensitive data during the evaluation. Boolean circuits also have to be built correctly in a data-oblivious
manner and as a consequence are usually created with software tools. PCF was started to solve two
problems, that have been present in earlier works about secure computation. The first problem is us-
ability: many related works focus on optimization and provide a good scalability, but expect specialized
knowledge about their process in order to deal with them [HEKM11], [Mal11]. Developers have to get
familiar with their practices before they can use them for their own programs. The second problem is
scalability, since other approaches compile the function from a high level language and thereby do not
expect any knowledge, but do not scale very well for complex or large functions [MNPS04], [KsS12],
[MLB12]. Because of that, in practical applications most approaches are of limited use. To solve both,
good scalability and usability, different techniques are applied in the PCF project.

The main task of the project is to develop an optimizing compiler allowing programmers to create
and interpret Boolean circuits from a high level language in a compact and effective way, using two
components, the PCF compiler and PCF interpreter. The programmer does not need any kind of special-
ized knowledge to use these components, he can simply write the desired function in his known high
level language and afterwards passes it to the PCF compiler, which starts the procedure. Once the com-
pilation is finished and the PCF interpreter has evaluated the Boolean circuit, the result is given back
to the programmer. The entire process of PCF is shown in Figure 3 and is described in the following
sections. In the course of this chapter, we also show many optimizations, which have been incorporated
in both, the compiler and interpreter.

Because PCF itself is independent from its underlying secure computation techniques, the adversary
model is determined by its employed protocols (the GMW or Yao’s GC protocol for example).

C code
(Function)

Bytecode

PCF file (Instructions)
Interpreter
Environment

LCC Compiler

(supported by the PCF Compiler)

PCF Compiler

PCF Interpreter

Figure 3: PCF process
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4.1 PCF Compiler

The most important part of the PCF project is a special compiler, implemented in Common Lisp. The
compiler allows programmers to develop their desired function in a high level language and then com-
piles it down into a PCF file describing the Boolean circuit representation of the function as a sequence
of instructions.

The compilation process is divided into two steps. We assume that an user wants to evaluate a func-
tion in an oblivious way and has already written the function in his known program language. In the
first step, the source code of his function needs to be translated into bytecode (also called intermedi-
ate representation or IR), a machine independent representation of the function, which can be used for
multiple target architectures. For testing purpose, the PCF developers have worked with the Little C
Compiler (LCC) as front-end to translate any function into bytecode. Written by Chris Fraser and David
Hanson during the 90s, LCC is a well-documented C compiler known for its simplicity1. But the PCF
compiler is not restricted to LCC. In the long term multiple programming language and its respective
compilers should be supported as long as the compiled bytecode is compatible. As next step, the PCF
compiler starts its compilation process, including not only optimization but also the translation of the
bytecode into a Boolean circuits describing format, stored as instructions within a PCF file. These in-
structions describe the architecture of the Boolean circuit representation and can be jointly evaluated
by both parties now. A detailed description of each instruction is given in Section 5.2 for PCF 1 and in
Section 6.3 for PCF 2.

4.2 PCF Interpreter

After the function has been compiled, the PCF file can be used for SFE by both parties. An interpreter,
the second component of the PCF project is responsible for this part. For every programming language
the developer wants to use to read the PCF file, an interpreter has to be implemented, which translates
all instructions into commands of the respective secure computation protocol. This happens at runtime.
Software programmers only need to link the interpreter in their application, deliver the desired input
and the function can be evaluated in a privacy-preserving way.

4.3 Advantages

The PCF project allows language independence, that enables developers to design software dealing with
secure computation in their known language. After the function is given in a high level language (such
as C), the PCF compiler is able to translate it to a respective secure computation protocol, which the
PCF interpreter can execute. No specialized knowledge about the architecture of circuits or its creation
process is necessary any more, all these are abstracted. Also PCF supports a more natural programming-
like syntax, which is easier to handle than designing a Boolean circuit. To simplify the process further,
PCF can easily process non-secret information, which allows interleaving secure computation and the
external program. All this could be a chance to make secure computation usable for a bigger audience
and assist in its dissemination.

A significant part of the compiling process is optimization in order to accomplish the conduct of a
compact and thereby efficient PCF file . PCF instructions can be thought of as a program, that cre-
ates Boolean circuits at runtime. All required components are supplied by PCF for this purpose. It
allows the creation of methods by using function declaration with return and call statements and sup-
ports branches as well as a program pointer. Wires are stored in an array, which can be addressed easily.

1 https://sites.google.com/site/lccretargetablecompiler/
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The Boolean circuit description for a function is evaluated at runtime. The PCF interpreter executes
the instructions while only needing a fixed-size and hence constant memory for them. A comparison
of different sizes can be found in a presentation, the PCF developer published in 2013 [KsMB13b].
To reduce the required memory for storing the circuit description, PCF uses several techniques. One
technique is loop description. As it is unnecessary to unrole loops at compile time, the PCF interpreter
takes care of an effective loop evaluation at runtime. Based on the possibility to create subroutines or
gadgets (a branch containing instructions) and call them from any placement in the PCF file, recurring
circuits (like a loop realization) can be stored in a space-efficient manner. For that reason PCF has a
very good scalability and can deal with big and complex functions in acceptable memory resources. Ba-
sically loops can be executed under only one condition: their termination condition must not depend
on secret values. A secret value (or secret-shared value) depends on the input of one party. Other-
wise it involves the risk to leak sensitive information from the control flow. Because PCF can handle
the processing of both, secret-shared values and plain values, this is not a problem. Additional re-
strictions like upper bounds are not imposed by PCF itself. The programmer has to take responsibility
for that. Another optimization is address organization. Single gate IDs are addressed in memory and
can simply be overwritten if they are no longer needed. All compiler optimizations are based on the
bytecode and hence are machine independent. According to the developers, with PCF "the bottleneck
in secure computation lies with the cryptographic primitives, not the compilation or storage of circuits."2.

Another advantage of PCF is that it is independent of the underlying secure computation protocol,
as long as it uses Boolean circuits to represent a functionality. Hence, PCF can be evaluated using,
for instance, Yao’s GC or the GMW protocol by simply writing a respective interpreter for it.

4.4 Versioning

Development about PCF enhances continually and so PCF version 2 has been released meanwhile. The
concept has not changed, but both versions differ in many details and thereby the PCF compiler and
interpreter are not compatible in any direction. Not only the syntax design changes in PCF 2, which
make an execution with the old PCF interpreter impossible, but also some instruction types are altered
or completely replaced with different ones. By now for PCF 2 a working interpreter for C++ exists, while
PCF 1 supports interpreters in both, C++ and Java high level languages. PCF 1 and PCF 2 compilers are
written in Common Lisp and both need bytecode for their compilation.

2 Kreuter, Shelat, Mood and Butler; Page 1, Abstract [KsMB13a]
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5 PCF 1 - Java Interpreter
PCF is a promising work to deal with performance issues due to the processing power, secure computation
needs. With regard to Java, the Android environment may be an important area as well. Smartphones
and Android become more and more popular and allow everyone to store sensible private data on a
device able to exchange information in many different ways, sometimes even out of users’ control. Se-
cure computation in a mobile environment is a young subfield, but much progress could be achieved
so far. Examples are given in [Dem13], [DSZ14], where the developers provide a practical realization
of general secure two-party computation using GMW in a mobile environment and a trusted hardware
token to enhance performance. This token is used to pre-generate data to reduce the processing power
and memory required during evaluation. Another example is the MightBeEvil1 project [HCE11], that
focuses on Android Apps for secure computation as well.

To enable PCF for an Android application, an interpreter is needed to translate PCF instructions into
commands of a secure computation protocol. This chapter introduces the PCF 1 interpreter for Java, its
working methods and program structure. The interpreter was written by the PCF developers. In Section
5.2, we present our reference for many PCF 1 instructions. As next step, we add our newly written GMW
implementation as additional possibility to evaluate Boolean gates (Section 5.3). At last, we measure
the runtime of both approaches (GMW and Yao’s GC), compare and interpret them in a benchmark test
(Section 5.4).

5.1 Java Interpreter for PCF 1

The PCF developers implemented a working Yao’s GC interpreter for the PCF 1 format in Java, which
reads and executes PCF instructions at runtime. This interpreter has been written to demonstrate the
basic PCF functionality and has never been deployed in a real practical environment so far. Unfortunately,
although the mobile area is a significant part to disseminate secure computation, the PCF developers
decided to focus on other issues and stopped working on a fully operational Java implementation. The
current implementation can only handle PCF 1 instructions. Plans for an update to PCF 2 are missing.
Nevertheless, the base code is functional and can be used to experiment with multiple improvements,
which we describe in the next sections.

5.1.1 Implementation

The PCF interpreter is written as fully independent application, that takes care not only of all PCF 1 in-
structions, but also of all required communication issues. Without modification, the consequences being
that an extra network channel has to be established, limited to PCF communication only. For the function
evaluation the PCF file, including all instructions, is read first. All contained instructions are stored as
an object into a HashMap. Then the instructions are executed gradually.

To jointly compute a function, a lot of communication between both parties is required. Java pro-
vides many ways for two parties to communicate, most of them are supported by different streams. For
the PCF interpreter, an ObjectStream2 is used to exchange data, mostly BigInteger objects.

1 http://www.mightbeevil.com
2 http://docs.oracle.com/javase/tutorial/essential/io/objectstreams.html
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In order to optimize the interpreter, the chosen data type has to be considered, too. The BigInteger
class is used to store the parties’ input and processes them. BigInteger is a reasonable choice, because it
can deal with large numbers on the one hand. On the other hand it supplies the possibility to set a single
bit and tests if a single bit is set. Another suitable data type is BitSet that is provided by Java as well.
BitSet is highly efficient on bit operations, but unfortunately it does not supply many arithmetic methods
by default, which are partly used by the origin PCF interpreter. Furthermore, a mix of both data types is
conceivable to benefit from all advantages. But as consequence we have to convert between both data
types on several places, which can cause performance issues, too. For the PCF interpreter, BigInteger was
chosen as sole data type, especially because bit operations can be optimized manually, if these methods
expose as performance bottleneck.

5.1.2 Program Structure

The structure of the PCF program is shown in Figure 4. In its code the interpreter unites both: the
server and client implementation. The basic program is constituted by four classes, that initialize and
maintain fundamental parts of the interpreter. All these program parts are not responsible for the secure
computation protocol itself, they only provide underlying conditions, like network aspects.

• Program: abstract class, defines methods that have to be implemented by both, client and server.
Also determines program flow.

• ProgramServer: implements fundamental server services, like socket creation/listening and OT
initialization. Inherits from Program.

• ProgramClient: implements fundamental client services, like socket connecting and OT initializa-
tion. Inherits from Program.

• ProgramCommon: creates common objects for client and server, like ObjectStreams for commu-
nication issues or the circuit object.

These four classes implement all required methods for the SFE.

• InterpreterCommon: provides methods to manage the common circuits, which should be jointly
evaluated by both parties.

• InterpreterServer: implements all methods from Programm class. The class is responsible for the
server side SFE. Inherits from ProgramServer.

• InterpreterClient: implements all methods from Programm class. The class is responsible for the
client side SFE. Inherits from ProgramClient.

• Interpreter: provides methods to read the PCF file and interprets and executes all instruction
types.

Our experiment to use the GMW approach for circuit evaluation instead of Yao‘s GC will be described in
the next section. Performance tests, that demonstrate GMW advantages under certain circumstances are
included.

