
Bachelor Thesis

Valiant’s Universal Circuit - Towards a
Modular Construction and Implementation

Daniel Günther
March 30, 2017

Technische Universität Darmstadt
Center for Research in Security and Privacy

Engineering Cryptographic Protocols

Supervisors: Dr. Thomas Schneider
M.Sc. Ágnes Kiss

Declaration of Authorship

I certify that the work presented here is, to the best of my knowledge and belief, original and
the result of my own investigations, except as acknowledged, and has not been submitted,
either in part or whole, for a degree at this or any other University.

Darmstadt, March 30, 2017

Daniel Günther

Abstract

Secure Function Evaluation (SFE) allows two parties to evaluate a function without sharing
their inputs with one another, while Private Function Evaluation (PFE) hides additionally
the computed function which one party provides, i.e. PFE is SFE with private functions. PFE
can be efficiently reduced to SFE by using a Universal Circuit (UC) as public function for the
computation.

A UC is a special Boolean Circuit, which is able to simulate every function of a certain
size n. The first implementation of a UC was provided by Kolesnikov and Schneider (FC’08).
Valiant (STOC’76) proposed the first and more efficient UC construction of size O(n log n).
He detailed two variants for his construction, one with 2-way and one with 4-way recursive
structure. One of these two constructions - the 2-way split UC construction - was implemented
by Kiss and Schneider (Eurocrypt’16). Lipmaa et al. (Eprint 2016/017) generalized this
construction to a k-way split construction and concludes that the best performing construction
would be the 4-way split construction. However, the 4-way split UC construction, achieving
better concrete performance, was not implemented so far.

In this work, we design and implement a module for Valiant’s 4-way split UC construction.
This module can be embedded into a toolchain for PFE, which was provided by Kiss and
Schneider (Eurocrypt’16) - designed for their own UC implementation. Additionally, we
propose a modular consideration of UCs using the k-way split construction by Lipmaa et
al. (Eprint 2016/017).

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 2

2 Preliminaries 4
2.1 Gates and Circuits . 4
2.2 Graph Theory . 4
2.3 Blocks . 6
2.4 Methods for SFE . 7

2.4.1 Oblivious Transfer . 7
2.4.2 Yao’s Garbled Circuit Protocol . 7
2.4.3 GMW Protocol . 8

3 Universal Circuit Constructions 9
3.1 Basic Concepts . 9

3.1.1 Universal Gates and Circuits . 9
3.1.2 Edge-Universal Graphs . 10

3.2 Valiant’s Universal Circuit . 11
3.2.1 Overview . 11
3.2.2 Valiant’s Edge-universal Graph (EUG) Constructions 14

3.3 A Modular Universal Circuit Construction . 16
3.3.1 Hybrid Constructions . 17

4 Making Valiant’s EUG Construction Modular 18
4.1 Valiant’s 4-way Split EUG Construction . 18
4.2 Edge-Embedding . 20

4.2.1 Block Edge-Embedding . 20
4.2.2 Recursion Point Edge-Embedding . 21
4.2.3 Combining both Edge-Embedding Parts 24
4.2.4 Edge-Embedding for k-way Split EUG Constructions 26

5 Implementation 28
5.1 C++ UC Compiler . 28
5.2 Universal Circuit Module . 32

5.2.1 Methods for Block Edge-Embedding . 33

I

Contents

5.2.2 Topological Ordering . 35

6 Evaluation 37
6.1 Size of k-way EUG . 37
6.2 Size of the UC . 40

6.2.1 Improvement for the UC Size . 41
6.3 Future Work . 43

Abbreviations 45

Bibliography 46

II

1 Introduction

Boolean Circuits are a common way to implement functions f , e.g. in a hardware embedding
or for logical computing. While boolean circuits can handle variable inputs x to compute f (x),
a Universal Circuit (UC) is a special boolean circuit that can also handle variable functions f
limited to a certain size. This means that a UC takes, additional to the function’s input x , a rep-
resentation of a function p f as input and computes UC(p f , x) = f (x) like the implementation
of a boolean circuit for function f also does.

The idea of UCs and the first constructions are provided by Valiant in [Val76]. Valiant
designs two UC constructions - today known as 2-way and 4-way split constructions. Both
constructions are asymptotically size-optimal [Weg87], i.e. the number of gates needed for
the implementation of the UC is Ω(n log n), where n denotes the number of inputs, outputs
and gates of the computed function f . Recently, two papers in parallel, [KS16] and [LMS16],
provide more detailed descriptions of the underlying algorithm and implementations of the
2-way split construction. The size for the 2-way split UC construction is larger than that of
the 4-way split UC construction. However, there exists no implementation of the 4-way split
UC construction so far.

A popular application for UC is Private Function Evaluation (PFE), which is based on Secure
Function Evaluation (SFE). SFE allows two parties Alice and Bob to evaluate a public known
function f (x , y) without a third party. Thereby, they do not get to know each other’s input,
i.e. Alice only knows x and Bob only knows y but both learn f (x , y) after the computation.
[Yao82] proposes the millionaire’s problem as application example for SFE. Two millionaires
want to compare with a function f (x , y) their fortune without providing their information
to the other party. SFE of boolean circuits can be achieved using Yao’s garbled circuit
protocol [Yao82; Yao86] or the GMW protocol [GMW87].

However, there exist applications where function f shall be kept secret to the other party
- called Private Function Evaluation (PFE). Here, only Alice knows the function f (x) and
Bob the input x but both want to compute f (x). Only the result f (x) is interpretable for
Alice without knowing Bob’s input x . PFE can be achieved by using SFE with a UC as public
function. The inputs of the UC are the representation of the private function p f as well
as the secret input x . Therefore, we need well defined representations p f of functions f
and an efficient construction of a UC such that UC(p f , x) = f (x) can be computed. An
application for PFE is the credit checking scheme provided by Frikken et al. [FAZ05]. In
this application, Bob is the bank and Alice applies for a credit. Bob owns a secret function
that checks if Alice is eligible to receive the credit from Bob. This function needs Alice’s
secret financial information. Using PFE allows both parties to keep their information secret

1

1 Introduction

and Bob knows more about Alice’s financial status. There exist specific protocols for PFE
that achieve better performance than UCs [MS13; MSS14], for further details, the reader is
referred to [KS16].

Besides PFE, there are various applications for UCs. We provide some of them in the following,
and refer to [KS16; LMS16] for further details on applications.

[GGPR13] provide their Quadradic Span Programs as a new characterization of the NP class.
They use a UC to reduce the verifier’s preprocessing step by setting up the common reference
string.

[PKV+14; FVK+15] use a UC for hiding queries in a Database Management System (DBMS).
However, there exist queries, which do not hide the circuit topology. Therefore, [PKV+14] im-
prove the Blind Seer DBMS by using a modified simpler UC for evaluating those queries.

1.1 Contributions

We design and implement Valiant’s 4-way split UC construction which can be embedded
into the toolchain of [KS16]. We use the approaches of [LMS16] to design our modu-
lar UC construction in Section 4.1. The implementation details are provided in Chap-
ter 5.

Additionally, we improve the work of [LMS16] and provide an approach for implementing
a k-way split UC construction by splitting the most difficult construction task into two subtasks
which is detailed in Section 4.2.

1.2 Outline

In Chapter 2, we provide our notations and basic concepts, containing boolean circuits
in Section 2.1, the necessary graph theory about directed acyclic graphs in Section 2.2,
methods for abstracting boolean circuits and graphs using blocks in Section 2.3 as well as
methods for SFE in Section 2.4.

Chapter 3 contains the related work for UCs. We firstly explain basic concepts for UCs in Sec-
tion 3.1. Thereafter, we detail Valiant’s UC construction [Val76] step by step in Section 3.2.
This also contains the generalized k-way split construction [LMS16]. The last section of this
chapter (Section 3.3) summarises the UC construction of [KS08a] and shortly introduces the
hybrid UC constructions provided by [KS16] in Section 3.3.1.

The design of our 4-way split construction is given in Chapter 4, especially our gained
modularity of Valiant’s UC construction [Val76] in Section 4.1 and an approach for the
edge-embedding task in Section 4.2.

2

1 Introduction

In Chapter 5, we explain some details of our implementation, specifically, the toolchain for
UCs in a PFE setting of [KS16] in Section 5.1 as well as our realization of the UC module
which can embedded into their toolchain in Section 5.2.

Finally, we present our results in Chapter 6. Therefore, we provide a formula which calculates
the exact size of our implementation and for any k-way split UC construction in Section 6.1.
Additionally, we compare the number of AND gates between the UC construction of [KS16]
and that of ours in Section 6.2. Furthermore, we give directions for future work in Sec-
tion 6.3.

3

2 Preliminaries

In this chapter we introduce basic concepts and notations as well as common definitions used
later for constructing a UC. We explain all concepts that are necessary for the understanding
of the topic.

2.1 Gates and Circuits

In case of SFE, a common way to define functions are Boolean Circuits. A boolean circuit Ck,n
u,v

has u inputs, v outputs and k distinguished gates, denoted by Gni≤n
i for i < k. Such a gate Gn is

the implementation of a boolean function gn : {0, 1}n→ {0, 1}. We denote by C f the boolean
circuit Ck,n

u,v that computes the function f : {0, 1}u→ {0, 1}v . Every boolean circuit Ck,n
u,v can be

reduced to a boolean circuit Ck,2
u,v (Note: we denote this special case with Ck

u,v in the following).

Therefore, we have to replace every gate Gni>2
i by multiple gates G2

j . This can be done using
Shannon’s expansion theorem [Sha49] as shown in Equation (2.1).

f (x1, . . . , xn) = (x1 ∧ f (0, x2, . . . , xn)∨ (x1 ∧ f (1, x2, . . . , xn))) (2.1)

More details about this process can be found in [Sch08].