18



Program

ProgramCommon

Establish/maintain
connection streams

ProgramServer

Connect to client

ProgramClient

Connect to server

InterpreterCommon

Maintain circuit objects

InterpreterServer

Play as server for SFE

InterpreterClient

Play as client for SFE

Interpreter

Read and execute
PCF instructions

Client sideServer side

uses

inheri ts f rom

Figure 4: PCF interpreter, program structure

5.2 PCF 1 Instructions

PCF supports different instructions to describe and build a Boolean circuit. All instructions are stored in
a file and are read in and interpreted at runtime. This section gives an overview of the most important
instructions, all are compatible with any PCF 1 interpreter. They do not work out of the box in a PCF 2
environment. Unfortunately, no reference for all instructions exists yet, as the original paper only gives
a short overview [KsMB13a]. Furthermore, instructions of PCF 1 have changed repeatedly during their
development. New instructions were introduced or old ones were extended by new parameters. The
following list is not complete. Its focus is in the most important PCF instructions, which appear in many
PCF files.

Each instruction takes some additional parameters, which are required for a successful execution. Op-
tional parameters do not occur in PCF, all of them have to be set. Some instructions have a label for
identification purpose, for example to address the destination for jumps. All these labels have to be
unique within the file. To understand the process, it is important to know, that within the circuit each
wire is assigned to one Boolean value. Additionally, a flag determines, if the value depends on the inputs.
A value that depends on the inputs is called secret value. This is important, because some functionality
(like a loop condition) can only be used with so called non-secret values, which are independent from the
inputs and thereby do not leak any information about them.
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PCF allows two kind of instruction groups: functions and gadgets. A function can be used to realize
a subroutine, which executes instructions and then returns to the caller. The program can call a function
at any time without conditions. A gadget defines a branch start, which can also be jumped to at any
time, but allows a second parameter as condition, deciding if the jump will be executed or not.

A PCF file example is shown in Figure 5. The function represents a two bit adder that takes two in-
puts and simply adds them. Line 1-6 define the program header. A constant 0 is set in line 7. Afterwards,
the program defines and calls the function MAIN to start the calculation in line 9. The function reads
Alice’s and Bob’s input (line 10-15) and uses some XOR and AND operations to calculate the output,
which is shifted out in line 24 and 25. The MAIN function returns in the last line. A bigger example (a 32
bit adder) is shown in Appendix A. All instructions are described in detail as next step of this section.

1 GADGET: MAIN
2 CLABEL ALICEINLENGTH 2
3 CLABEL BOBINLENGTH 2
4 CLABEL xxx 32
5 SETLABELC ALICEINLENGTH 2
6 SETLABELC BOBINLENGTH 2
7 0000 64 0 0
8 FUNC main xxx
9 FUNCTION: main

10 ALICEINPUT32 0 0
11 0110 65 0 64
12 0110 66 1 64
13 BOBINPUT32 32 0
14 0110 67 0 64
15 0110 68 1 64
16 0110 69 65 67
17 0110 70 69 64
18 0110 71 65 67
19 0110 72 65 64
20 0001 73 71 72
21 0110 74 65 73
22 0110 75 66 68
23 0110 76 75 74
24 SHIFT OUT ALICE 70
25 SHIFT OUT ALICE 76
26 RETURN −1 xxx

Figure 5: PCF 1 file example

FUNCTION: The instruction FUNCTION defines the starting point of a subroutine. It takes one parame-
ter, the subroutine’s label. Unique labels enable a simple way to identify a subroutine making an
easy call possible. A RETURN statement denotes the subroutine’s end.

Example: FUNCTION: main
Defines a subroutine with label "main". Until the RETURN instruction is reached, all following
instructions are part of the subroutine.
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FUNC Calls a subroutine. Requires two parameters, the label of the called subroutine and a return label
that is required for the RETURN statement. After a subroutine is called, the instruction pointer is
set to it and executes the following instructions.

Example: FUNC main xxx
Calls subroutine "main" and defines the return label "xxx".

RETURN Marks the returning statement of a subroutine. The first parameter is a wire ID, because the
condition for a successful returning is that the given wire has to be assigned to 1. Otherwise the
return is invalid and will not be executed. This wire has to be independent from the input (non-
secret value). An alternative for that parameter is -1, which skips the check. The second parameter
defines the label to return to.

Example: RETURN -1 xxx
Finishes a subroutine and (thanks to -1) jumps back to the caller (FUNC with return label "xxx")
without checking.

GADGET: Denotes the starting point of a new branch. After jumping to a branch, the instruction pointer
is set to it and executes the following instructions. Takes one parameter, the branch label.

Example: GADGET: PC1
Starts a new branch, called "PC1".

BRANCH Jumps to a branch that is defined by the GADGET instruction. Two parameters are required,
the desired branch’s label and a wire ID, whose value has to be a non-secret value and determines if
the jump is executed. The BRANCH instruction cannot be used to call a subroutine (cf. FUNCTION).

Example: BRANCH PC1 33
Jumps to branch "PC1", if the wire with ID 33 is not assigned to a secret value (determined by the
flag) and its value is 0.

PUSH The PCF interpreter provides some kind of a stack system, that allows to define a copy of a given
wire as its successor. The consequence being that independently from any changes of the original
wire, the copy is untouched and can be popped later to the same position. The instruction takes
only one parameter, the wire ID that should be pushed.

Example: PUSH 33
Pushes the wire with ID 33 onto the stack, or more specifically defines (a copy of) the wire 33 as
successor of itself.

POP Pops the wire back. The ID remains constant during the process. Takes only one parameter, the
wire ID that should be popped from the stack.

Example: POP 33
Pops wire with ID 33 back, by overwriting the successor of the given wire to its predecessor. If no
successor exist, the program stops.

CLABEL Appears only in the PCF header and is used for general information about the inputs. The
instruction creates a label and determines the bit width for each parties’ inputs. Takes two param-
eters, the label name and the number of wires, which should be reserved for the label.

Example: CLABEL BOBINLENGTH 32
Creates a new label BOBINLENGTH and allocates 32 wires (and thereby 32 bit) to it.
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SETLABELC Another setting for the PCF header. Sets the length of each parties’ input. The first parame-
ter defines a label, that has to be created before (cf. CLABEL).

Example: SETLABELC ALICEINLENGTH 32
A length of 32 bit is supported for the input by this PCF file.

ALICEINPUT32 and BOBINPUT32 Fetches 32 bits of one party’s input bits and stores them in a given
wire. If an input larger than 32 bit is allowed, the first parameter decides, which area of the input
is taken.

Example: ALICEINPUT32 33 0
Stores 32 bit of Alice’s input to 32 wires starting with wire 0. The range of Alice’s input reading in
is defined by the value of wire 33.

SHIFT OUT Outputs the value of a wire (one bit) for Alice or Bob. The first parameter is hard-coded
("ALICE" or "BOB"), no other values are allowed.

Example: SHIFT OUT ALICE 33
Output the content of wire 33 to "ALICE".

STORECONSTPTR The interpreter stores an additional table holding pointers to certain wires. This in-
struction can be used to set such a pointer.

Example: STORECONSTPTR 2 33
Stores a pointer to wire with ID 33 on table index 2

OFFSETPTR Starts at a given wire ID (second parameter) and checks if the next 32 wires are assigned to
non-secret values. Only if all of them are independent from the inputs, the instruction calculates a
new 32 bit value and copies each bit from one of the 32 wires’ values sequentially. Afterwards the
result is added to a pointer.

Example: OFFSETPTR 33 34
Starts calculation at wire 34 and adds the index to pointer 33.

CPY121 Copies a wire value. The three parameters determine the source wire, an additional offset and
the target wire.

Example: CPY121 2 33 34
Copies the value of wire 33 to the target wire with ID 34 + the ID of wire on pointer table index 2.

CPY32 Copies a wire value. The three parameters determine the source wire pointer, an additional offset
and the target wire.

Example: CPY32 2 33 34
Copies the value of wire with ID 34 + the ID of wire on pointer table index 33 to the target wire 2.
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5.3 Implementation of a GMW PCF 1 Interpreter

The PCF interpreter for Java can currently evaluate a function in two different ways. The first option
supports plaintext for both, each parties’ inputs and the gate evaluation. Using plaintext values is for
testing and experimental purpose only and should not be used in a practical working environment.

In order to securely process values, the PCF interpreter implements Yao’s GC. The approach of Yao’s GC
is described in Section 2.4. But as mentioned in Section 3.1, in some cases GMW can be a better choice to
achieve an efficient and fast SFE. To compare both approaches, the interpreter needs to be extended by
a GMW implementation. In Section 2.6 the GMW approach is described, the following section is dealing
with our practical implementation in Java.

Different changes have to be made to extend the interpreter. First of all, the program flow has to al-
low a more flexible execution. Unfortunately, the Yao’s GC implementation was an integral part of the
interpreter and thereby was firmly attached to it. The responsible code for Yao’s GC protocol had to be
extracted and provided in an exchangeable way instead. As of now, the program sequence enables an
easy way to switch between both approaches. For the next step, all GMW components have to be im-
plemented, including MT generation and the two GMW phases (setup and online phase). The data type
does not need any changes, since BigInteger provides everything that is required for the GMW protocol.
Also all communication methods are used equally for GMW.

During the setup phase, the interpreter generates enough MTs to provide them later. The OT proto-
col is used for these calculations, but it is modified by some changes: instead of an usual OT execution,
the sender’s output are two random messages. This approach is called Random-OT (R-OT) and decreases
the communication complexity. More information about this technique can be found in [ALSZ13]. All
MT’s values (a, b, c) are stored as BigInteger objects, since ai, bi and ci define one MT on position
i ∈ {0,1, ..., n− 1} within three BigIntegers with n bit length.

5.3.1 Online Phase - Evaluation

The online phase starts by reading the inputs of each party. In contrast to Yao’s GC, GMW is based on
masked inputs that have to be generated by each party. The SecureRandom class3 supplies secure meth-
ods to create random values for a BigInteger object with the same length as the respective inputs. After
their generation, the masked inputs are shared between the parties.

Afterwards, the gate evaluation routine of PCF needs to be replaced. An opcode is used to differen-
tiate between gate types, which makes it easy to adapt the process for GMW. If an AND, XOR or NOT
opcode is detected, the values are evaluated locally (XOR, NOT) or interactively (AND). Every other gate
type has to be translated into a combination of XOR and AND gates.

For each AND gate evaluation, a MT is required as well as an interaction step. The circuit has the
worst-case depth, as the sequential execution of the instructions impedes the structure of layers, which
could be implemented in parallel and hence merge the interaction of various AND gates within the
layer. Before the program stops, the outputs are recombined to reconstruct the final result, that can be
calculated by an simple XOR operation on both shares.

3 http://docs.oracle.com/javase/7/docs/api/java/security/SecureRandom.html
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5.4 Benchmark GMW vs. Yao

In this section, we perform a detailed benchmark of the plaintext, Yao’s GC, and GMW backend of the
PCF interpreter. The plaintext and Yao’s GC backend were taken from the original PCF implementation
and the GMW backend was implemented in the course of this thesis (cf. Section 5.3). Before the bench-
mark is run, some presumptions about the test results are described.

All backends can be divided into two parts: an initialization and the circuit evaluation. GMW’s initial-
ization contains the setup phase, where all required MTs are generated as well as the PCF instructions
read in. As mentioned previously (cf. Section 2.6), the calculation for MTs is critical for performance
and hence this phase should take much longer than the circuit evaluation.

Yao’s GC also uses an initialization phase to prepare some steps that are performance critical. An OT
protocol is needed, because the client has to obtain its inputs to the garbled circuit in an oblivious way,
before the process starts. The circuit has to be prepared, too. During the evaluation, many symmetric
key operations are performed for the oblivious function evaluation.

The process using plaintext is straightforward. Both parties know all values including all inputs. During
the initialization phase, the PCF file is read in and the instructions are stored. Afterwards the gates are
evaluated using the plaintext values. No communication is needed, as well as no kind of cryptography.

Comparing all backends, it is important to know, that the circuits are not optimized for GMW in any
way. Neither the number of AND gates are reduced, nor do we implement any depth-optimized circuit
variants (e.g., from [SZ13]). None of the approaches’ implementation supports a parallel evaluation.
However, as all functions are not very complex, the number of AND gates should be small inherently.
More information about the functions are presented in the next section. The GMW initialization phase
should take longer than the Yao’s GC, because the MT generation needs one OT protocol for each triple.
The circuit evaluation is expected to be faster with GMW.

5.4.1 Environment

All benchmarks were performed on a notebook with the following system specifications:

• Processor: Intel® Core™ i5-4200U CPU @ 1.60GHz × 4

• Memory: 8GB (1x 8192MB) DDR3L-1600

• Operating System: Debian GNU/Linux 8 (Jessie) 64-bit

• Java Runtime: openjdk-7-jre (Version: 7u51-2.4.6-1)

As both parties were simulated from the same notebook during the tests, possible delays within a net-
work are not part of this test and can not be considered. Especially the GMW backend benefits from this
settings.

Unfortunately, only a few PCF files were available to compare. As mentioned previously, a compiler
for files compatible with PCF 1 instructions is no longer actively developed. Almost all files that were
provided by the PCF developers were defect (most of them irreparable) and thereby could not be used.
Even the compiler itself was not working correctly at its last version. So it was unfortunately not possible
to create new test examples for this benchmark. As PCF files are composed of many instructions even
for small functions, it was also not possible to completely create a file manually, especially for a bigger
example. To be able to use some PCF examples anyway, two of the smaller existing PCF files have been
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partially reworked. As a consequence, all test results can not be used to compare the PCF project with
related works directly. They only make a statement about the performance of GMW and Yao’s GC within
the PCF interpreter. For the sake of completeness, test results about an (insecure) evaluation using plain-
text values are included as well.

Two functions were measured and evaluated for this benchmark test: the first function is a simple
adder, that calculates the sum of two 32 bit inputs. In Appendix A, we provide its entire program code.
The function is related to our example (cf. Figure 5). The second function is a 32 bit comparator that
solves the well known "Yao’s Millionaires’ Problem" [Yao82] and is often used as an introductory example
for secure computation: two millionaires want to know which one is richer without mutually disclosing
their wealth. It compares both inputs and returns 1 if the client party enters a higher number than the
server party, otherwise 0 is returned. Both functions can handle inputs up to 32 bits, different inputs had
no appreciable effects. The adder function contains 31 AND gates and 221 XOR gates, the millionaire
function consists of 164 AND gates and 1352 XOR gates. The number of AND gates for the millionaire
function could be further reduced by multiple optimizations (for example published at [KSS09]), but for
this benchmark we do not focus on circuit optimizations beyond the default PCF ones. Since no functions
are optimized for GMW in any way, the circuit depth is equal to the number of gates (252 for the adder
function and 1516 for the millionaire function). All instructions are evaluated sequentially and therefore
the number of AND gates defines how many communication rounds are required for the GMW backend.

5.4.2 Benchmarks

All measurements were determined by the client and were averaged over 100 executives to avoid mea-
suring errors. They can be found in Table 2 as well as Figure 6.

Adder 32 bit Millionaire 32 bit

Yao’s GC GMW Plaintext Yao’s GC GMW Plaintext

Initialization 2751 ms 3236 ms 1023 ms 2279 ms 3298 ms 508 ms
Circuit evaluation 1246 ms 80 ms 38 ms 1986 ms 104 ms 53 ms

Total 3997 ms 3306 ms 1061 ms 4265 ms 3402 ms 561 ms

Table 2: Benchmark, Adder 32 bit and Millionaire 32 bit

An overview of the time spent in each phase for the three PCF backends is shown in Figure 7. GMW’s
initialization step is divided into two parts: the PCF instruction reading and the GMW shared phase
(including MT generation, cf. Section 2.6). During the circuit evaluation all instructions are executed,
the gate evaluation is similar to GMW’s online phase. Yao’s GC initialization step is also divided: the PCF
instructions have to be read and the OT protocol needs to be executed for the inputs. Similar to GMW,
the circuit evaluation is shown as single step, a division is not necessary.
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Figure 6: Time distributions for both functions
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Figure 7: Time distributions for each PCF backend
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5.4.3 Evaluation

The benchmark supports the claims of related works, for example [SZ13]. GMW’s slowest part contains
the initialization, which includes the MT generation and thereby many OT executions. After that, the cir-
cuit evaluation can be executed much faster. Yao’s GC times for both, initialization and circuit evaluation,
are closer together. The procedure with plaintext provides the fastest execution (cf. Table 2).

Initialization The results are shown in detail in Figure 7. For both functions, GMW needs the longest
time to execute the initialization phase. That was to be expected and is explained by the MT gen-
eration. The Adder function requires only a few AND gates and thereby only a few MTs, since the
addition calculation is not very complex and the PCF file was optimized in the following way: dur-
ing the compilation the PCF compiler adds some GATES instructions that copy the input values from
one wire to another several times. We assume that the compiler has specific ID areas for specific
purposes and uses them independently from any function optimizations. For this benchmark, we
remove these instructions, modify the wire IDs that are used during the calculation and start the
calculation directly after all inputs are read in without any copying. But although the Adder PCF
file is smaller than the Millionaires one (296 against 5877 PCF instructions), the time to read in
all instructions takes longer for the Adder function. Further tests showed, that this behavior is in-
dependent from the kind of function and can be confirmed even after 100 runs. The reading time
takes longer, but less MTs are required, therefore the entire execution time for the initialization
phase is similar. Yao’s GC initialization phase should be about the same time for the Adder and Mil-
lionaire function, because the inputs for the two functions are equal and the functions themselves
contain only a simple calculation. The difference of 472 ms could be explained in turn by the time
difference between both instruction readings. The execution with plaintext values involves only
the instruction reading in the initialization phase. Again, the time difference can be explained by
the same reason as with Yao’s GC.

Circuit evaluation During the circuit evaluation, GMW’s advantages comes to the fore. As a consequence
of previous MT generation, the evaluation is almost as fast as a plaintext evaluation. The small
difference can be explained by the communication step that every AND gate requires. Nevertheless
it is much faster than Yao’s GC. A comparison between the Adder and Millionaire evaluation shows
in all three backends, that much more instructions have to be executed for the Millionaire function.
This is mainly because the Adder file was optimized manually as contrasted with the Millionaire’s
one.

Altogether GMW is slightly faster than Yao’s GC for both functions. Its slower initialization phase com-
pensates completely during the evaluation. But GMW also benefits most from the test environment, as
the two parties have been simulated with the same notebook and hence network latency was not an
issue. Otherwise, many further optimization for GMW could be implemented in future works, which we
outline in the next section.

5.5 PCF 1 and GMW - Summary and Discussion

In this chapter, the PCF interpreter was introduced together with a reference about all important in-
structions available for PCF 1. Afterwards an extension was presented to provide GMW as new backend
for the interpreter. The result of our benchmarks were shown and interpreted in the last section. They
confirmed previous works and demonstrated that GMW could be a noticeable alternative to the existing
Yao’s GC backend. In this section, we discuss general advantages and disadvantages of a GMW integra-
tion within the PCF environment.
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First of all, the implementation of GMW’s gate evaluation is comparatively easy to realize and does
not require as much code as the existing Yao’s GC part. Due to the replacement, the number of Java
classes and lines of code could be decreased a lot. After the Yao’s GC part was separated from the inter-
preter’s core, the GMW integration was uncomplicated.

Other advantages can be applied from existing benefits of the GMW approach. Most of the work can
be done during the setup phase, which allows a more flexible resource arrangement. This can be useful
for various applications and scenarios, the PCF project wants to support. Especially for mobile devices,
such as the examples of [Dem13], [DSZ14] it may further improve the performance.

The main disadvantages are based on the fact that GMW has never been in the focus of the PCF
developers, who have only focused on the Yao’s GC approach. Because of that many things are not
implemented in a way, GMW could use them for an optimal performance.

One example is the PCF interpreter and its execution sequence. In its current stage, the interpreter
executes all instructions in a sequential order, whereby the circuit construction (which is built from the
instructions) only allows a sequential gate evaluation as well. One of GMW’s greatest optimization is
related to depth-efficient circuits, which enables a parallel evaluation and hence avoids an interaction
step for each AND gate. Therefore, a low circuit depth is preferable for the GMW approach. The depth
of circuits built with the PCF components is similar to its size and that is the worst-case scenario for
GMW. A parallel gate evaluation would allow further improvements. Sending and receiving data for
every single AND gate implies not only the required parameters but also network overhead for each
connection. In case of a parallel evaluation, the interpreter would have to communicate with the other
party only once per layer. Of course more data would be transferred in one connection, but the delay
issues - summed up by each connection - could be reduced.

Another issue is about the type of gates, the interpreter has to evaluate. PCF instructions are not
limited in their gate depiction. Since GMW can only handle AND, XOR and NOR gates, the inter-
preter has to transfer all instructions containing any other gate type into a respective presentation of
these three types. Also no techniques to decrease the number of AND gates are involved in the compila-
tion process.

But all these issues are a consequence of PCF’s design and conception, that are based on its com-
mitment to Yao’s GC. The interpreter and compiler could be expanded in order to eliminate these
disadvantages. A support for parallel execution might be an improvement for Yao’s GC, too.

5.6 PCF 1 - Future Work

Several steps can be done to continue the work on the PCF project and its GMW extension as an addi-
tional backend. Most of them can be deduced from the previous section.

First of all, a parallel evaluation should at least partially be supported. A system to mark instruc-
tions that could be executed in common has to be introduced for this feature. The PCF compiler has
to take care of such a system. Afterwards, the PCF interpreter can perform a parallel evaluation. This
improvement requires interpreter and compiler modifications.

Additionally, the PCF compiler should be optimized to reduce the number of AND gates within the
Boolean circuit. As opposed to Yao’s GC, GMW’s performance depends on the number of AND gates and
so the compiler should avoid them whenever possible. Schneider published a book about this issue in
2012 [Sch12].
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Currently the PCF interpreter is responsible to provide the appropriate gate type for the GMW back-
end. All gate types except AND, XOR and NOT have to be translated at runtime. This work should be
done by the compiler, which could prohibit other gate types in the PCF file a priori by taking this into
account during the compilation. Since the compiler only needs to do this once, while the interpreter
translates the types at each execution, this would be a good approach for future works.

To reduce the problem of memory consumption for secure computation, the interpreter could load
the PCF file only partially into the memory. The current implementation reads the entire file at the
beginning and keeps it in memory during the whole execution. The parts could for example be defined
by the function instruction or a branch within the file. Especially for devices with low computational
resources, such as smartphones is this an important issue. As a result of this strategy, some instructions
could be loaded multiple times, due to the fact that the program can jump back to an earlier instruction
that is not stored anymore. The compiler should check for frequently used parts and mark them dur-
ing the compilation. All in all this aspect strongly dependents on the execution device. Henecka and
Schneider published their work in 2013 [HS13], which includes circuits and communication caching.

30



6 PCF 2 - C Interpreter
After PCF 1, the developers released a new project version, called PCF 2. They have introduced sev-
eral changes with the new version we describe in detail in the course of this chapter. The current
stage of development can be found on github1. A new project interpreter allowing to read and trans-
late all existing instructions, has already been developed. The core part of the interpreter, responsible
for each instruction execution, is written in C. Moreover, similar to the known PCF 1 interpreter in
Java (which is described in Section 5.1), the PCF developers applied the Yao’s GC protocol as back-
end for any gate evaluation within the procedure. The Yao’s GC implementation is written in C++.
The decision to provide a PCF interpreter in C allows a variety of opportunities for existing or future
applications. C and C++ are still two of the most widely used and popular languages2. The inter-
preter - provided as a library - benefits from the widespread and versatile usage of the language and can
be integrated in many existing C/C++ applications. Also the integration in embedded systems is fea-
sible. In addition, many developers are familiar with the language C and therefore can work with it easily.