These modified boolean circuits will be used in Chapts. 3 and 4.

Because of the properties of the constructions described later and due to using Ck
u,v boolean

circuits we only need to consider gates G2 with 2 inputs. If C has a gate G1 with one input,
we can extend it to a G2 gate by adding a dummy input to G1. A gate G2 can be easily defined
with its so-called gate table. We give some examples in Tab. 2.1.

2.2 Graph Theory

This section gives the preliminaries of Valiant’s UC construction [Val76]. At the end of this
section we show an example.

The UC construction of Valiant [Val76] is based on graph theory. We denote by G = (V, E) a
directed graph with a set of nodes V and edges E ⊆ V × V . A sequence (a1, . . . , an) is called a

4

2 Preliminaries

x1 x2 x1 XOR x2

0 0 0
0 1 1
1 0 1
1 1 0

(a) XOR gate

x1 x2 x1 AND x2

0 0 0
0 1 0
1 0 0
1 1 1

(b) AND gate

x1 x2 x1 OR x2

0 0 0
0 1 1
1 0 1
1 1 1

(c) OR gate

x1 x2 x1 XNOR x2

0 0 1
0 1 0
1 0 0
1 1 1

(d) XNOR gate

Table 2.1: (a) - (d) show implementation tables of the most common G2 gates.

path if ∀i ∈ {1, . . . , n− 1} : (ai , ai+1) ∈ E. In case of a1 = an, we call the path (a1, . . . , an) a
cycle. A graph is acyclic if it has no cycles.

In general we can characterize a node by its incoming and outgoing edges. The number of
incoming [outgoing] edges is called indegree [outdegree]. A graph has fanin [fanout] p if the
indegree [outdegree] of all its nodes is at most p. In the following, we denote by Γp(n) the
set of all acyclic graphs with fanin and fanout p having n nodes.

Every graph of fanout p > 2 can be reduced to a graph with fanout 2 by adding one node for
each additional edge. [KS16; Val76] describe this process in detail.

Let G = (V, E) ∈ Γp(n). A function η : V → N is called a labelling. We want to define an order
to η such that (ai , a j) ∈ E⇒ η(ai)> η(a j) and ∀a1, a2 ∈ V : η(a1) = η(a2)⇒ a1 = a2. The
value range of η is {1, . . . , n}. This order is called topological order and can be found with
computational complexity O(n+ pn).

In Section 2.1 we define a boolean circuit Ck
u,v with u inputs, v outputs and k gates (we note

that each gate has at most 2 inputs). We can transform a Ck
u,v into a Γ2(u+ v + k) graph

by creating a node for each input, output and gate. Creating an edge for each wire in Ck
u,v

finishes the transformation.

5

2 Preliminaries

2.3 Blocks

The overview of big circuits and graphs with many nodes can become very unclear. In this sec-
tion, we provide some methods to make circuits and graphs more modular.

A block Bu,v(f) with u inputs (x1, . . . , xu) and v outputs (y1, . . . , yv) is the implementation
of a boolean circuit C f = Ck

u,v . A block can also contain other blocks. Defining a block with
sub-blocks makes it modular and is easier to comprehend.

We measure a block with the so-called size and depth. The size of a block are the number
of gates Ck

u,v consists of (i.e. the size is k). We want to minimize the size by searching for a

boolean circuit C ′k
′

u,v with k′ =min{k : Ck
u,v computes f }. In case of PFE, [KS08b] show that

XOR gates (see Tab. 2.1a) can be evaluated for free. Therefore, we want to optimize the
size with k′ =min{k′′ : Ck

u,v computes f and k = k′′ +#XOR gates}. The depth of a block is

measured by the number of gates in the longest possible path in Ck
u,v. Minimizing the size

and the depth is important for a good performance. Depending on the used SFE protocol,
the importance of size and depth difer: Yao [Yao82; Yao86] is evaluated gate by gate, so
size is more important, while GMW [GMW87] is evaluated layer-by-layer, so depth is more
important, since in the online phase there are number of AND depth communication rounds
between the parties.

A programmable block BP(n)
u,v is a Bu,v block with n additional (hidden) inputs. It can be

programmed by providing a programming vector c ∈ {0, 1}n. An example of a programmable
block is a UC. Every universal gate in a UC has to be programmed. We want to in-
troduce two more important programmable blocks: Y-switching block and X-switching
block.

A Y-switching block is a programmable block BP(1)
2,1 . It computes a function fY : {0, 1}2×{0, 1} →

{0, 1} with fY ((x1, x2)T , c) = xc+1 as visualized in Fig. 2.1a. So, the output of a Y-switching
block is exactly one of its inputs depending on bit c. A Y-switching block provides the same
functionality as a 2-input multiplexer. It can be programmed with 1 AND gate and 2 XOR
gates (see Eq. 21 in [KS16]).

x1 x2

c = 0

x1

or

x1 x2

c = 1

x2

(a) Y Switching Block

x1 x2

c = 0

x1 x2

or

x1 x2

c = 1

x2 x1

(b) X Switching Block

Figure 2.1: Switching Blocks

6

2 Preliminaries

An X-switching block is a programmable block BP(1)
2,2 . It computes a function fX : {0,1}2 ×

{0, 1} → {0, 1}2 with fX ((x1, x2)T , c) = (x1+c , x2−c)T as we see in Fig. 2.1b. This means the
inputs of an X-switching block are also the outputs of it, switched or not switched, depending
again on bit c. An X-switching block can be programmed with 1 AND gate and 3 XOR gates
(see Eq. 21 in [KS16]).

Y- and X-switching blocks are firstly introduced in [KS08a; KS08b].

2.4 Methods for SFE

In this section, we provide methods for solving the Secure Function Evaluation (SFE) problem.
SFE describes the problem that two parties want to compute a function f (x , y) with their
secret inputs x and y and both want to learn f (x , y) while keeping their inputs secret. There
are two protocols that solve the problem using the boolean circuit representation of functions:
Yao’s Garbled Circuit [Yao82; Yao86] and the GMW protocol [GMW87]. We summarize both
protocols in Sections 2.4.2 and 2.4.3. However, we first introduce Oblivious Transfer (OT)
in Section 2.4.1 since both protocols rely on this primitive.

2.4.1 Oblivious Transfer

Oblivious Transfer (OT) is used for exchanging information between two parties - the sender
and the receiver. In a 1-out-of-2 OT protocol, the sender has 2 messages m0 and m1 and the
receiver can choose one of them by providing a bit i ∈ {0, 1}. After this process, the receiver
learns the message mi (but not the other message) from the sender and the sender learns
nothing, i.e. the sender does not know which message the receiver accesses. Oblivious transfer
protocols rely on expensive public-key operations. Therefore, [IKNP03; ALSZ13; KOS15]
provide OT extensions which enable the generation of any polynomial number of OTs using
efficient symmetric key cryptography based on a number of base OTs.

2.4.2 Yao’s Garbled Circuit Protocol

Yao’s Garbled Circuit [Yao82; Yao86] allows SFE for two parties. One party is the function
garbler, i.e. they know the boolean circuit description of the function f (x , y) and their own
input x while the so-called function evaluator only knows their input y , and the topology of
the circuit representation of f .

Every gate in the boolean function is translated to a randomly encrypted gate, i.e. 0 and 1
are represented as random keys and the entries of the gates tables are randomly exchanged.
The keys and the random gates tables are sent to the function evaluator who uses the 1-
out-of-2 OT protocol to get the correct key depending on his input for each gate. After

7

2 Preliminaries

this computation, the function provider decrypts the outputs and send them to the function
evaluator.

Many optimizations of Yao’s garbled circuit protocol were proposed since its appearance,
most relevant in our case is the free-XOR technique proposed in [KS08b], which enables XOR
gates to be evaluated without communication effort.

2.4.3 GMW Protocol

The GMW Protocol [GMW87] is made for boolean circuits which only contain AND and XOR
gates. It is based on secret sharing with the One-Time-Pad. So, all inputs and outputs of
the gates are secret shared between two parties P1 and P2, i.e. each party secret shares
his own input and gives a share to the other party. If P1 has input a, he splits a into two
shares a = a1 ⊕ a2 (we denote with ⊕ the XOR operation) and sends a2 to P2. P2 will not
know the input a since he only has the seemingly random share.

The computation for the gates is done as follows: XOR gates with inputs a and b and output c
can be evaluated with c = c1 ⊕ c2 = (a1 ⊕ a2)⊕ (b1 ⊕ b2) = (a1 ⊕ b1)⊕ (a2 ⊕ b2), i.e. each
party Pi can compute his output share ci locally with ci = ai ⊕ bi .

AND gates can be evaluated by using multiplication triples. A multiplication triple is a
triple (x , y , z) with (z1 ⊕ z2) = (x1 ⊕ x2)(y1 ⊕ y2) [Bea91]. Both parties generate a random
multiplication triple for each AND gate using 2 OT operations such that party i has the
values x i, yi and zi. This can be pre-computed in the offline phase. The next step is that
party Pi sends the values ui = ai ⊕ x i and vi = bi ⊕ yi to the other party. We set u= u1 ⊕ u2
and v = v1 ⊕ v2. Both parties can now compute their part ci of the result with ci = u · yi ⊕ v ·
x i ⊕ zi ⊕ (i − 1) · u · v (we note that only party 2 uses the last XOR operation due to the i − 1
multiplication).

8

3 Universal Circuit Constructions

In this chapter, we introduce the existing UC constructions. Therefore, we firstly intro-
duce basic concepts for this topic in Section 3.1. Then, we explain the UC construction of
Valiant [Val76] and the improvements of [LMS16] in Section 3.2. Another, more modular, UC
construction provide [KS08a]. We shortly explain this construction in Section 3.3.

3.1 Basic Concepts

In this section we give definitions and basic concepts for Valiant’s UC construction. This
contains the definitions of a Universal Gate (UG) and a UC in Section 3.1.1 as well as the
definition of EUGs in Section 3.1.2.

3.1.1 Universal Gates and Circuits

In this Section we extend the concepts of boolean gates and circuits presented in Sec-
tion 2.1.

Representing the private function f as boolean circuit Ck
u,v is important for the UC, since SFE

methods such as Yao garbled circuits [Yao86] and GMW protocol [GMW87] highly rely on the
circuit representation of the functionality. We are indeed able to represent concrete functions
with boolean circuits but we do not gain any privacy so far. Since in PFE the function has to
be private we have to find a way to make a boolean circuit private. Firstly, we want to provide
Valiant’s idea about UG. After that we explain and formalize UC.

The functionality of a G2 gate is defined by the last column of its gate table (see Table 2.1).
We can therefore use a vector c ∈ {0,1}4 to define the implementation of it. For example,
the XOR gate in Table 2.1a is defined by cXOR = (0,1,1,0)T . It is easy to see that we
have 16 different G2 implementations. Since the UC should support any of these 16 G2

gates, Valiant introduces Universal Gates (UGs) [Val76] which are the implementation of a
function ug : {0, 1}2×{0, 1}4→ {0, 1}. A UG, which shall compute an XOR gate, implements
the function ug(x , cXOR). We now have only one type of UG that can compute any of
the 16 G2 gates. The implementation table of a UG is shown in Table 3.1 and follows
the Equation (3.1).

9

3 Universal Circuit Constructions

x1 x2 ug(x , c)
0 0 c1
0 1 c2
1 0 c3
1 1 c4

Table 3.1: Implementation table of a UG

ug(x , c) = x1 x2c1 + x1 x2c2 + x1 x2c3 + x1 x2c4 (3.1)

Now, we are able to define, what a UC is. A Universal Circuit UCk
u,v has u inputs, v outputs

and k distinguished UG. It can be programmed to implement every possible boolean cir-
cuit CkC≤k

u,v . It is easy to see, that UG are the better solution for UC because of their dynamic
programming of the control bits c. We will see more details about the construction of a UC
in Sections 3.2 and 4.1.

The next step is to transform C f to an input which the UC is able to read. With this transfor-
mation we can gain privacy of the function f and can potentially compute more than one
function with the same UC. This process is discussed in Section 5.1.

3.1.2 Edge-Universal Graphs

This Section deals with Valiant’s idea of an Edge-Universal Graph (EUG) [Val76]. We want to
explain the characteristics of EUG and give a small example.

Let GC be the Γ2 graph of a boolean circuit Ck
u,v and η a labelling on GC (see Section 2.2).

In case of PFE we need another Γ2 graph uc to map GC on uc due to the function privacy
requirement. Valiant’s solution is to edge-embed GC to uc [Val76]. Edge-embedding is a
mapping from graph G = (V, E) into G′ = (V ′, E′) with V ⊆ V ′ and E′ containing a path for
each e ∈ E in which the path are pairwise edge-disjoint. That means for every edge e =
(ai , a j) ∈ E exists a path (ai , . . . , a j) in G′ and every e′ ∈ E′ is in at most one of these
paths.

A graph G′ is an Edge-Universal Graph (EUG) if every graph G ∈ Γ2(n) can be edge-embedded
into G′. Therefore, G′ has distinguished poles {p1, . . . , pn} ⊆ V ′ where each node a ∈ V is
mapped to exactly one of these poles. This mapping is defined by the labelling η such that
we can define a mapping ϕV : V → V ′ with ϕV (a) = pη(a). Now, we have to define for each
edge (ai , a j) ∈ E a path (ϕV (ai), . . . ,ϕV (a j) = (pη(ai), . . . , pη(a j)) in G′ without using edges
twice. We denote by Un(Γp) an EUG for Γp(n) graphs with n poles.

Let Un(Γ1) = (V, E) ∈ Γ2 be an EUG with poles P = {p1, . . . , pn}. We can create an EUG Un(Γp)
for each p ≥ 2 by copying p times the Un(Γ1) EUG, mapping each pole to one another and

10

3 Universal Circuit Constructions

copy all edges and nodes which are no poles. Let Un(Γp) = (V ′, E′) ∈ Γp an EUG constructed

with p Un(Γ1) graphs (Un(Γ1)1 = (V1, E1), . . . , Un(Γ1)p = (Vp, Ep)). Than V ′ = P
p
⋃

i=1
Vi\P

and E′ =
p
⋃

i=1
Ei. This produces indeed a Γp graph because every pole has at most p inputs

and outputs and every normal node has at most 2 inputs and outputs.

We give an example for better understanding. Let G = (V, E) be the graph shown in Figure 3.1a.
Our aim is to edge-embed G to an EUG U5(Γ2). Therefore, we use two instances of the U5(Γ1)
EUG in Figure 3.1b. The two instances are shown in Figures 3.1c and 3.1d, denoted by U5(Γ1)1
and U5(Γ1)2. The edges (a1, a4), (a2, a3) and (a3, a5) are edge-embedded in U5(Γ1)1, the
remaining edges are edge-embedded in U5(Γ1)2. Merging U5(Γ1)1 and U5(Γ1)2 produces the
wanted U5(Γ2) graph shown in Figure 3.1e.

Valiant proposed to define uc such that it is an EUG. We will see, that it is a good strategy to
edge-embed a Γ2 graph with two instances of a U5(Γ1) graph and merging them together. We
use this trick in our implementation (Chapter 5).

3.2 Valiant’s Universal Circuit

In this section, we want to describe Valiant’s UC construction including his EUG construc-
tions [Val76].

Valiant defined in [Val76] a UC which is able to evaluate every function of a certain size (see Sec-
tion 3.1.1). We notice that the size n of a function f is given by the sum of its number of
inputs u, outputs v and gates k (i.e. n = u+ v+ k). In the following, we describe step by step
Valiant’s way from a boolean circuit C f to a UC construction which can be programmed to
evaluate f . For that, we denote f for the function which shall be computed and u, v and k
denote the number of inputs, outputs and gates of f . Additionally, Ck

u,v denotes the corre-
sponding boolean circuit which computes f . We describe this circuit as a graph G f ∈ Γ2
(see Section 2.2).

3.2.1 Overview

In this section, we describe the overall construction of Valiant’s UC [Val76].

Valiant’s UC is based on an EUG Un(Γ2) = (V, E) ∈ Γ2. We notice that Un(Γ2) can be also
transformed to a boolean circuit. V has a subset P which are the poles of the Un(Γ2) (see Sec-
tion 3.1.2 for more details). These poles correspond to the inputs, outputs and gates of Ck

u,v , i.e.
poles 1−u correspond to the inputs, poles (u+1)−(u+k) to the gates and (u+k+1)−n to the
outputs. Valiant’s aim is to create Un(Γ2) such that it can be transformed to any boolean circuit
which is able to compute functions with u inputs, v outputs and k gates.

11

3 Universal Circuit Constructions

a1 a2

a3

a4 a5

(a) Γ2(5) graph

p1

p2

p3

p4

p5

(b) EUG U5(Γ1)

p1

p2

p3

p4

p5

(c) U5(Γ1)1

p1

p2

p3

p4

p5

(d) U5(Γ1)2

p1

p2

p3

p4

p5

(e) EUG U5(Γ2)

Figure 3.1: (a) shows a Γ2(5) graph. (b) shows an EUG U5(Γ1) with 5 poles (p1, . . . , p5). (c)-
(d) show the splitted edge-embedding of graph (a) having two U5(Γ1) instances.
(e) shows the edge-embedding of graph (a) with one U5(Γ2) graph.

12

3 Universal Circuit Constructions

In the circuit G f = (Vf , E f) which shall be programmed in Un(Γ2), the gates’ inputs can be
outputs of other gates or inputs. Since we describe the UC as a Γ2 graph, every gate can
have at most two inputs and outputs. The restriction having at most two outputs is also
valid for the inputs. So, G f has to be transformed to cover these two restrictions. After
this transformation, every node in G f has indegree/outdegree at most 2. We describe this
transformation in Section 2.1 for boolean circuits. Additionally, we need a labelling η on Vf
in topological order, i.e. ∀vi , v j ∈ Vf : η(vi) > η(v j) ⇒ there is no direct path between vi
and v j in G f .

Every node v ∈ V is fulfilled with a unique task depending on their number of inputs and out-
puts as well as their node type (which means if they are poles or not):

• If v is a pole and corresponds to a gate in G f , v is programmed as a UG (see Sec-
tion 3.1.1).

• If v is no pole and has indegree 2 and outdegree 2, v is programmed as an X-switching
block (see Figure 2.1b).

• If v is no pole and has indegree 2 and outdegree 1, v is programmed as a Y-switching
block (see Figure 2.1a).

• If v is no pole and has indegree 1 and outdegree 2, v is programmed as a copy gate, i.e.
the input of v is copied to both outputs.

• If v is no pole and has indegree 1 and outdegree 1, v should be removed since the input
and output of v are equal.

We see, nearly every node in G f (except for input and output poles) are another small boolean
circuit. The construction of these boolean circuits are not part of this work since our tool does
not need them. Therefore, we refer to [KS16; LMS16] who provide optimal constructions.
We recapitulate the sizes of these constructions in Chapter 6, which, however, affects the size
of our resulting UC as well.

For a better abstraction, we consider the nodes programmed as UG, X-switching block or Y-
switching block as programmable blocks. So, we need for each of those nodes a programming
vector c depending on the function f . To determine the exact programming of the nodes and
thus of the UC we have to edge-embed Un(Γ2) into G f . This edge-embedding is a difficult
problem for general Γ2 graphs. Therefore, we have to develop more efficient methods which
are optimized for the considered EUG construction.