This chapter is concerned with the second version of the PCF interpreter in C/C++. A short overview
on all alterations to the prior version is presented in the next section. Afterwards, all aspects of the in-
terpreter are described, its construction and working progress (cf. Section 6.2). In Section 6.3, all PCF 2
instructions, that are offered for a successful circuit building, are explained. Finally, two implemented
modifications for PCF 2 are introduced: an extension of the evaluation process and the implementation
of several new instructions. Comparable to the PCF 1 extension in Section 5.3, we want to extend the
C interpreter to support GMW in addition to Yao’s GC, since GMW is under certain circumstances more
efficient (cf. Section 6.4). Furthermore, the PCF 2 instruction set is enlarged by arithmetic operations
to allow further optimizations and to supply a better maintenance by introducing a higher abstraction
level. Section 6.5 describes all aspects of arithmetic operations.

6.1 Alterations to PCF 1

The release of a second project version called PCF 2 has introduced various alterations and improve-
ments. The developers specified an entire new syntax for the format and implemented keywords to
make the instructions and their respective meaning more readable for users. A keyword, for example
:DE or :TRUTH-TABLE indicates its following value. Furthermore, brackets are used to define the start
and end point of each instructions.

The instruction set has also been renewed. A few unnecessary instructions were removed, others were
replaced or altered, for example by new parameters and some new ones were added. The stack en-
vironment was removed completely, since the PCF developers considered that its memory usage was
disproportionate to its benefits. So the PUSH and POP instructions are no longer offered without any al-
ternative. Therefore, new features are supplied by implementing new instructions. The BITS instruction
for example allows users to distribute a wire’s value on several other wires. Since a wire value is not
limited to a single bit, but can also be an integer, it is possible to split a value bit by bit and share it.
Each wire also stores additional data, so called keydata. They are used by some instructions to save
required information. Beyond that, PCF 2 has introduced support for some arithmetic operations, like

1 https://github.com/cryptouva/pcf
2 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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multiplication and addition. But these operations can only be used for plaintext values so far. They do
not support the handling of secret shared values, which depend on one of the inputs.

6.2 C Interpreter for PCF 2

The interpreter for PCF 2 is divided into two parts. The first part, written in C, contains the interpreter
core including all required methods to read and interpret any PCF 2 instruction. The second part is
written in C++. It provides a Yao’s GC implementation for the gate evaluation and takes care of com-
munication aspects between both parties during the procedure. The interpreter is in a working state
and improved continually3. The focus of this chapter is on the interpreter core, since we add GMW as
additional backend later. However, both components are presented in the following.

6.2.1 Interpreter Core

The PCF 2 interpreter core is responsible for dealing with multiple features of the PCF 2 instruction set.
Methods to read in the PCF file are included as well as a precise implementation of each instruction
within the file, their respective parameters and other important informations. Some options for a ver-
satile input system, enabling various ways to read both parties’ inputs, are supported in addition. The
inputs can be read from a given file or as program arguments. Furthermore, the function result is printed
at the end. The interpreter core also defines all required type structures, like the different elements of
a wire, consisting of its stored value, a flag that decides if the wire is assigned to a secret value and so
called keydata, which provide additional information for some instructions. The working flow is similar
to the PCF 1 interpreter (cf. Section 5.1). At the beginning, the PCF file is read in and all contained
instructions are stored (with their respective parameters) into an array. Afterwards, each instruction
within this array is processed sequentially. So the processing does not happen directly, the complete file
is cached by the interpreter first. Each instruction can be figured as a transition between states, which
are passed by the program during the execution. A Program Counter (PC) points to the currently run-
ning instruction and hence is used to determine or manipulate the next instruction, which is for example
important for jump executions. Only if a gate evaluation appears, the program needs to use Yao’s GC.
Two classes construct this part of the program, pcflib and opdef. Their interaction is shown in Figure
8. opdef stores and maintains all instructions’ implementations and provides them to the program at the
appropriate time. pcflib regulates the working flow that is described above. It maintains all methods
to read and execute each instruction in order to build and evaluate the circuit.

6.2.2 Yao’s GC Implementation

The second part of the interpreter is written in C++. It deals with both, the communication between
the two parties and the gate evaluation using the Yao’s GC protocol.

An external library is used for the communication part, called MPICH4. Published under a BSD-like
license, MPICH is an implementation of the Message Passing Interface (MPI)5 and supports all current
MPI versions (v1.0 till v.3.0). MPI in turn is a specification for a message-passing system, that is well
tested and widely used today. For Yao’s GC, two different implementations are provided. The first one
is secure against semi-honest adversary model, the attacker does not influence the protocol rules, but
tries to gain further sensible information (cf. Section 2.1). Beyond that, another implementation of
Yao’s GC was developed, that requires more steps but provides protection against malicious adversaries.

3 https://github.com/cryptouva/pcf/tree/gh-pages/pcflib
4 http://www.mpich.org/
5 http://www.mpi-forum.org/docs/docs.html
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Figure 8: PCF 2 interpreter, program structure

The implementation is based on the work of [sS11]. When the program starts, the user decides with a
program argument, which implementation he wants to use.

6.3 PCF 2 Instructions

Similar to PCF 1, several instructions are supported by PCF 2 to describe and build the circuit in a com-
pact and effective way. These instructions, however, are only partly comparable to their predecessor,
since many changes have been introduced. A completely new syntax is used for the instructions, that
should improve the readability of the PCF program. New instructions have been introduced, a few have
been replaced or removed entirely and some of them require new or different parameters. In the follow-
ing section, all PCF 2 instructions are introduced including examples and a description of their respective
meaning. The instruction list has been extracted from the existing C interpreter and is complete so far.
It is unknown, whether further changes are planned by the PCF developers. In summer 2014, a few
days before this thesis was finished, the PCF developers published a documentation about the meaning
of each instruction, too. Their list can be found on github6.

All instructions require a few parameters, which specify different options and have to be set. Similar
to PCF 1, no optional parameters exist. Furthermore, all necessary labels have to be unique within the
PCF file. The techniques for conditional and unconditional jumps are adopted from the first project ver-
sion, but instead of GADGET and FUNCTION in PCF 1, the instruction LABEL defines the target and BRANCH
(conditional) or CALL (unconditional) execute the jump.

We show a simple example for a PCF file in Figure 9. Again, the function is a two bit adder. The
program works similar to our prior example in Figure 5. Line 1-4 define the program header. After-
wards, the inputs of both parties are read in (line 5-6) and the calculation starts (line 7). Line 15
outputs the result. Furthermore, we provide the entire program code of a 32 bit adder in Appendix B.

6 https://github.com/cryptouva/pcf
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1 (LABEL : STR " pc f en t r y " )
2 ( INITBASE : BASE 1 )
3 (LABEL : STR " main " )
4 (CLEAR : LOCALSIZE 128 )
5 (CALL :NEWBASE 427 :FNAME " a l i c e " )
6 (CALL :NEWBASE 65 :FNAME " bob " )
7 (GATE :DEST 493 :OP1 427 :OP2 65 :TRUTH−TABLE #*0110 )
8 (GATE :DEST 459 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
9 (GATE :DEST 494 :OP1 492 :OP2 427 :TRUTH−TABLE #*0110 )

10 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
11 (GATE :DEST 492 :OP1 427 :OP2 495 :TRUTH−TABLE #*0110 )
12 (GATE :DEST 493 :OP1 428 :OP2 66 :TRUTH−TABLE #*0110 )
13 (GATE :DEST 460 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
14 (CALL :NEWBASE 491 :FNAME " ou tpu t_a l i c e " )
15 (RET :VALUE 491 )

Figure 9: PCF 2 file example

INITBASE This instruction is called at the beginning of each PCF program to initialize the PC and the
base counter. Both are required to address different positions within the program. The PC points to
the current instruction and is initialized to the position of the "main" label, that defines the starting
point. The base counter is mainly used during the input reading to decide, which area of the input
is taken. But it is also added to almost every array position that is used to address the wires. The
base counter is initialized to 1.

Example: (INITBASE :BASE 1 )
Can be found in the first lines of every PCF file. It sets the base counter to 1 and jumps to "main".

LABEL Defines a new label that address is saved for a call within the program. As mentioned previously,
all labels have to be unique. This instruction is used to support branches during the process.

Example: (LABEL :STR "main" )
Defines a new label called "main". According to INITBASE, the PC is set to the address of this label
on program launch.

BRANCH BRANCH is used to reset the PC, a technique that enables a jump to any desired label. First of
all, it checks the wire with an ID specified by the first parameter. If the wire is known (the value has
already been calculated and is a non-secret value) and the value is 1, the PC is set to the new ad-
dress. Otherwise, the PC is increased by one and the next instruction within the PCF file is executed.

Example: (BRANCH :CND 33 :TARG "PC5" )
Checks the wire 33 (+ current base position). If the value is 1, the program jumps to label "PC5".

CONST A constant value is set to a wire. Existing entries are overwritten. The first parameter defines
the desired target wire, the second specifies the value.

Example: (CONST :DEST 33 :OP1 65 )
The value 65 is set to wire 33 (+ current base position).

GATE This instruction is responsible for a single gate evaluation. It receives four parameter: one target
wire (:DEST), two source wires (:OP1 and :OP2) and a bit encoded truth table (:TRUTH-TABLE).
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The truth table defines the operation, which is applied to the source wires. A four bit value encodes
the truth table, its descending sequence describes the table. For example 0001 corresponds to an
AND and 0110 to an XOR operation. The calculated result is assigned to the target. Only Boolean
values are allowed for this instruction, since only Boolean operations can be evaluated.

Example: (GATE :DEST 33 :OP1 34 :OP2 35 :TRUTH-TABLE #0110 )
0110 is the truth table for the XOR operation. Source wires are 34 and 35, the result is assigned to
wire 33. The current base position is added to all IDs.

CLEAR Clears all wires in a given range. To clear a wire, its value is set to 0 and its keydata are deleted.

Example: (CLEAR :LOCALSIZE 160 )
Clears the 160 following wires that are based on the current base position.

CALL The CALL instruction receives two parameters: a wire ID assigning a new base position and a
function name. Four functions are predefined: "alice", "bob", "output_alice" and "output_bob". The
first two functions can be called to read in the respective parties’ input. The other two output the
result. If none of the four function is given as parameter, the program searches for an appropriated
label.

Example: (CALL :NEWBASE 33 :FNAME "alice" )
Reads Alice’s input and stores it to wires starting at ID 33 (+ current base position).

RET Returns after a function call, resets the PC and base counter and frees allocated memory. For a
successful return, the value of a given wire has to be set.

Example: (RET :VALUE 33 )
Checks wire’s value with ID 33, if the value is 1, jumps back, otherwise exits with an error.

BITS Copies the value of a wire to a given set of wires, each wire receives one bit of the value. Keydata
and flags are copied, too. Can be used to distribute 32 bit value to 32 wires.

Example: (BITS :DEST (33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 54 55 56 57 58 59 60 61 62 63 64) :OP1 33 )

All data of wire 33 are distributed to the wires 33 till 64. It is allowed (and used in some PCF files)
that the source wire (:OP1) is also part of the destination wires (:DEST).

MKPTR Creates a pointer by adding the current base position to the value of a given wire.

Example: (MKPTR :DEST 33 )
The value of wire 33 is increased by the current base position.

COPY Enables a copy operation, given three parameters, the destination, the source and the width.

Example: (COPY :DEST 33 :OP1 65 :OP2 32 )
Wire 33 (+ current base position) defines the destination wire, the source is set by wire 65 (+
current base position). Because of the third parameter, 32 following wires are copied.

COPY-INDIR Another copy operation. It takes three parameters, one for the destination wire, one for
the source and one for the desired width. Compared with the copy operation above, the source of
this instruction is defined by a given wire’s value.

Example: (COPY-INDIR :DEST 33 :OP1 65 :OP2 32 )
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The value of wire 65 (+ current base position) sets the source wire, wire 33 defines the destination.
Because of the third parameter, 32 wires (starting at 33 + current base position) are copied to the
32 destination wires.

INDIR-COPY Similar to COPY-INDIR, except that the destination wire is defined by the given value and
not the source.

Example: (INDIR-COPY :DEST 33 :OP1 65 :OP2 32 )
The value of wire 33 (+ current base position) sets the destination wire, wire 65 defines the source.
Because of the third parameter, 32 wires (starting at 65 + current base position) are copied to the
32 destination wires.

JOIN & ADD & MUL These three instructions should help to support arithmetic circuits in addition to
Boolean ones. A wire stores its values as uint32_t, so arithmetic operation, like JOIN, ADD or MUL
are possible. But so far they can only be used to process plaintext values and not secret shared
values. All three instructions require three parameters, two for the source operators and another
for the result.

6.4 Implementation of a GMW PCF 2 Interpreter

The development of a GMW implementation and its establishment as new backend is our first modifica-
tion for the PCF 2 interpreter, which has been realized in the context of this thesis. The required steps to
use our GMW implementation instead of the Yao’s GC routine are described in this section.

In addition to the evaluation approach, the entire communication system has been restructured. In-
stead of MPI, we use standard C libraries, because we have used these libraries before and are more
familiar with them. They allow one party (who takes the server role) to create and maintain a socket.
The other party takes the client role and connects to the socket. Required information have to be shared
or determined before, like the IP address of the server or the used port number for the service. Both par-
ties use the socket to send and receive data during the evaluation process, including the masked inputs
(which have to be shared), the parameter d and e for every AND gate evaluation and the respective local
output to reconstruct the final result.

In the course of our work for the GMW implementation, we have designed a new instruction for fur-
ther improvements of the protocol. This instruction is called MPC-COMM and it does not require any
parameter for its execution. Within the PCF file, it consists of the following syntax:

PCF syntax: (MPC-COMM )

Our purpose and motivation for this instruction is to allow the programmer or any other user deal-
ing with PCF to decide manually when both parties should share their required values d and e for
the AND gate evaluation. While the interpreter executes this instruction, the number of AND gates
waiting for the communication step and hence for the other party’s d and e, is checked. If at least one
AND gate is ready to exchange the values, the communication starts and the evaluation can be continued.

In the long-term planning this instruction can be used to combine several interaction steps of AND
gates in order to reduce the number of required communication rounds. Every time an AND gate does
not depend on a gate, that has not been evaluated yet, the gates can be grouped into layers. Afterwards,
a communication step is only required for every layer and not every single AND gate. This strategy
enables a good optimization for GMW and was mentioned in various sections of this thesis (e.g. Section
2.6 or Section 5.5). But to take full advantage of this feature, the compiler has to be modified as well.
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The compiler selects the AND gates, which can be grouped and which depend on each other. By now, the
compiler is not optimized to decrease the circuit depth in this way and therefore the communication step
has to start for each AND gate or the programmer has to decide it manually and that might be impossible
because of the large size of a circuit.

During the evaluation, we only need to modify the GATE instructions to use our GMW implementa-
tion. Furthermore, methods for additional GMW options have to be implemented, like the secret input
sharing or the MT generation within the setup phase.

6.5 Arithmetic Operations

As part of this thesis, the PCF project was extended by one more feature, the support for arithmetic
operations including their identification and evaluation. In order to do that, we enhance the current set
of instructions by several arithmetic operations: the basic operation addition, a comparison operation
and a multiplexer operation. This extension is an useful improvement for PCF 2 because of two reasons:
maintenance and optimization. Both will be explained in the following section. To be compatible with
current PCF 2 components, our modifications do not change or remove existing sourcecode, since we
only add our new instructions and their implementations.

PCF in both, version 1 and 2, can deal with Boolean operations only. All arithmetic operations of a
function are converted during the compilation into their respective Boolean representation and then are
evaluated by Boolean gates. A truth table helps to determine which operation is needed for each gate,
two wires define the source values, another wire is assigned with the result. So basically, an ordinary
logic gate is simulated. PCF 2 provides the GATE instruction for Boolean operations (cf. Section 6.3).
This strategy does not enable the kind of abstraction, programmers are used to deal with in their soft-
ware. Of course, one advantage of the PCF project is its independence allowing an interaction without
any specialized knowledge, also in respect to the function representation and evaluation. A PCF file is
ordinarily created by the compiler without the need for manual modifications. The interpreter reads in
and handles all instructions within the PCF file automatically, too. So a programmer does not have to
know anything about the file, its instructions or the process at all. Nevertheless, a basic understanding
about PCF and its instructions may be helpful, for example for debugging reasons. As the project is
very young and long-term tests do not exist yet, a programmer may fix potential bugs directly inside the
PCF file. Also further optimizations can improve the evaluation process and thereby are a good reason
to become more familiar with the format. The more understandable the instructions are, the easier it is
for a developer to comprehend the layout of any PCF file. Arithmetic operations are a good example for
that. If a function contains an arithmetic operation, a programmer expects a similar operation within the
PCF file. This is more readable and intuitive than its respective Boolean representation. All in all with
the help of arithmetic operations, the maintenance of a PCF file is easier, because it enables a higher
abstraction level.

A support for arithmetic circuits is in the focus of the PCF developer team as well. It should be "used in
homomorphic encryption and multiparty computation applications, as well as applications in verifiable
computation"7. The current implementation does not include this feature by now, because the existing
instructions ADD, MUL and JOIN deal with plaintext values only. Both improvements could be combined
in future developments.

7 Kreuter, Shelat; Page 2, Section 2.4 [Ks13]
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6.5.1 Implementation of Arithmetic Operations

All arithmetic operations should be able to calculate values with arbitrary length. However, both lengths
are defined by the same parameter with the consequence that the calculation only accepts two values of
equal length. This feature requires a new form of addressing, since each wire is assigned to one value,
saved as an uint32_t variable. So although it is possible to store an operator for a 32 bit arithmetic oper-
ations entirely in a single wire, we chose another way. The current implementation assumes that only a
Boolean value (0 or 1) is stored into a single wire to simplify the handling of various instructions, like the
Boolean gate evaluation. Values greater than 1 cause a program crash. As a consequence, each affected
instruction would need to check the currently used addressing mode and converts it if necessary. More-
over, each bit within the uint32_t variable needs to be addressed individually during the evaluation. And
also the length would be limited to maximal 32 bit for each operator, which maybe would not be suitable
for some scenarios. These things taken into consideration, it is more practical to retain the current kind
of addressing and adapt the arithmetic operations to it. Hence the operators are saved into a number
of wires, each of them is assigned to one bit. Similar to an array, the first wire references the starting
point and the following wires supply the remaining bits. Each bit can be addressed with its respective
wire identification. The BITS instruction is one good opportunity to define operators for arithmetic oper-
ations, because it allows to distribute a single value bit by bit to an arbitrary number of destination wires.

For now, we support the following three arithmetic operations, which calculations are taken from
[KSS09]:

Addition: The addition operation calculates the sum of two values x and y of equal length. A third wire
saves the result. Its implementation realizes a simple adder, including carry and parity bits. The
carry bit is calculated with (x & y are the two operators, r the result and i works as iterator):

ri+1 = (x i ⊕ ri)∧ (yi ⊕ ri)⊕ ri with r0 = 0

To support this calculation, a new PCF instruction has to be defined:
(MPC-ADD :DEST 65 :OP1 1 :OP2 33 :LEN 32 :BUF 97 )

In this example two 32 bit values (one starts at ID 1, the other at ID 33) are added and the
result is stored in the wire with ID 65.

Comparator: Using the comparator operation, the interpreter determines, if the first value is greater
than the second one. A positive result (the number is greater) is stored as 1 in a given third wire,
otherwise the third wire is assigned to 0. Within the operation, the calculation is implemented as
follows (again, x & y are the two operators, r ’s last bit the final result and i works as iterator):

ri+1 = (x i ⊕ ri)∧ (yi ⊕ ri)⊕ x i with r0 = 0

We define a new PCF instruction to support this feature:
(MPC-CMP :DEST 65 :OP1 1 :OP2 33 :LEN 32 :BUF 66 )

In this example two 32 bit values (the first starts at ID 1, the second at ID 33) are compared
and the result (1 if the first value is greater than the second one, else 0) is stored in the wire with
ID 65.

Multiplexer: Our multiplexer needs three operators for its execution. The third one decides if the first or
the second is passed on to the destination. The internal implementation translates the multiplexer
into (with x and y as input, r is the result and s decides which one is passed and again i works as
iterator):

ri = x i ⊕ (s ∧ (x i ⊕ yi))
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Once again, we have defined a new PCF instruction to handle such an operation:
(MPC-MUX :DEST 66 :OP1 1 :OP2 33 :OP3 65 :LEN 32 :BUF 98 )

In this example the value of wire 65 is checked and if it is assigned to 1, the wires 1-32 are
copied to the wires 66-97 or (if wire 65 is assigned to 0) the wires 33-64 are copied to the wires
66-97.

During the execution, our new instructions are read in together with all others and cached by the pro-
gram. Their syntax is shown above. All of them define the destination wire first, following the standard
practices of PCF. As already mentioned at the beginning of this section, the given wire does not store
the entire result, but sets the starting point describing an array of wires, which store one bit of the
result in each case. Afterwards all operators are read in. The addition and comparison operations
supply two operators, the multiplexer requires one more for its calculation. At last, two parameter spec-
ify the wires, which are responsible for the length and a buffer. The former parameter sets the fixed
length for all operators by defining the number of wires, which store the value. Besides, a buffer wire is
used to cache values during the calculation. This wire applies the same array technique as both operators.

After all instructions are fetched, the evaluation starts. If one of our instructions occur during the process,
its calculation is carried out according to the equation described above. No further steps are necessary.

Some of the calculations require an interaction between both parties, since they use an AND gate
that inputs could depend on secret shared values. These gates are already evaluated with the aid of
the GMW technique. Our extension to support GMW in addition was described in Section 6.4.

6.6 PCF 2 and Arithmetic Operations - Summary and Discussion

The topic of this chapter was the PCF 2 interpreter, written in C/C++, including a description of its
structure, working procedure and functionality (cf. Section 6.2). We worked out the alterations between
the previous PCF project version and the current release (cf. Section 6.1). We further described the
improvements, which were incorporated into the new version. A number of supported instructions were
introduced and exemplified in Section 6.3.

Finally two modifications for the interpreter were implemented. At first, we added a new PCF backend
in order to evaluate gates with the approach of GMW instead of Yao’s GC. Afterwards, the instruction set
was enlarged to support arithmetic operations in addition to the existing Boolean ones. Currently, our
operations include an adder, a comparison and a multiplexer.

The introduction of arithmetic operations shall improve the PCF project by creating a higher abstrac-
tion level. It simplifies the PCF file and therefore improves its maintenance and for example in case
of an error, its debugging possibility. But beyond that, more advantages are obvious. Since arithmetic
instructions are a much more compact way to describe arithmetic operations, we reduced the size of the
PCF file. As an example, the addition of two 32 bit values requires 192 gates collectively and therefore
192 GATES instructions within the PCF file. As a result of our extension, only one instruction is needed
for the addition description. The arithmetic comparison of two numbers or a multiplexer also requires
a lot of instructions, which can also be reduced to one now (the PCF 2 millionaire function consists of
1065 GATES instructions within the PCF file).

All in all, the compactness ensures a better maintenance for the PCF files. Additionally, electronic
devices with limited resources will benefit from that, due to the fact that they can handle functions
more easily. To save the PCF file, less storage is needed and the PCF interpreter has to load and keep less
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instructions during the execution, which relieves the main memory.

A disadvantage of our arithmetic operations could be that users can not implement their own im-
provements or adaptations for these operations. If users want to execute an addition of two values
in a different way than the PCF interpreter provides using its arithmetic operations, they have to use the
usual GATES instructions again. But since we have not replaced any instruction, this is still possible. As a
further consequence of our extension, the PCF components became more complex, because the number
of code lines were increased and the arithmetic instructions require additional logic. The maintenance
costs increase as well as the susceptibility to errors, due to the complexity.