Currently, it is easier to edge-embed Γ1 graphs instead of Γ2 graphs. Therefore, we split Un(Γ2)
into two instances Un(Γ1)1 and Un(Γ1)2 which can be edge-embedded seperately and af-
terwards get merged to the final Un(Γ2) UC. This also means, that G f has to be split-
ted into two Γ1 graphs. [KS16] provide a method for this which can also be used for
the edge-embedding, in our case with small modifications. We detail this method in Sec-
tion 4.2.2.

Now, we want to introduce the two EUG constructions Valiant provides.

13

3 Universal Circuit Constructions

3.2.2 Valiant’s EUG Constructions

Valiant provides two EUG constructions [Val76] which are the base of the UC construction
as described in the previous section. In this section we want to describe these two constructions
and give an overview of [LMS16]’s generalization of Valiant’s constructions.

We described in Section 3.1.2 that a Un(Γ f) EUG can be constructed of f Un(Γ1) EUG. There-
fore, Valiant provides EUG for Γ1 graph which can be extended to EUG for Γ2 graphs. In general,
the graph of a Un(Γ1) construction depends on its number of poles |P| = n. Let P = {p1, . . . , pn}
be the set of poles Un(Γ1) consists of and having indegree and outdegree 1. Then, the first EUG
construction by Valiant is shown in Figure 3.2. We emphasize the poles as big circles and the
additional nodes needed to make Un(Γ1) universal are emphasized as small circles or squares.
The squares are special nodes since they are the key nodes for the recursive construction.
Let Qd n−2

2 e
= {q1, . . . , qd n−2

2 e}
and Rd n−2

2 e
= {r1, . . . rd n−2

2 e
}. The two sets Qd n−2

2 e
and Rd n−2

2 e
are

the poles of the next recursion step. With these poles, we build another EUG (also called
subgraphs) which produce new sets Q

d
d n−2

2 e−2
2 e

and R
d
d n−2

2 e−2
2 e

, respectively, i.e. we have 4 of

those sets at this level. We notice that these two sets are different nodes for Qd n−2
2 e

and Rd n−2
2 e

.
The recursion base is reached if the number of poles is between 1 and 4. U1 is one single node
(pole), U2 are two connected poles, U3 is a graph in which poles 1 and 2 are connected and
poles 2 and 3 are connected. U4 is constructed with 3 additional nodes which are between 2
poles, i.e. there is alternately a pole and a node from top to bottom. Valiant also provides
EUG constructions for U5 and U6 [Val76]. [Val76; KS16] prove that this construction is a valid
EUG construction. This construction is called the 2-way split EUG construction since there
are two sets of recursion nodes. [KS16] provide an implementation of a UC using this 2-way
split construction optimized for PFE application. At the same time, [LMS16] also implement
a UC based on this EUG construction.

Valiant provides another EUG construction, called the 4-way split EUG construction. This
construction has smaller size and is not used for a UC implementation so far. Therefore, we
improve the implementation of [KS16] by using the 4-way split EUG construction. We will
detail this EUG construction in Section 4.1.

The EUG constructions show that for every number of inputs u, outputs v and gates k, there
exist a UC constructed by a graph of two EUG. This construction has complexity O(k log k),
which is proven to be the asymptotically optimal size in [Weg87].

Lipmaa et al. provide an approach for multiple EUG constructions, the so-called k-way split
EUG construction [LMS16]. So, the construction depends on the value k. For k = 2 and k = 4
it makes sense to use the asymptotically optimized EUG constructions of Valiant [Val76]. For
other k, [LMS16] use parts of the UC construction of Kolesnikov and Schneider in [KS08a]
which we shortly introduce in 3.3.

The idea is to split n = u + v + k in m = d n
k e blocks. Every block i consist of k in-

puts r1
i−1, r2

i−1 . . . rk
i−1 and k outputs r1

i , r2
i . . . rk

i as well as k poles (except of the last block

which has n mod k poles). For every j ≤ k, the list of all r j
i build a next recursion step, i.e. we

14

3 Universal Circuit Constructions

p1

p2

p3

p4

pn−1

pn

q1

q2

q n−2
2

r1

r2

r n−2
2

...

Figure 3.2: Valiant’s 2-way EUG [Val76]

15

3 Universal Circuit Constructions

have k recursion steps similar to Valiant’s 2-way split EUG construction. Additionally, every
block begins and ends with a permutation network such that the inputs and outputs can be
permutated to every pole. Therefore, they put a Y-switching block in front of every pole pi
which is connected to the i− th output of the permutation network as well as the i− th output
of a block-intern EUG Uk(Γ1). That means, we reduce the problem to find an EUG Un(Γ1)
to the problem to find an EUG Uk(Γ1). Their solution is to build the block-intern EUG with
components of the UC construction of [KS08a].

However, [LMS16] optimize the construction for the number of total gates without considering
of free XOR-gates evaluation [KS08b].

3.3 A Modular Universal Circuit Construction

There exists another UC construction provided by [KS08a]. Their construction is more
modular than Valiant’s constructions. However, this construction has a deeper depth and
the size is asymptotically worse which is also shown in [KS08a]. In this section, we briefly
summarize this construction.

Let u, v and k denote the number of inputs, outputs and gates as before. [KS08a] designed
their UC construction with three programmable blocks: two different selection blocks and one
universal block. Those blocks hide the wiring of the inputs and outputs.

A Selection Block Sp
z is a programmable block that has p inputs and z outputs. The inputs are

mapped to the outputs in any order and any frequency. That means, it is possible that one input
is forwarded to any output or one input does not occur in any output. [KS08a] provide an effi-
cient selection block construction with size O(k log k) and depth O(k).

The Universal Block Un is also a programmable block with 2n inputs and n outputs. This
block simulates n universal gates (UG) and makes any wiring of a fanin 2 acyclic circuit
possible. Therefore, the circuit needs again a labelling η in topological order as mentioned
in Section 3.2.2 such that no output of a gate with labelling i can be an input of another gate
with labelling j < i. Kolesnikov and Schneider in [KS08a] construct their universal block
recursively using two smaller universal blocks, a selection block and one mixing block, which
has two sets of inputs (in1

1, . . . , in1
n) and (in2

i , . . . , in2
n) and n outputs with out i = inci

i (we
note that c is the programming vector of the mixing block). The depth of their universal
block is O(k log k) and the size is O(k log2 k), i.e. their construction does not achieve the
asymptotically optimal size of O(k log k).

Having described the building blocks of the UC construction of [KS08a], we now describe
how these programmable blocks build up a universal circuit. The u inputs of the UC are
the inputs of a Su

2k≤u selection block which shall hide the wiring of the inputs by directing
them obliviously into the most possible input number (2k) of wires. The 2k outputs of this
block are forwarded to a Uk universal block, which simulates the k gates as mentioned above.
The k outputs of this block are forwarded to a Sk≥v

v selection block, which shall hide the

16

3 Universal Circuit Constructions

wiring of the outputs by obliviously choosing from the maximum available k output wires
the v outputs used by the actual circuit. [KS08a] provide customized switching blocks which
have smaller size.

3.3.1 Hybrid Constructions

In this section we explain shortly the hybrid UC constructions of Kiss and Schneider in [KS16].

[KS16] design a UC construction using both approaches of Valiant’s construction in [Val76]
and the [KS08a] UC construction. The universal block of [KS08a]’s construction makes the
whole construction asymptotically large. Instead of using a universal block, one can use
Valiant’s UC between the selection blocks.

In case of large number of inputs u ∼ k but constant number of outputs, they propose to
use only the first selection block while in case of large number of inputs u ∼ 2k and large
number of outputs v ∼ k, the construction with both selection block might be the better
one. However, in any other case Valiant’s construction used by its own provides a better
size and depth. We note that the most common case is a small (constant) number of inputs
and outputs, for which Valiant’s construction performs best. More details can be found
in [KS16].

17

4 Making Valiant’s EUG Construction Modular

In addition to his 2-way split EUG construction, Valiant also offers a more efficient 4-way split
EUG construction [Val76]. Lipmaa et al. extend Valiant’s work by considering a k-way split
EUG constructions in [LMS16]. We improve their work by making Valiant’s k-way split EUG
construction more modular at the example of k = 4. This enables us to realize this construction
efficiently in practice, which is detailed in Chapter 5. Therefore, we shortly describe Valiant’s
4-way split EUG construction with our optimizations in Section 4.1. Thereafter, we provide
our approaches for splitting the edge-embedding task into two main parts with the help of
the supergraph construction from [KS16] in Section 4.2. We finish this chapter with giving
an approach for the edge-embedding of a k-way split construction which is also based on
[KS16]’s considerations in Section 4.2.4.

4.1 Valiant’s 4-way Split EUG Construction

Similar to his 2-way split EUG construction (meaning that the recursion using 2 smaller
instances), Valiant also provides a 4-way split EUG construction for Γ1 graphs which can be
extended to a construction for Γ2 graphs by utilizing two instances Un(Γ1)1 and Un(Γ1)2 as
before (see Section 3.2). The construction with our optimizations is visualized in Figure 4.1.
Valiant offers the main, so-called Body block (see Figure 4.1a) as programmable block con-
sisting of 4 poles (emphasized as big circles), 15 nodes (emphasized as small circles) as
well as 8 recursion points (emphasized as squares). These body blocks are built up together
such that the 4 top [bottom] recursion points of one block are the 4 bottom [top] recursion
points of the other block. Similar to the 2-way EUG construction, we create 4 sets for a graph
with n nodes, i.e., Qd n−4

4 e
= {q1, . . . , qd n−4

4 e
}, Rd n−4

4 e
= {r1, . . . , rd n−4

4 e
}, Sd n−4

4 e
= {s1, . . . , sd n−4

4 e
}

and Td n−4
4 e
= {t1, . . . , td n−4

4 e
} which are the poles of the next recursion step, respectively. This

means, for every recursion step, we get 4 subgraphs which also create 4 subgraphs until we
reach the recursion base (this is the case if the number of recursion points is less than or
equal to 4, see Section 3.2.2).

We note that the top [bottom] block does not need the upper [lower] recursion points since
those poles are w.l.o.g. the real inputs [outputs]. Therefore, we design special blocks - called
Head and Tail Block. A Head Block is a programmable block BP(l)

0,k which only occurs at the top

of a chain of blocks. In case of the 4-way split EUG construction, it is a BP(l)
0,4 programmable

block and consists of 4 poles, 10 nodes and 4 recursion points at the bottom (therefore k = 4
in this case) as visualized in Figure 4.1f. We can determine the number of additional hidden

18

4 Making Valiant’s EUG Construction Modular

p4i+1

p4i+2

p4i+3

p4i+4

qi ri si t i

qi+1 ri+1 si+1 t i+1

(a) Body Block

pn

qd n−4
4 e

rd n−4
4 e

sd n−4
4 e td n−4

4 e

(b) Tail Block (1)

pn−1

pn

qd n−4
4 e

rd n−4
4 e

sd n−4
4 e td n−4

4 e

(c) Tail Block (2)

pn−2

pn−1

pn

qd n−4
4 e

rd n−4
4 e

sd n−4
4 e td n−4

4 e

(d) Tail Block (3)

pn−3

pn−2

pn−1

pn

qd n−4
4 e

rd n−4
4 e

sd n−4
4 e td n−4

4 e

(e) Tail Block (4)

p1

p2

p3

p4

q1 r1 s1 t1

(f) Head Block

Figure 4.1: (a) shows Valiant’s 4-way split EUG construction [Val76]. (b)-(e) show our tail
block constructions for different number of poles (denoted in brackets). (f) shows
our head block construction.

19

4 Making Valiant’s EUG Construction Modular

inputs as l = 7+ 4 · {number of UG in this block}, since we have 1 additional control bit for
each X-switching block as well as 4 control bits for each UG.

As a counterpart, we define Tail Blocks as programmable blocks BP(l)
k,0 which only occur

at the bottom of a chain of blocks. In our case, we have a BP(l)
4,0 programmable block. It

consists of less than or equal to 4 poles (more precisely the remaining number of poles at
the end of the chain (n mod 4) + 1), 4 recursion points at the top and less than 11 nodes
depending on the number of poles. The 4 different tail block constructions are visualized
in Figures 4.1b, 4.1c, 4.1d and 4.1e. The value of l depends also on the number of poles in the
block: l = { number of nodes without poles }+4·{ number of UG in this block }.

We notice that the 4 recursion base constructions are the remaining blocks for this EUG
construction as mentioned in Section 3.2.2.

Depending on the number of inputs and outputs of the nodes and recursion points, the nodes
are the implementation of various gates or blocks. The respective gates and blocks can be
found in Section 3.2.1.

4.2 Edge-Embedding

In this section we give approaches for handling the edge-embedding on Valiant’s EUG. First, we
explain the edge-embedding on the example of Valiant’s 4-way split EUG construction [Val76]
and in Section 4.2.4 we provide an approach for the edge-embedding of k-way split EUG
constructions.

The edge-embedding can be split into two main parts: the block edge-embedding and the recur-
sion point edge-embedding. The idea of the block edge-embedding is that every block handles
their edge-embedding task themselves. We detail this in Section 4.2.1.

It is easy to see that only the recursion points are left while every block handles the pro-
gramming of the nodes itself. Therefore, we consider the recursion point edge-embedding
which sets the programming bit of the remaining recursion points. We use the supergraph
construction of [KS16] to handle this task in Section 4.2.2.

The last step is to combine both edge-embedding types in Section 4.2.3. This is important
since the single blocks have to know how to edge-embed themselves.

4.2.1 Block Edge-Embedding

The task of the block edge-embedding is to manage the edge-embedding inside of a block, i.e.
every block edge-embeds their nodes within themselves. Therefore, a block does not need to
consider the other block’s programming.

20

4 Making Valiant’s EUG Construction Modular

In our case we consider the 4 top [bottom] recursion points of the block as intermediate nodes
where the inputs [outputs] of the block go through (note: a head block has only outputs
and a tail block only inputs). Valiant’s idea is that any of these inputs can be forwarded to
exactly one of the 4 poles of the block and any pole can be forwarded to exactly one output
or another pole having a higher topological labelling value.

We formalize this behaviour in the following: Let BP(19)
4,4 be the programmable block visualized

in Figure 4.1a with poles p1, . . . , p4 and η a topological ordered labelling of the nodes (and
poles). The nodes r1

0 , . . . , r4
0 and r1

1 , . . . , r4
1 denote the input and output recursion points of B.

Additionally, in = (in1, . . . , in4) ∈ {0, . . . , 4}4 and (out1, . . . , out4) ∈ {0, . . . , 7}4 denote the
input and output vectors of B. The value 0 of the input and output vectors is the so-called
Dummy value which is used if an input [a pole] is not forwarded to any pole [output] of B.
The output vector has a larger value range due to the larger path options. A pole can be
forwarded to another pole or an output recursion point. Therefore, we use the values 1, 2
and 3 for the poles p2, p3 and p4 and the values 4, 5, 6 and 7 for the output recursion points.
We notice that the pole p1 can not be a destination for a path in B having another pole in
B as input since η(p1) is less than the labelling of any other pole in B. Additionally, the
values of in and out are pairise different or 0. The rules for the input and output vectors are
formalized in Equation (4.1). A pair (r i

0, p j) ∈ P or (pi , r i
1) ∈ P denotes a path from r i

0 to p j

or pi to r i
1 in the set of all paths P in B.

∀i ∈ {1, . . . , 4} : ini 6= 0→ (r i
0, pini

) ∈ P

∀i ∈ {1, . . . , 4} : out i 6= 0∧ out i < 4→ (pi , p1+out i
) ∈ P ∧η(pi)< η(p1+out i

)

∀i ∈ {1, . . . , 4} : out i > 3→ (pi , r i−3
1) ∈ P

∀ini , in j ∈ in : i 6= j→ ini = 0∨ ini 6= in j

∀out i , out j ∈ out : i 6= j→ out i = 0∨ out i 6= out j

(4.1)

So, every combination of input and output vector covering these conditions are valid for B.
We use this observation in the edge-embedding process described in the next section. In Sec-
tion 5.2.1, we provide methods for solving the edge-embedding within the block.

4.2.2 Recursion Point Edge-Embedding

The block edge-embedding covers the programming of every node except for the recursion
points. So, the task of the recursion point edge-embedding is to program the remaining
recursion point nodes. Additionally, the second task of the recursion point edge-embedding is
to set the input and output vectors of the blocks for the block edge-embedding. Therefore, we
use the supergraph construction of [KS16] which split a Γ2(n) graph in two Γ1(n). These Γ1
graphs are merged again to one Γ2(d

n
2 e) and so on. We now explain the single steps in the

following. In the next section, we detail how to solve the two tasks of the recursion point

21

4 Making Valiant’s EUG Construction Modular

edge-embedding, so this section only describes in detail the supergraph construction since
this is the most important construction for the edge-embedding task.

Firstly, we notice that [KS16] use this construction for Valiant’s 2-way split EUG construc-
tion [Val76]. However, we can modify the algorithm so that it also works for the 4-way split
EUG construction.

Let Ck
u,v be the boolean function f which our UC shall compute. G ∈ Γ2(u+ v + k) denotes

the transformed graph of C f (see Section 2.2).

1. Splitting G ∈ Γ2 in two Γ1 graphs G1 and G2: Valiant’s UC consists of the merging of
two EUG for Γ1 graphs. Therefore, we have to split G into two Γ1 graphs G1 and G2, mean-
ing that every node v ∈ G1 and every node w ∈ G2 has indegree and outdegree at most
1. With this splitting we get two circuits C ′k,1

u,v which can be edge-embedded in an EUG
for Γ1 graphs. Merging both of the EUG for Γ1 graphs results in the wanted UC which
computes f .

The splitting of G can be done with 2-coloring G [Val76; KS16]. 2-coloring defines the
following problem: Let K = (V, E) be a directed graph. K can be 2-colored if we can create 2
sets E1 and E2 with the following conditions:

∀e ∈ E : (e ∈ E1 ∨ e ∈ E2)∧¬(e ∈ E1 ∧ e ∈ E2)

∀e = (v1, v2) ∈ E1 : ¬∃e′ = (v3, v4) ∈ E1 : v2 = v4 ∨ v1 = v3

∀e = (v1, v2) ∈ E2 : ¬∃e′ = (v3, v4) ∈ E2 : v2 = v4 ∨ v1 = v3

(4.2)

We call the edges in E1 the blue edges and the ones in E2 the black edges. With these two sets E1
and E2 we can build the two Γ1 graphs G1 = (V, E1) and G2 = (V, E2).

In case of Γ2 graphs we can always find a 2-coloring [LP09; Val76]. [KS16] describe an
algorithm for determining a valid 2-coloring with help of the proof of the König-Hall theorem
in [LP09].

2. Mergingone Γ1(n)graph into one Γ2(d
n
2 e)graph: The number of poles decreases in every

recursion step. Therefore, we have to merge a Γ1(n) graph into a Γ2(d
n
2 e) graph. It has to be

a Γ2 graph in order to loose no information.