Instead of arithmetic operation instructions, it is also possible to calculate each arithmetic operation
in a PCF function and call them respectively on demand with the desired operators as arguments. How-
ever, these special functions could then use ordinary Boolean instructions to calculate the result and
return it. This strategy would avoid multiple placements of the same arithmetic operation and thereby
reduce the PCF file size as well. But the size would not be as small as it would be with our new in-
structions, as the function itself is saved within the PCF file. Also the maintenance would be improved
by applying reusable functions. But again, the effect would not be as big as our approach provides.
The PCF file is the best possibility for developers to implement their own optimizations beyond the de-
fault PCF ones, since the PCF compiler and interpreter should not specially adapted to each program of
PCF file. This offers many opportunities but also error sources. Our new instructions provide a better
protection against mistakes than special functions do. As the function is a part of the entire program, a
developer could for example accidentally overwrite important wires during his modifications. A single
instruction is easier to handle than an entire function, especially because with our instructions the PCF
interpreter ensures the functionality of any arithmetic operation. Finally, if a developer really wants to
use functions for arithmetic operations, he is free to do so in his programs. But since it is not the most
intuitive way, it should not be the default strategy in a system aiming to be usable for people without
specialized knowledge. The biggest advantage of such functions is that the PCF interpreter does not
require any modifications, because only the compiler needs to detect arithmetic operations and translate
them into functions.

The advantages and disadvantages of our GMW implementation related to the backend replacement
were discussed in Section 6.6 and can be fully applied to PCF 2.

6.7 PCF 2 - Future Work

To continue the work around the PCF 2 project, some further improvements can be done. As we only
realized three arithmetic operations, future works could focus on further ones (e.g. multiplication).

Moreover, the expression of a single instruction can be further abstracted by representing an entire
calculation. If a general known algorithm appears within the evaluated function, it could be described as
a distinct instruction. An example would be the greatest common divisor (gcd) of two numbers, which
is based on arithmetic operations but would provide an even higher abstraction level than primitive op-
erations, like the addition of two values. Many other algorithms could be supplied in that way. However,
the PCF interpreter then needs to decide, how any algorithm is implemented and therefore calculated.
If more approaches exist for a successful calculation (the gcd for example can be determined with differ-
ent methods), somebody has to define the most suitable one for the interpreter. Since each calculation
method has certain advantages this could be difficult to decide. Also the complexity of both, the PCF
compiler and interpreter, increases with the number of supplied instructions. To avoid a disproportionate
disadvantage for the maintenance of any PCF components, the introduction of new instructions should
be limited to the frequently used and well-known algorithms only.
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Although the approach of functions, that are used for arithmetic operations within the PCF file does
not replace our new instructions, it could be extended, too. The PCF compiler could support the inclu-
sion of further extern PCF files, similar to a library system. That way, functions that are used often could
be outsourced and imported on demand. Other programs could then import these files, too. This is
not limited to arithmetic operations, but could also include entire algorithms or program parts. During
the compilation, the compiler checks and adapts accordingly what imports the environment supplied.
However, such a library system would require bigger changes in each project component but might be
interesting for future works.

As another topic for potential future works is the analysis of the function to recognize and tag pro-
cedures, that are independent from each other and hence can be parallel evaluated. Similar to a parallel
evaluation of AND gates for GMW, arithmetic operations or even entire subfunctions could be parallel
evaluated, too. This would increase the complexity of all PCF components again, but it would also im-
prove the performance. During the compilation, the function could be tested for possible parallelism.
The OpenMP8 project for example provides different techniques to analyze a function for such a purpose.
The interpreter has to recognize and execute the parallel parts afterwards.

The future work for our GMW implementation as new backend was described in Section 5.6 and can be
applied to PCF 2 as well.

8 http://openmp.org/wp/
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7 Conclusion
This last chapter focuses on a summary on the thesis topic and gives an overview about our results, their
meaning and possible future works.

7.1 Summary and Discussion

In the course of this thesis, we have worked on different aspects around the PCF project. The project was
started in 2013 by a developer team from Virginia and Oregon aiming to improve the way circuits for
secure computation can be built, stored and processed in comparison to existing procedures. It actually
affords new possibilities in the field of secure computation by reducing the required performance and
thereby enables the process even for devices with limited resources. Both published versions were main
topics for this thesis and we have especially addressed two issues. At first, we add our implementation of
GMW to the existing PCF backends. The interpreter has only supported the approach of Yao’s GC so far,
but we wanted to demonstrate the advantage of GMW. Secondly, we designed some new instructions,
which enable PCF 2 to handle arithmetic operations in addition to Boolean ones. Both extensions can be
seemed as improvements for the PCF project.

The usage of GMW as evaluation approach has shown that a performance faster than the existing
approach of Yao’s GC can be reached, although we have only realized a small part of all possible op-
timizations for GMW. Many further improvements are therefore conceivable for the GMW backend,
which could be the topic for future works.

Our new instructions improve the usability of PCF files by increasing their readability and hence im-
proving their maintenance. Furthermore, we could decrease the file size, as arithmetic operations allow
a more compact circuit description.

7.2 Future Work

Some enhancements can be done to continue the work of this thesis and the PCF project at all. They are
introduced in the following section.

Section 5.6 already lists some future work to extend and improves the GMW backend within the PCF
compiler and interpreter. The most important work might be the depth optimization for circuits in order
to enable a grouping of AND gates, which can be parallel evaluated. Other improvements are for exam-
ple the reduction and avoidance of AND gates during the circuit building or the prevention of any other
GATE types except AND, XOR and NOT gates as part of the compilation. The PCF interpreter could also
cache the reading instructions partially instead of loading and storing them all at once.

Our implementation about arithmetic operations can be continued with several works as well. We
have described them in detail in Section 6.7. Among others, further improvements include the intro-
duction of the following features: more arithmetic operations could be implemented to expand our
set of supported operations. Furthermore, instructions could even describe entire algorithms as a new
abstraction level. A parallel evaluation of instructions could improve the performance and might be re-
alized by future projects, too.
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In addition to our work, other areas of the PCF project could be in the focus of future works:

7.2.1 Secure Multi-Party Computation

To support more use cases, the PCF project should enable secure multi-party computation. By now, only
two parties can participate in the process. Since GMW in general allows secure multi-party computation,
the compiler and interpreter could be improved accordingly.

7.2.2 Communication

Any interaction between both parties requires some kind of communication. To transfer data, it might be
useful for some scenarios to extend the interpreter by further communication techniques, like Bluetooth
or NFC. By now, one party (the server) creates a TCP socket and the other party (the client) connects to
it.

7.2.3 Work in Progress

Other improvements are already in progress. Currently, the PCF developers are working on some en-
hancements around the front-end compiler [Ks13]. They try to support LLVM [LA04] bytecode next to
the currently used LCC compiler. LLVM allows them "to support a larger variety of languages"1.

Several improvements for the PCF compiler have already been implemented [Ks13], including support
for homomorphic encryption (not complete yet), linking functions (like AES S-Box) and compiler opti-
mizations. Unfortunately, no schedule for these works is known, but all improvements ensure that the
PCF project supplies more and more important functionalities and therefore is still an interesting project
for all users, who want to work in this field of cryptography.

1 Kreuter, Shelat; Page 2, Section 2.1 [Ks13]
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Abbreviations
API Application Programming Interface

GC Garbled Circuits

gcd greatest common divisor

GMW Goldreich, Micali and Wigderson

LCC Little C Compiler

MPI Message Passing Interface

MT Multiplication Triple

OT Oblivious Transfer

PC Program Counter

PCF Portable Circuit Format

R-OT Random-OT

SFE Secure Function Evaluation
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Appendix

Appendix A - PCF 1 file with adder function

1 GADGET: MAIN
2 CLABEL ALICEINLENGTH 32
3 CLABEL BOBINLENGTH 32
4 CLABEL xxx 64
5 SETLABELC ALICEINLENGTH 32
6 SETLABELC BOBINLENGTH 32
7 0000 33 0 0
8 1111 34 0 0
9 FUNC main xxx

10 FUNCTION: main
11 ALICEINPUT32 0 0
12 0110 100 0 33
13 0110 101 1 33
14 0110 102 2 33
15 0110 103 3 33
16 0110 104 4 33
17 0110 105 5 33
18 0110 106 6 33
19 0110 107 7 33
20 0110 108 8 33
21 0110 109 9 33
22 0110 110 10 33
23 0110 111 11 33
24 0110 112 12 33
25 0110 113 13 33
26 0110 114 14 33
27 0110 115 15 33
28 0110 116 16 33
29 0110 117 17 33
30 0110 118 18 33
31 0110 119 19 33
32 0110 120 20 33
33 0110 121 21 33
34 0110 122 22 33
35 0110 123 23 33
36 0110 124 24 33
37 0110 125 25 33
38 0110 126 26 33
39 0110 127 27 33
40 0110 128 28 33
41 0110 129 29 33
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42 0110 130 30 33
43 0110 131 31 33
44 BOBINPUT32 329 0
45 0110 165 0 33
46 0110 166 1 33
47 0110 167 2 33
48 0110 168 3 33
49 0110 169 4 33
50 0110 170 5 33
51 0110 171 6 33
52 0110 172 7 33
53 0110 173 8 33
54 0110 174 9 33
55 0110 175 10 33
56 0110 176 11 33
57 0110 177 12 33
58 0110 178 13 33
59 0110 179 14 33
60 0110 180 15 33
61 0110 181 16 33
62 0110 182 17 33
63 0110 183 18 33
64 0110 184 19 33
65 0110 185 20 33
66 0110 186 21 33
67 0110 187 22 33
68 0110 188 23 33
69 0110 189 24 33
70 0110 190 25 33
71 0110 191 26 33
72 0110 192 27 33
73 0110 193 28 33
74 0110 194 29 33
75 0110 195 30 33
76 0110 196 31 33
77 0110 1034 100 165
78 0110 1035 1034 33
79 0110 1036 100 165
80 0110 1037 100 33
81 0001 1038 1036 1037
82 0110 1039 100 1038
83 0110 1040 101 166
84 0110 1041 1040 1039
85 0110 1042 101 166
86 0110 1043 101 1039
87 0001 1044 1042 1043
88 0110 1045 101 1044
89 0110 1046 102 167
90 0110 1047 1046 1045
91 0110 1048 102 167
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92 0110 1049 102 1045
93 0001 1050 1048 1049
94 0110 1051 102 1050
95 0110 1052 103 168
96 0110 1053 1052 1051
97 0110 1054 103 168
98 0110 1055 103 1051
99 0001 1056 1054 1055