Let G1 = (V, E) ∈ Γ1(n) be a topological ordered graph and Gm = (V ′, E′) ∈ Γ2(d
n
2 e) a

graph with nodes v′1, . . . , v′d n
2 e

. We define two labellings ηin and ηout on Gm with ηin(vi) = i

and ηout(vi) = ηin(vi) − 1 = i − 1. Additionally, we define a mapping θV that maps a
node vi ∈ V to a node v j ∈ V ′ with θ (vi) = v′

d i
2 e

. That means two nodes in G1 build one node

in Gm. At last, we define a mapping θE that maps an edge ei = (vi , v j) ∈ E to an edge e j ∈ E′

with θE((vi , v j)) = (vηin(θV (vi)), vηout(θV (v j)). That means every edge in G1 is mapped to one
edge in Gm as follows: Let e = (vi , v j) ∈ E and e′ = (v′k, v′l) ∈ E′. Then it is v′k = θV (vi) that

22

4 Making Valiant’s EUG Construction Modular

means v′k is the new node of vi in Gm. The node v j differs. Here, v′l is not the new node of v j
in Gm but it is v′l+1 (i.e. it is one less).

So, we can build the graph Gm = (V ′, E′) as follows: We set V = {v′1, . . . , v′d n
2 e
} and E′ =

⋃

e∈E θE(e). Then we check for all e = (v′i , v′j) ∈ E′ whether j < i and remove those edges
in E′.

We now explain the construction with an example. Therefore, we take a look at Fig-
ure 3.2. Graph G1 consists of the nodes V = {p1, . . . , pn} and Gm consists of the nodes
V ′ = {q1, . . . , qd n

2 e}. Let E = {(p1, p3), (p2, pn), (p3, p4)}. The intension of Gm is to provide
the paths of the next recursion step. That means the edge (p1, p3) should be mapped to the
edge (q1, q1) since the path from p1 to p3 goes over q1 in the next recursion step and leaves
it also over q1. It is θV (p1) = q1 and θV (p3) = q2. Here we see, why it is important to reduce
the topological ordered labelling by 1 since the path from p1 to p3 does not go through q2
but q1.

The reason why we delete those edges (qi , q j) ∈ E′ with j < i can be shown at the example of
the edge (p3, p4). The path from p3 to p4 does not go through the next recursion step since it
can be edge-embedded within the block. However, θE((p3, p4)) = (q2, q1) since q2 is the new
node of p3 and p4. Deleting them solves the problem and we do not have to farther consider
them. It is surprising that there exists a node qd n

2 e in V ′ but there is no such node in Valiant’s
2-way split EUG construction [Val76]. However, there is no incoming nor outgoing edge so it
can be deleted. We let it there since we need this node for our modification for Valiant’s 4-way
split EUG construction [Val76] what we explain later in this section.

3. Creating the supergraph construction of [KS16]: As mentioned above, we start with
a graph G ∈ Γ2(n) which includes all the pole paths in the two EUGs. The first step is to
split G into two Γ1 graphs G1 and G2 where G1 contains all the paths for the first EUG and G2
contains the remaining paths for the second EUG. We now explain the following steps using
the example of G1 (for G2 it is the same).

G1 is merged to a Γ2 graph Gm1
(m1 denotes that it is the merged Γ2 graph of G1). Now, Gm1

get two-colored and creates the graphs Gl
1 and Gr

1. These two graphs get merged two Γ2
graphs Gl

m1
and Gr

m1
. We denote with a pattern of "l" and "r" the positions of the subgraphs,

meaning that Gl
1 is the left subgraph of G1 or Gr

1 the right subgraph of G1. Or recursively

spoken: Let ψ be a pattern of "l" and "r" (e.g. ψ = lrrlr). Then Gψ◦l1 denotes the left subgraph

of Gψ1 .

We continue these steps (merging a Γ1 graph to a Γ2 graph and splitting this in two Γ1 graphs)
until the resulting Γ1 graph has 4 or less nodes (this is the recursion base) or does not contain
any edges.

23

4 Making Valiant’s EUG Construction Modular

4. Modifications for Valiant’s 4-way split EUG construction [Val76]: In Valiant’s 4-way
split EUG construction [Val76], we need a supergraph which creates 4 subgraphs in each
step. Therefore, we need a 4-coloring after merging a Γ1 graph to a Γ4 graph where 4 nodes
build a new node (as mentioned above). This problem can be directly solved by using the
already mentioned 2-coloring. The supergraph construction of [KS16] provides after 2 times
2-coloring 4 subgraphs (Gll

1 , Glr
1 , Grl

1 and Grr
1). We can use these graphs as the result of the

4-coloring.

However, there is one aspect to mention: the first 2-coloring is a preprocessing step, i.e. it
does not map to an EUG recursion step. Therefore, we have to define another labelling ηoutP

with ηoutP
(v) = ηin(v) (we note that here we indeed need the node qd n

2 e). Then the creation
of the supergraph works as follow: We merge G1 to a Γ2 graph with labelling ηoutP

and
get G1m

. After that we split G1m
into two Γ1 graphs Gl

1 and Gr
1. These two graphs get merged

to the Γ2 graphs Gl
1m

and Gr
1m

using the ηout labelling. Finally, the graphs get splitted into the

4 Γ1 graphs Gll
1 , Glr

1 , Grl
1 and Grr

1 . These are the important graphs for the first recursion step in
Valiant’s 4-way split EUG construction [Val76]. Now we start over for all 4 subgraphs until
we reach 4 or less nodes in the Γ1 graphs or there are no edges left (not in the preprocessing
step).

4.2.3 Combining both Edge-Embedding Parts

In this section, we combine the block edge-embedding and the recursion point edge-embedding
task to fulfil the whole edge-embedding. We explain this with Listing 4.1.

Let G denote the part of the EUG without recursion steps (i.e. G only consists of the main
chain of blocks) and G1 = (V, E) denotes the corresponding Γ1 graph which is one of the two
graphs after the splitting process as described in the previous section. With these two graphs
we are able to edge-embed G1 into G.

We denote with S the set of the 4 subgraphs of G1 in the supergraph, i.e. S = {Gll
1 , Glr

1 , Grl
1 , Grr

1 }
in the first function call. A recursion step graph of G is one of the generated graphs having one
of the 4 sets of recursion points (e.g. q1, . . . , qd n−4

4 e
) as poles without generating the recursion

steps (i.e. the recursion step graph is the chain of blocks which build the set of recursion
points Qd n−4

4 e
(and for the other 3 sets respectively)). R denotes the set of all 4 recursion step

graphs of G. Finally, let B be the set of all blocks in G.

We now want to explain lines 5 - 29 in Listing 4.1. Let e = (vi , v j) ∈ E be any edge in G1.
bi and b j in lines 7 and 8 denote the blocknumbers in which vi and v j are. i′ and j′ denote the
pole positions in the blocks Bbi

and Bb j
, i.e. i′ = ((i−1)mod 4)+1. out and r1 [in and r0] de-

note the output [input] vector and the corresponding set of output [input] recursion points
as described in Section 4.2.1. We have to distinguish between 2 cases:

Case 1: vi and v j are in the same block

24

4 Making Valiant’s EUG Construction Modular

Listing 4.1: Edge-Embedding algorithm for Valiant’s 4-way split EUG Construction [Val76]

1 procedure edge−embedding (G , G1 = (V, E))
2 Let S be the s e t of the 4 Γ1 subgraphs of G1 in the supergraph
3 Let R be the 4 recur s i on s tep graphs
4 Let B be the s e t of b locks in G
5 ∀e = (vi , v j) ∈ E do
6 Let i′ and j′ denote the p o s i t i o n s of vi and v j in t h e i r

,→ b locks
7 bi ← d

i
4e

8 b j ← d
j
4e

9 Let out [r1] denotes the output vec to r [r e cu r s i on po in t s]
,→ of Bbi

10 Let in [r0] denotes the the input vec to r [r e cu r s i on po in t s]
,→ of Bb j

11 i f bi = b j do
12 i f vi 6= v j do
13 out i′ ← j′ − 1
14 end i f
15 else
16 Let s = (V ′, E′) ∈ S denote the Γ1 graph with e′ = (pbi

, pb j−1
) ∈ E′

,→ and e′ i s not marked
17 Mark e′

18 Let x denote the number with s = Sx
19 Set the con t ro l b i t of r x

0 to 1
20 i f b j = bi + 1 do
21 y ← 0
22 else
23 y ← 1
24 end i f
25 Set the con t ro l b i t of r x

1 to y
26 out i′ ← x + 4
27 inx ← j′

28 end i f
29 end ∀
30 Edge−embed a l l b locks in G
31 ∀i ∈ {1, . . . , 4} do
32 i f Si e x i s t s do
33 c a l l edge−embedding (Ri , Si)
34 end i f
35 end ∀
36 end procedure

25

4 Making Valiant’s EUG Construction Modular

That means, bi = b j. In this case, the edge-embedding can be solved within the block
and no recursion points have to be programmed for this path. Therefore, we set the out
vector of block Bbi

at position i′ (which denotes the position of vi in Bbi
) to i′ − 1 (see Sec-

tion 4.2.1).

Case 2: vi and v j are in different blocks

That means, bi 6= b j . We have to find an edge e′ = (pbi
, pb j−1

) in one of the 4 subgraphs of G1.
This means the path in the next recursion step has to be between the poles pbi

and pb j−1

(see Section 4.2.2). We denote with s ∈ S the Γ1 subgraph of G1 which consists of such an
unmarked e′ (if an edge is marked, it is already used and cannot be reused for this task, so we
have to search in an other subgraph). After we select e′, we mark this edge so that it cannot
be used any more in further course of the algorithm. We set x to the number of the subgraph s
in S, i.e. Sx = s. This is important since we have to know in which of the 4 recursion step
graphs we have to edge-embed a path from pbi

to pb j−1
. So, it also tells us which of the 4

recursion points we have to program. We can firstly set the programming bit of the x-th
input recursion point r x

0 to 1 since the path between the poles with labelling i and j leaves
the next recursion step over this recursion point. The programming of the input recursion
point is set the same way. We only have to consider one special case: If the blocks Bbi

and Bb j

are neighbours (i.e. b j = bi + 1) that it is r x
1 = r x

0 in this setting. So, the path beween the
poles with labelling i and j enters the next recursion step graph at node r x

1 and leaves it also
at r x

1 . So the programming bit of r x
1 has to be 0 in this case (and so the programming bit

of r x
0 which is set first, is overwritten).