100 0110 1057 103 1056
101 0110 1058 104 169
102 0110 1059 1058 1057
103 0110 1060 104 169
104 0110 1061 104 1057
105 0001 1062 1060 1061
106 0110 1063 104 1062
107 0110 1064 105 170
108 0110 1065 1064 1063
109 0110 1066 105 170
110 0110 1067 105 1063
111 0001 1068 1066 1067
112 0110 1069 105 1068
113 0110 1070 106 171
114 0110 1071 1070 1069
115 0110 1072 106 171
116 0110 1073 106 1069
117 0001 1074 1072 1073
118 0110 1075 106 1074
119 0110 1076 107 172
120 0110 1077 1076 1075
121 0110 1078 107 172
122 0110 1079 107 1075
123 0001 1080 1078 1079
124 0110 1081 107 1080
125 0110 1082 108 173
126 0110 1083 1082 1081
127 0110 1084 108 173
128 0110 1085 108 1081
129 0001 1086 1084 1085
130 0110 1087 108 1086
131 0110 1088 109 174
132 0110 1089 1088 1087
133 0110 1090 109 174
134 0110 1091 109 1087
135 0001 1092 1090 1091
136 0110 1093 109 1092
137 0110 1094 110 175
138 0110 1095 1094 1093
139 0110 1096 110 175
140 0110 1097 110 1093
141 0001 1098 1096 1097
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142 0110 1099 110 1098
143 0110 1100 111 176
144 0110 1101 1100 1099
145 0110 1102 111 176
146 0110 1103 111 1099
147 0001 1104 1102 1103
148 0110 1105 111 1104
149 0110 1106 112 177
150 0110 1107 1106 1105
151 0110 1108 112 177
152 0110 1109 112 1105
153 0001 1110 1108 1109
154 0110 1111 112 1110
155 0110 1112 113 178
156 0110 1113 1112 1111
157 0110 1114 113 178
158 0110 1115 113 1111
159 0001 1116 1114 1115
160 0110 1117 113 1116
161 0110 1118 114 179
162 0110 1119 1118 1117
163 0110 1120 114 179
164 0110 1121 114 1117
165 0001 1122 1120 1121
166 0110 1123 114 1122
167 0110 1124 115 180
168 0110 1125 1124 1123
169 0110 1126 115 180
170 0110 1127 115 1123
171 0001 1128 1126 1127
172 0110 1129 115 1128
173 0110 1130 116 181
174 0110 1131 1130 1129
175 0110 1132 116 181
176 0110 1133 116 1129
177 0001 1134 1132 1133
178 0110 1135 116 1134
179 0110 1136 117 182
180 0110 1137 1136 1135
181 0110 1138 117 182
182 0110 1139 117 1135
183 0001 1140 1138 1139
184 0110 1141 117 1140
185 0110 1142 118 183
186 0110 1143 1142 1141
187 0110 1144 118 183
188 0110 1145 118 1141
189 0001 1146 1144 1145
190 0110 1147 118 1146
191 0110 1148 119 184
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192 0110 1149 1148 1147
193 0110 1150 119 184
194 0110 1151 119 1147
195 0001 1152 1150 1151
196 0110 1153 119 1152
197 0110 1154 120 185
198 0110 1155 1154 1153
199 0110 1156 120 185
200 0110 1157 120 1153
201 0001 1158 1156 1157
202 0110 1159 120 1158
203 0110 1160 121 186
204 0110 1161 1160 1159
205 0110 1162 121 186
206 0110 1163 121 1159
207 0001 1164 1162 1163
208 0110 1165 121 1164
209 0110 1166 122 187
210 0110 1167 1166 1165
211 0110 1168 122 187
212 0110 1169 122 1165
213 0001 1170 1168 1169
214 0110 1171 122 1170
215 0110 1172 123 188
216 0110 1173 1172 1171
217 0110 1174 123 188
218 0110 1175 123 1171
219 0001 1176 1174 1175
220 0110 1177 123 1176
221 0110 1178 124 189
222 0110 1179 1178 1177
223 0110 1180 124 189
224 0110 1181 124 1177
225 0001 1182 1180 1181
226 0110 1183 124 1182
227 0110 1184 125 190
228 0110 1185 1184 1183
229 0110 1186 125 190
230 0110 1187 125 1183
231 0001 1188 1186 1187
232 0110 1189 125 1188
233 0110 1190 126 191
234 0110 1191 1190 1189
235 0110 1192 126 191
236 0110 1193 126 1189
237 0001 1194 1192 1193
238 0110 1195 126 1194
239 0110 1196 127 192
240 0110 1197 1196 1195
241 0110 1198 127 192
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242 0110 1199 127 1195
243 0001 1200 1198 1199
244 0110 1201 127 1200
245 0110 1202 128 193
246 0110 1203 1202 1201
247 0110 1204 128 193
248 0110 1205 128 1201
249 0001 1206 1204 1205
250 0110 1207 128 1206
251 0110 1208 129 194
252 0110 1209 1208 1207
253 0110 1210 129 194
254 0110 1211 129 1207
255 0001 1212 1210 1211
256 0110 1213 129 1212
257 0110 1214 130 195
258 0110 1215 1214 1213
259 0110 1216 130 195
260 0110 1217 130 1213
261 0001 1218 1216 1217
262 0110 1219 130 1218
263 0110 1220 131 196
264 0110 1221 1220 1219
265 SHIFT OUT ALICE 1035
266 SHIFT OUT ALICE 1041
267 SHIFT OUT ALICE 1047
268 SHIFT OUT ALICE 1053
269 SHIFT OUT ALICE 1059
270 SHIFT OUT ALICE 1065
271 SHIFT OUT ALICE 1071
272 SHIFT OUT ALICE 1077
273 SHIFT OUT ALICE 1083
274 SHIFT OUT ALICE 1089
275 SHIFT OUT ALICE 1095
276 SHIFT OUT ALICE 1101
277 SHIFT OUT ALICE 1107
278 SHIFT OUT ALICE 1113
279 SHIFT OUT ALICE 1119
280 SHIFT OUT ALICE 1125
281 SHIFT OUT ALICE 1131
282 SHIFT OUT ALICE 1137
283 SHIFT OUT ALICE 1143
284 SHIFT OUT ALICE 1149
285 SHIFT OUT ALICE 1155
286 SHIFT OUT ALICE 1161
287 SHIFT OUT ALICE 1167
288 SHIFT OUT ALICE 1173
289 SHIFT OUT ALICE 1179
290 SHIFT OUT ALICE 1185
291 SHIFT OUT ALICE 1191
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292 SHIFT OUT ALICE 1197
293 SHIFT OUT ALICE 1203
294 SHIFT OUT ALICE 1209
295 SHIFT OUT ALICE 1215
296 SHIFT OUT ALICE 1221
297 RETURN −1 xxx

Appendix B - PCF 2 file with adder function

1 (LABEL : STR " pc f en t r y " )
2 ( INITBASE : BASE 1 )
3 (LABEL : STR " main " )
4 (CLEAR : LOCALSIZE 128 )
5 (CONST :DEST 129 :OP1 0 )
6 ( BITS :DEST (129 130 131 132 133 134 135 136 137 138 139 140 141 142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
160) :OP1 129 )

7 (CONST :DEST 161 :OP1 65 )
8 (MKPTR :DEST 161 )
9 (COPY :DEST 162 :OP1 129 :OP2 32 )

10 (CALL :NEWBASE 194 :FNAME " a l i c e " )
11 ( INDIR−COPY :DEST 161 :OP1 194 :OP2 32 )
12 (CONST :DEST 227 :OP1 1 )
13 (MKPTR :DEST 227 )
14 (CONST :DEST 228 :OP1 65 )
15 (MKPTR :DEST 228 )
16 (COPY−INDIR :DEST 229 :OP1 228 :OP2 32 )
17 ( INDIR−COPY :DEST 227 :OP1 229 :OP2 32 )
18 (CONST :DEST 261 :OP1 0 )
19 ( BITS :DEST (261 262 263 264 265 266 267 268 269 270 271 272 273 274

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
292) :OP1 261 )

20 (CONST :DEST 293 :OP1 97 )
21 (MKPTR :DEST 293 )
22 (COPY :DEST 294 :OP1 261 :OP2 32 )
23 (CALL :NEWBASE 326 :FNAME " bob " )
24 ( INDIR−COPY :DEST 293 :OP1 326 :OP2 32 )
25 (CONST :DEST 359 :OP1 33 )
26 (MKPTR :DEST 359 )
27 (CONST :DEST 360 :OP1 97 )
28 (MKPTR :DEST 360 )
29 (COPY−INDIR :DEST 361 :OP1 360 :OP2 32 )
30 ( INDIR−COPY :DEST 359 :OP1 361 :OP2 32 )
31 (CONST :DEST 393 :OP1 1 )
32 (MKPTR :DEST 393 )
33 (COPY−INDIR :DEST 394 :OP1 393 :OP2 32 )
34 (CONST :DEST 426 :OP1 33 )
35 (MKPTR :DEST 426 )
36 (COPY−INDIR :DEST 427 :OP1 426 :OP2 32 )
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37 (CONST :DEST 492 :OP1 0 )
38 (GATE :DEST 493 :OP1 427 :OP2 394 :TRUTH−TABLE #*0110 )
39 (GATE :DEST 459 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
40 (GATE :DEST 493 :OP1 427 :OP2 394 :TRUTH−TABLE #*0110 )
41 (GATE :DEST 494 :OP1 492 :OP2 427 :TRUTH−TABLE #*0110 )
42 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
43 (GATE :DEST 492 :OP1 427 :OP2 495 :TRUTH−TABLE #*0110 )
44 (GATE :DEST 493 :OP1 428 :OP2 395 :TRUTH−TABLE #*0110 )
45 (GATE :DEST 460 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
46 (GATE :DEST 493 :OP1 428 :OP2 395 :TRUTH−TABLE #*0110 )
47 (GATE :DEST 494 :OP1 492 :OP2 428 :TRUTH−TABLE #*0110 )
48 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
49 (GATE :DEST 492 :OP1 428 :OP2 495 :TRUTH−TABLE #*0110 )
50 (GATE :DEST 493 :OP1 429 :OP2 396 :TRUTH−TABLE #*0110 )
51 (GATE :DEST 461 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
52 (GATE :DEST 493 :OP1 429 :OP2 396 :TRUTH−TABLE #*0110 )
53 (GATE :DEST 494 :OP1 492 :OP2 429 :TRUTH−TABLE #*0110 )
54 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
55 (GATE :DEST 492 :OP1 429 :OP2 495 :TRUTH−TABLE #*0110 )
56 (GATE :DEST 493 :OP1 430 :OP2 397 :TRUTH−TABLE #*0110 )
57 (GATE :DEST 462 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
58 (GATE :DEST 493 :OP1 430 :OP2 397 :TRUTH−TABLE #*0110 )
59 (GATE :DEST 494 :OP1 492 :OP2 430 :TRUTH−TABLE #*0110 )
60 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
61 (GATE :DEST 492 :OP1 430 :OP2 495 :TRUTH−TABLE #*0110 )
62 (GATE :DEST 493 :OP1 431 :OP2 398 :TRUTH−TABLE #*0110 )
63 (GATE :DEST 463 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
64 (GATE :DEST 493 :OP1 431 :OP2 398 :TRUTH−TABLE #*0110 )
65 (GATE :DEST 494 :OP1 492 :OP2 431 :TRUTH−TABLE #*0110 )
66 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
67 (GATE :DEST 492 :OP1 431 :OP2 495 :TRUTH−TABLE #*0110 )
68 (GATE :DEST 493 :OP1 432 :OP2 399 :TRUTH−TABLE #*0110 )
69 (GATE :DEST 464 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
70 (GATE :DEST 493 :OP1 432 :OP2 399 :TRUTH−TABLE #*0110 )
71 (GATE :DEST 494 :OP1 492 :OP2 432 :TRUTH−TABLE #*0110 )
72 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
73 (GATE :DEST 492 :OP1 432 :OP2 495 :TRUTH−TABLE #*0110 )
74 (GATE :DEST 493 :OP1 433 :OP2 400 :TRUTH−TABLE #*0110 )
75 (GATE :DEST 465 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
76 (GATE :DEST 493 :OP1 433 :OP2 400 :TRUTH−TABLE #*0110 )
77 (GATE :DEST 494 :OP1 492 :OP2 433 :TRUTH−TABLE #*0110 )
78 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
79 (GATE :DEST 492 :OP1 433 :OP2 495 :TRUTH−TABLE #*0110 )
80 (GATE :DEST 493 :OP1 434 :OP2 401 :TRUTH−TABLE #*0110 )
81 (GATE :DEST 466 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
82 (GATE :DEST 493 :OP1 434 :OP2 401 :TRUTH−TABLE #*0110 )
83 (GATE :DEST 494 :OP1 492 :OP2 434 :TRUTH−TABLE #*0110 )
84 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
85 (GATE :DEST 492 :OP1 434 :OP2 495 :TRUTH−TABLE #*0110 )
86 (GATE :DEST 493 :OP1 435 :OP2 402 :TRUTH−TABLE #*0110 )
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87 (GATE :DEST 467 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
88 (GATE :DEST 493 :OP1 435 :OP2 402 :TRUTH−TABLE #*0110 )
89 (GATE :DEST 494 :OP1 492 :OP2 435 :TRUTH−TABLE #*0110 )
90 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
91 (GATE :DEST 492 :OP1 435 :OP2 495 :TRUTH−TABLE #*0110 )
92 (GATE :DEST 493 :OP1 436 :OP2 403 :TRUTH−TABLE #*0110 )
93 (GATE :DEST 468 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
94 (GATE :DEST 493 :OP1 436 :OP2 403 :TRUTH−TABLE #*0110 )
95 (GATE :DEST 494 :OP1 492 :OP2 436 :TRUTH−TABLE #*0110 )
96 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
97 (GATE :DEST 492 :OP1 436 :OP2 495 :TRUTH−TABLE #*0110 )
98 (GATE :DEST 493 :OP1 437 :OP2 404 :TRUTH−TABLE #*0110 )
99 (GATE :DEST 469 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )

100 (GATE :DEST 493 :OP1 437 :OP2 404 :TRUTH−TABLE #*0110 )
101 (GATE :DEST 494 :OP1 492 :OP2 437 :TRUTH−TABLE #*0110 )
102 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
103 (GATE :DEST 492 :OP1 437 :OP2 495 :TRUTH−TABLE #*0110 )
104 (GATE :DEST 493 :OP1 438 :OP2 405 :TRUTH−TABLE #*0110 )
105 (GATE :DEST 470 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
106 (GATE :DEST 493 :OP1 438 :OP2 405 :TRUTH−TABLE #*0110 )
107 (GATE :DEST 494 :OP1 492 :OP2 438 :TRUTH−TABLE #*0110 )
108 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
109 (GATE :DEST 492 :OP1 438 :OP2 495 :TRUTH−TABLE #*0110 )
110 (GATE :DEST 493 :OP1 439 :OP2 406 :TRUTH−TABLE #*0110 )
111 (GATE :DEST 471 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
112 (GATE :DEST 493 :OP1 439 :OP2 406 :TRUTH−TABLE #*0110 )
113 (GATE :DEST 494 :OP1 492 :OP2 439 :TRUTH−TABLE #*0110 )
114 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
115 (GATE :DEST 492 :OP1 439 :OP2 495 :TRUTH−TABLE #*0110 )
116 (GATE :DEST 493 :OP1 440 :OP2 407 :TRUTH−TABLE #*0110 )
117 (GATE :DEST 472 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
118 (GATE :DEST 493 :OP1 440 :OP2 407 :TRUTH−TABLE #*0110 )
119 (GATE :DEST 494 :OP1 492 :OP2 440 :TRUTH−TABLE #*0110 )
120 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
121 (GATE :DEST 492 :OP1 440 :OP2 495 :TRUTH−TABLE #*0110 )
122 (GATE :DEST 493 :OP1 441 :OP2 408 :TRUTH−TABLE #*0110 )
123 (GATE :DEST 473 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
124 (GATE :DEST 493 :OP1 441 :OP2 408 :TRUTH−TABLE #*0110 )
125 (GATE :DEST 494 :OP1 492 :OP2 441 :TRUTH−TABLE #*0110 )
126 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
127 (GATE :DEST 492 :OP1 441 :OP2 495 :TRUTH−TABLE #*0110 )
128 (GATE :DEST 493 :OP1 442 :OP2 409 :TRUTH−TABLE #*0110 )
129 (GATE :DEST 474 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
130 (GATE :DEST 493 :OP1 442 :OP2 409 :TRUTH−TABLE #*0110 )
131 (GATE :DEST 494 :OP1 492 :OP2 442 :TRUTH−TABLE #*0110 )
132 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
133 (GATE :DEST 492 :OP1 442 :OP2 495 :TRUTH−TABLE #*0110 )
134 (GATE :DEST 493 :OP1 443 :OP2 410 :TRUTH−TABLE #*0110 )
135 (GATE :DEST 475 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
136 (GATE :DEST 493 :OP1 443 :OP2 410 :TRUTH−TABLE #*0110 )
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137 (GATE :DEST 494 :OP1 492 :OP2 443 :TRUTH−TABLE #*0110 )
138 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
139 (GATE :DEST 492 :OP1 443 :OP2 495 :TRUTH−TABLE #*0110 )
140 (GATE :DEST 493 :OP1 444 :OP2 411 :TRUTH−TABLE #*0110 )
141 (GATE :DEST 476 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
142 (GATE :DEST 493 :OP1 444 :OP2 411 :TRUTH−TABLE #*0110 )
143 (GATE :DEST 494 :OP1 492 :OP2 444 :TRUTH−TABLE #*0110 )
144 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
145 (GATE :DEST 492 :OP1 444 :OP2 495 :TRUTH−TABLE #*0110 )
146 (GATE :DEST 493 :OP1 445 :OP2 412 :TRUTH−TABLE #*0110 )
147 (GATE :DEST 477 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
148 (GATE :DEST 493 :OP1 445 :OP2 412 :TRUTH−TABLE #*0110 )
149 (GATE :DEST 494 :OP1 492 :OP2 445 :TRUTH−TABLE #*0110 )
150 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
151 (GATE :DEST 492 :OP1 445 :OP2 495 :TRUTH−TABLE #*0110 )
152 (GATE :DEST 493 :OP1 446 :OP2 413 :TRUTH−TABLE #*0110 )
153 (GATE :DEST 478 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
154 (GATE :DEST 493 :OP1 446 :OP2 413 :TRUTH−TABLE #*0110 )
155 (GATE :DEST 494 :OP1 492 :OP2 446 :TRUTH−TABLE #*0110 )
156 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
157 (GATE :DEST 492 :OP1 446 :OP2 495 :TRUTH−TABLE #*0110 )
158 (GATE :DEST 493 :OP1 447 :OP2 414 :TRUTH−TABLE #*0110 )
159 (GATE :DEST 479 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
160 (GATE :DEST 493 :OP1 447 :OP2 414 :TRUTH−TABLE #*0110 )
161 (GATE :DEST 494 :OP1 492 :OP2 447 :TRUTH−TABLE #*0110 )
162 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
163 (GATE :DEST 492 :OP1 447 :OP2 495 :TRUTH−TABLE #*0110 )
164 (GATE :DEST 493 :OP1 448 :OP2 415 :TRUTH−TABLE #*0110 )
165 (GATE :DEST 480 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
166 (GATE :DEST 493 :OP1 448 :OP2 415 :TRUTH−TABLE #*0110 )
167 (GATE :DEST 494 :OP1 492 :OP2 448 :TRUTH−TABLE #*0110 )
168 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
169 (GATE :DEST 492 :OP1 448 :OP2 495 :TRUTH−TABLE #*0110 )
170 (GATE :DEST 493 :OP1 449 :OP2 416 :TRUTH−TABLE #*0110 )
171 (GATE :DEST 481 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
172 (GATE :DEST 493 :OP1 449 :OP2 416 :TRUTH−TABLE #*0110 )
173 (GATE :DEST 494 :OP1 492 :OP2 449 :TRUTH−TABLE #*0110 )
174 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
175 (GATE :DEST 492 :OP1 449 :OP2 495 :TRUTH−TABLE #*0110 )
176 (GATE :DEST 493 :OP1 450 :OP2 417 :TRUTH−TABLE #*0110 )
177 (GATE :DEST 482 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
178 (GATE :DEST 493 :OP1 450 :OP2 417 :TRUTH−TABLE #*0110 )
179 (GATE :DEST 494 :OP1 492 :OP2 450 :TRUTH−TABLE #*0110 )
180 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
181 (GATE :DEST 492 :OP1 450 :OP2 495 :TRUTH−TABLE #*0110 )
182 (GATE :DEST 493 :OP1 451 :OP2 418 :TRUTH−TABLE #*0110 )
183 (GATE :DEST 483 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
184 (GATE :DEST 493 :OP1 451 :OP2 418 :TRUTH−TABLE #*0110 )
185 (GATE :DEST 494 :OP1 492 :OP2 451 :TRUTH−TABLE #*0110 )
186 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
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187 (GATE :DEST 492 :OP1 451 :OP2 495 :TRUTH−TABLE #*0110 )
188 (GATE :DEST 493 :OP1 452 :OP2 419 :TRUTH−TABLE #*0110 )
189 (GATE :DEST 484 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
190 (GATE :DEST 493 :OP1 452 :OP2 419 :TRUTH−TABLE #*0110 )
191 (GATE :DEST 494 :OP1 492 :OP2 452 :TRUTH−TABLE #*0110 )
192 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
193 (GATE :DEST 492 :OP1 452 :OP2 495 :TRUTH−TABLE #*0110 )
194 (GATE :DEST 493 :OP1 453 :OP2 420 :TRUTH−TABLE #*0110 )
195 (GATE :DEST 485 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
196 (GATE :DEST 493 :OP1 453 :OP2 420 :TRUTH−TABLE #*0110 )
197 (GATE :DEST 494 :OP1 492 :OP2 453 :TRUTH−TABLE #*0110 )
198 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
199 (GATE :DEST 492 :OP1 453 :OP2 495 :TRUTH−TABLE #*0110 )
200 (GATE :DEST 493 :OP1 454 :OP2 421 :TRUTH−TABLE #*0110 )
201 (GATE :DEST 486 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
202 (GATE :DEST 493 :OP1 454 :OP2 421 :TRUTH−TABLE #*0110 )
203 (GATE :DEST 494 :OP1 492 :OP2 454 :TRUTH−TABLE #*0110 )
204 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
205 (GATE :DEST 492 :OP1 454 :OP2 495 :TRUTH−TABLE #*0110 )
206 (GATE :DEST 493 :OP1 455 :OP2 422 :TRUTH−TABLE #*0110 )
207 (GATE :DEST 487 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
208 (GATE :DEST 493 :OP1 455 :OP2 422 :TRUTH−TABLE #*0110 )
209 (GATE :DEST 494 :OP1 492 :OP2 455 :TRUTH−TABLE #*0110 )
210 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
211 (GATE :DEST 492 :OP1 455 :OP2 495 :TRUTH−TABLE #*0110 )
212 (GATE :DEST 493 :OP1 456 :OP2 423 :TRUTH−TABLE #*0110 )
213 (GATE :DEST 488 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
214 (GATE :DEST 493 :OP1 456 :OP2 423 :TRUTH−TABLE #*0110 )
215 (GATE :DEST 494 :OP1 492 :OP2 456 :TRUTH−TABLE #*0110 )
216 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
217 (GATE :DEST 492 :OP1 456 :OP2 495 :TRUTH−TABLE #*0110 )
218 (GATE :DEST 493 :OP1 457 :OP2 424 :TRUTH−TABLE #*0110 )
219 (GATE :DEST 489 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
220 (GATE :DEST 493 :OP1 457 :OP2 424 :TRUTH−TABLE #*0110 )
221 (GATE :DEST 494 :OP1 492 :OP2 457 :TRUTH−TABLE #*0110 )
222 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
223 (GATE :DEST 492 :OP1 457 :OP2 495 :TRUTH−TABLE #*0110 )
224 (GATE :DEST 493 :OP1 458 :OP2 425 :TRUTH−TABLE #*0110 )
225 (GATE :DEST 490 :OP1 493 :OP2 492 :TRUTH−TABLE #*0110 )
226 (GATE :DEST 493 :OP1 458 :OP2 425 :TRUTH−TABLE #*0110 )
227 (GATE :DEST 494 :OP1 492 :OP2 458 :TRUTH−TABLE #*0110 )
228 (GATE :DEST 495 :OP1 493 :OP2 494 :TRUTH−TABLE #*0001 )
229 (GATE :DEST 492 :OP1 458 :OP2 495 :TRUTH−TABLE #*0110 )
230 (COPY :DEST 491 :OP1 459 :OP2 32 )
231 (CALL :NEWBASE 523 :FNAME " ou tpu t_a l i c e " )
232 (LABEL : STR " $1 " )
233 (RET :VALUE 523 )
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