The last step is to set the input and output vectors of the two blocks. This is done in lines 26 and
27. The output vector of block Bbi

is set at i′-th value to the x-th recursion point and the input
vector of block Bb j

is set at the x-th value to the j′-th pole in this block.

We repeat these steps until we achieved that for all edges e ∈ E. We note that we now have
set all input and output vectors of all blocks in B. So, we can edge-embed all of them with the
block edge-embedding (see Section 4.2.1) in line 30. After that we go to the next recursion
steps. For all of the 4 subgraphs of G1 in the supergraph (i.e. for all graphs in S), we call the
same procedure again with Si ∈ S and Ri ∈ R.

4.2.4 Edge-Embedding for k-way Split EUG Constructions

In this section we give our approach for the edge-embedding task for Valiant’s k-way split EUG
construction [Val76; LMS16]. We only provide the main differences to the edge-embedding
of the 4-way split EUG construction since they are similar.

1. k-way Block Edge-Embedding: For the k-way split EUG construction, we design a block
with k input recursion points, k output recursion points and k poles. Therefore, we try to
minimize the size of the block especially for PFE applications where we can compute XOR
gates for free [KS08b] or a general UC construction for any application.

26

4 Making Valiant’s EUG Construction Modular

In this setting, we denote with BP(x)
k,k the programmable block of size x with poles p1, . . . , pk.

B is topological ordered with labellingη and has the input [output] recursion points r1
0 , . . . , rk

0 [r
1
1 , . . . , rk

1].
The vectors in = (in1, . . . , ink) ∈ {0, . . . , k}k and out = (out1, . . . , outk) ∈ {0, . . . , 2k − 1}k

denote the input and output vectors of B as described in Section 4.2.1. We notice that the
values k, . . . , 2k− 1 in out denote the recursion point targets r1

1 , . . . rk
1 . As for the 4-way split

EUG construction we formalize the setting of the two vectors in (4.3). Therefore, we denote
with P the set of all paths in B as in Section 4.2.1.

∀i ∈ {1, . . . , k} : ini 6= 0→ (r i
0, pini

) ∈ P

∀i ∈ {1, . . . , k} : out i 6= 0∧ out i < k→ (pi , p1+out i
) ∈ P ∧η(pi)< η(p1+out i

)

∀i ∈ {1, . . . , k} : out i > k− 1→ (pi , r i−k+1
1) ∈ P

∀ini , in j ∈ in : i 6= j→ ini = 0∨ ini 6= in j

∀out i , out j ∈ out : i 6= j→ out i = 0∨ out i 6= out j

(4.3)

2. k-way Supergraph Construction: We denote with G(n) ∈ Γ2(n) the transformed graph
of an boolean circuit C f . To construct the supergraph construction of [KS16] we have to firstly
split G into two Γ1(n) graphs G1 and G2 with 2-coloring as described in Section 4.2.2. The fol-
lowing steps differ from the edge-embedding of the 4-way split EUG construction. We only con-
sider the next steps for the graph G1. The procedure is the same for G2.

G1 = (V, E) ∈ Γ1(n) get merged into one Γk(d
n
k e) graph G1m

= (V ′, E′). Therefore, we redefine
the mapping θV that maps a node vi ∈ V to a node v j ∈ V ′. In this scenario, k nodes in V
build one node in V ′, so θV (vi) = vceil i

k
. The mapping of the edges θE is the same as in the

4-way split EUG construction (see Section 4.2.2).

The next step is that G1m
∈ Γ1(d

n
2 e) gets splitted into k Γ1(d

n
k e) graphs. This can be done with

a k-coloring. A directed graph K = (V, E) can be k-colored, if we can create k sets E1, . . . , Ek
covering the following conditions:

∀i, j ∈ {1, . . . , k} : i 6= j→ Ei ∩ E j = ;
∀e ∈ E : ∃i ∈ {1, . . . , k} : e ∈ Ei

∀i ∈ {1, . . . , k} : ∀e = (v1, v2) ∈ Ei : ¬∃e′ = (v3, v4) ∈ Ei : v2 = v4 ∨ v1 = v3

(4.4)

According to Kőnig’s theorem, k-coloring of Γk graphs is possible with a dedicated algorithm.
However, we notice that we bypass the 4-coloring problem by using two times 2-coloring.
This procedure can be done if k is a power of 2.

The rest of the supergraph construction is the same as for the 4-way split EUG construction.

3. k-way Edge Embedding Algorithm: The edge-embedding algorithm for k-way split EUG
constructions is the same as shown in Listing 4.1. We only have to replace every 4 with
a k.

27

5 Implementation

[KS16] provide the first toolchain for a PFE application that uses Valiant’s UC as public
function. They use the the ABY framework [DSZ15] and the Fairplay compiler [MNP+04;
BNP08] for the PFE application and the circuit transformation. We summarise the frame-
work of [KS16] and detail the parts which are most important for our UC implementation
in Section 5.1.

The UC module of their compiler can easily be exchanged with our UC module. We explain our
UC module and the most interesting programming aspects in Section 5.2.

5.1 C++ UC Compiler

The first published implementation of a UC especially for a PFE application is provided
by [KS16]. Therefore, we reuse their toolchain for our implementation. The architecture of
it is visualized in Figure 5.1 [KS16].

The UC Compiler module is reimplemented, except for the first two steps due to our
gained modularity in Chapter 4. We detail some aspects of its implementation in Sec-
tion 5.2. However, we detail the single steps in this section, which can also be found
in [KS16].

Preprocessing: Compiling Input Function f to a Circuit Description C f : [MNP+04] pro-
vide their format Secure Function Definition Language (SFDL) where one can describe their
functions in a high-level , C-like, language. Additionally, [MNP+04; BNP08] develop their
so-called Fairplay compiler to translate functions f in SFDL format to a circuit description C f
by defining another format called Secure Hardware Definition Language (SHDL). The Fairplay
compiler is extended to FairplayPF in [KS08a] which ensures that the resulting circuit C f
only contains gates with indegree 2. Since Valiant’s UC construction in [Val76] also requires
circuits with fanin 2, [KS16] decide to use the FairplayPF extension of [KS08a]. Therefore,
the result of the preprocessing step is a circuit C f = Ck,l≥2

u,v in SHDL format, which computes
the function f .

28

5 Implementation

First Step: Modifying C f to a valid input Circuit C ′f for Valiant’sUC: Valiant’s UC ([Val76])
requires an input circuit with fanin and fanout 2. While the FairplayPF extension of [KS08a]
ensures a fanin 2 circuit, it has no restrictions of the outdegree of gates. Therefore, [KS16]
provide a function to translate the circuit C f with fanin 2 to a circuit C ′f = Ck∗

u,v with fanin
and fanout 2. They use k∗− k copy gates for eliminating the extra fanouts of the gates, which
was shown by Valiant in [Val76]. We refer to [KS16; Val76] for more information (we provide
a shortly description in Section 2.2) and use the method and implementation of [KS16] for
this step. We note that k ≤ k∗ ≤ 2k+ v.

Circuit Description C f
(SHDL)

1. Modified Circuit C
(SHDL)

Circuit Compiler
(Fairplay)

Functionality f
(SFDL)

P1

2. Γ2 Graph
Representation GC

4. Embedding
of GC into Uu+v+k∗

5. Program Bits
Input p

3. Edge-Universal
Graph Uu+v+k∗

Public

5. Universal Circuit
Description UCu,v,k∗

6. SFE Framework
(ABY)

P2

Input x

Output UC(x , p)

Our UC Compiler

Figure 5.1: Toolchain for UC and PFE of [KS16, Figure 6]

29

5 Implementation

Second Step: Transforming the Circuit C ′f to a Γ2 Graph G: The transformation of a cir-

cuit C ′f = Ck∗
u,v into a Γ2(u+v+k∗) graph G = (V, E) is described in Section 2.2. After this trans-

formation, we define a topological ordered labelling η for G in which every input node vi has
a labelling of 1≤ η(vi)≤ u and every output node v j is labelled with v ≤ η(v j)≤ (u+ v+ k∗).
Graph G is the specification for the edge-embedding of the EUG U generated in the next step,
i.e. G gets edge-embedded into U (see Sections 3.1.2 and 4.2).

Third Step: Creating an EUG for Γ2 graphs Un(Γ2): An EUG for Γ2 graphs denoted by Un(Γ2)
can be constructed by creating two instances of Un(Γ1) as mentioned in Section 3.1.2. These
two instances get merged to Un(Γ2) so that one instance builds the first inputs and outputs
and the second instance builds the second inputs and outputs of the gates. Since we know
the number of inputs, outputs and gates of C ′f and the number of nodes in G = (V, E), we
can set n= |V |= u+ v + k∗.

We create the EUGs with Valiant’s 4-way split EUG construction [Val76] with our opti-
mizations in Section 4.1 and Figure 4.1. The description of the EUG Un(Γ2) is public
for both parties in PFE context while the programming of the nodes are private for one
party.

FourthStep: ProgrammingUn(Γ2)so that it computes f : Now that we have the EUG Un(Γ2)
and the description of the function f as Γ2(n) graph G, we can program U so that it com-
putes f . Therefore, we edge-embed U into G which is possible for any G ∈ Γ2(n), what is
proven by [Val76; KS16].

[KS16] use their supergraph construction which defines the paths between the poles uniquely
for Valiant’s 2-way split EUG construction [Val76]. However, since we use Valiant’s 4-way split
EUG construction [Val76] for our implementation, we extend their supergraph construction
by providing an algorithm for this construction as well as an approach for k-way split EUG
constructions [LMS16], which is detailed in Section 4.2.

The programming bits of the nodes are set during the edge-embedding process since the
paths between the poles are set there.

Fi�h Step: Generating the Output Circuit Description of U and its Programming Bits:
The last step for the UC compiler is to generate two files, one for the circuit description
of Un and one for the programming of Un.

Before we can create these two files, we have to topological order Un, i.e. we define a
topological ordered labelling ηU on Un. This is important since no outputs of a node can be
inputs of a node having a lower labelling value.

The file which includes the programming of Un can be created as follows: For every node in
topological order, we write in a new line the programming bit of the node. If a node is an X

30

5 Implementation

or a Y switching block, we only have to write the programming bit of them. However, if a
node is a UG, it has 4 programming bits. In this case, we consider the 4 programming bits
as binary value and translate it to a decimal value, i.e. we write 23c1 + 22c2 + 2c3 + c4 for
programming bits c = (c1, c2, c3, c4). In any other case, we can skip this node since it has no
programming bit, i.e. this node is either an input or output pole or a copy switching block
having only one input.

Now we detail the other output file, which includes the description of the circuit Un. [KS16]
use a circuit description format which starts with enumerating the inputs and ends with
enumerating the outputs. X and Y switching blocks are denoted by X and Y while UG are
denoted by U . The remaining nodes are replaced by wires since they only have one input.
We have to translate the node labelling to a wire labelling. Therefore, we assume that every
output edge in Un is labelled with the labelling ηU of the node. This can easily be done for
Y switching blocks and UG since they both have only one output (note: two outputs of the
UG have the same value). An X switching block has two outputs which can have different
values, i.e. we need two wire labelling for X switching blocks. The problem is, that the
labelling of the next nodes get shiftet by 1 for each X switching block with a lower labelling
value. We have the same problem for nodes with only one input, since we ignore them
by simply translating them into wires. Therefore, we define a new labelling for the nodes
in Un = (V ′, E′) with

η′U(v) = ηu(v) + |{w ∈ V ′|x(w)∧η(v)> η(w)}| − |{w ∈ V ′|i(w)∧η(v)> η(w)}| (5.1)

where x(v) [i(v)] describes a predicate which is true if v ∈ V ′ is an X switching block
[has one input]. With this labelling, we can create the lines for the circuit description as
follow:

U in1 in2 η′U(v)

X in1 in2 η′U(v) η′U(v) + 1

Y in1 in2 η′U(v)
(5.2)

The values for in1 and in2 can be found at the parent nodes labelling.

Sixth Step: PFE with UC: [KS16] use PFE as application example for UC by using the
ABY framework of [DSZ15] for secure two-party computation. ABY is compatible with
the circuit format constructed in the previous step. One only has to provide an imple-
mentation of X and Y switching blocks as well as UG. [KS16] provide these implemen-
tations with considering the free XOR computing [KS08b], which is also implemented in
ABY [DSZ15].

The ABY framework generates a circuit from the output circuit description file. The private
function f is represented in the programming file of the previous step, denoted by p f . A
second party can provide another input x so that ABY can compute UC(p f , x) = f (x) in a
privacy-preserving manner.

31

5 Implementation

5.2 Universal Circuit Module

In this section, we provide some implementation details of the UC module of the toolchain
from [KS16]. Therefore, we explain the single classes and their relationship.

We implement the UC module with C++ as already mentioned. It contains the classes
ValiantUC, ValiantEUG, Block and UCNode. The modularity of our construction is an important
factor also for the implementation. We implement every class in a way that we can exchange
every component without loosing the robustness of our construction. This means, e.g., that
one can implement a 3-way split EUG construction easily by only exchanging the construction
of the EUG and the edge-embedding part - the rest of the code can be reused without problems.
We explain the single classes in the following.

ValiantUC: This class represents the whole UC construction consisting of two instances of
the class ValiantEUG. It starts the construction of the whole EUG for Γ2 graphs depending
on the number of nodes, which are the sum of the number of inputs, outputs and gates of
the input circuit. Additionally, it also starts the edge-embedding. Therefore, the supergraph
construction of [KS16], which is extended in Section 4.2.2, is offered as input. We notice that
the construction of the supergraph is not included in our module - it is an external module
also provided by [KS16]. After the edge-embedding is initialized, each of the two ValiantEUG
instances get one of the first two Γ1 graphs in [KS16] supergraph construction as input. The
last task of this class is to generate the two output files (see the fifth step in Section 5.1).
Therefore, it also contains the topological ordering of the nodes, which is indispensable for
the generation of the output files.

ValiantEUG: The ValiantEUG class contains one of the two Γ1 EUG in Valiant’s UC con-
struction [Val76]. It contains all blocks of its EUG. The two main tasks of this class are the
construction of the EUG as well as the edge-embedding of the recursion points and setting
the inputs of the block edge-embedding (see Section 4.2.1).

An instance of ValiantEUG is not a complete EUG. It contains a list of poles, a list of blocks
where each block contains at least one pole as well as the recusion points. Additionally, it
contains a list of its 4 children, which are new instances of ValiantEUG which have one of the
4 recursion point layers as poles. We choose this design since the edge-embedding task can
be easily solved recursively (see Section 4.2.3).

Block: This class represents a block within an EUG (see Section 4.1). It contains a list of all
its nodes. The tasks of a block are the construction of all its nodes and the edges between
them as well as the block edge-embedding (see Section 4.2.1). We detail our methods for the
block edge-embedding in Section 5.2.1.

32

5 Implementation

UCNode: This class represents a node in Valiant’s EUG construction [Val76]. It contains a
list of parent and children UCNodes, respectively, its topological ordered value as well as its
programming bits which are set during the edge-embedding. The only task of the UCNode
class is to provide information to the other classes.

5.2.1 Methods for Block Edge-Embedding

In this section, we provide some instructions for the block edge-embedding task.

The block edge-embedding programs the nodes within the block, i.e. each block programs
their nodes themselves (see Section 4.2.1). In general, the result depends on the block
type (head, body, tail), the input vector in and the output vector out. We provide two
methods for the block edge-embedding: using a Lookup Table (LUT) or analyzing the be-
haviour.

Option 1: Lookup Tables: The nodes can be programmed by LUT. Therefore, we create
a table for each combination of input and output vectors and can read the programming
for the individual nodes in the result columns. Since in ∈ {0, . . . , 4}4 and out ∈ 0, . . . , 74,
we have a table of size 54 · 84 = 9 834 496. This is a very large value and it needs a very
high effort to create such a LUT. However, we can reduce the number of entries in the LUT
enormously.

At first, we can remove the dummy values by replacing them with other values. Each vector
consists of pairwise different values, i.e. we replace every dummy input with a value between
1 and 4 which does not occur in the input vector. For the output vector, we set the dummy
values to a value between 4 and 7 since the values 1, 2 and 3 conflict with the input vector.
So, we can distinguish if a target pole belongs to the input or the output vector. We can give
an upper bound for this with 4! ∗ 7!

3! = 20 160. This are nearly 500 times less entries than
without this optimization.

We can reduce this value again by splitting our LUT to two LUTs. The new input vector builds
the first LUT and the output vector the second LUT, i.e. the second LUT can overwrite the
programming of the first LUT which is necessary if there is a pole as target. With this, we
have 4!= 16 entries in the first LUT. However, the two side nodes between the poles p4i+2
and p4i+3 in Figure 4.1a decide whether the inputs or the both upper poles are forwarded
to the both lower poles. This can cause a problem if one input and one of the both upper
poles are forwarded to one of the both lower poles, e.g. if the input is forwarded through
the right side and the output shall also be forwarded through the right side, in which case
the input would get lost. We can fix this problem by adding a new input to the second LUT,
denoted with z, which is set to 0 [1] if exactly one original input is forwarded to one of the
lower both poles through the left [right] side. This value z can be determined easily after the
first LUT result.

33

5 Implementation

We notice that z has only been considered in the output vector, if exactly one of the both upper
poles is forwarded to one of the both lower poles. So, we have another upper bound for the
second LUT with 2· 7!

3! = 1680. Though this is a high value, it is only an upper bound. In reality,
only the first value of the output vector has 7 options to go. If out1 6= 1, the second value out2
has only 5 options instead of 6 since out2 cannot be 1 (see Section 4.2.1) and out1 6= out2.
The same goes also for out3 and out4. We let a program determine that the second LUT has
404 entries, which are 420 entries for both LUTs. This is an enormous reduction from nearly
10 million entries to only 420 entries. However, since these are still many entries, we use the
second, more efficient, option for our implementation.

Option 2: Analyzing the Nodes: The second option is to analyze the single nodes how they
behave for certain input values. Therefore, we can detect multiple nodes in different blocks,
which have the same programming for the same input and output vectors, e.g. the first 4
nodes of the body and tail blocks with 3 and 4 poles have the same programming depending
on the input vector in Figure 4.1. This can be done for various nodes in different blocks. We
firstly have only to consider the 15 nodes of the body block. Each node of the head block can
be mapped to a node in the body block having the same programming for the same output
vector (note: a head block has no input vector). The same goes for the tail block with 4 and
2 nodes. Only the tail blocks with 3 and 1 pole differ. Each of them contain one node (the
lowest nodes) which cannot be mapped to a node in the body block. So all in all we only have
to consider 17 node programmings for the different block types. We notice that we can do
this optimization also for the LUT option which is mentioned above.

The nodes in blocks which build the recursion base blocks (i.e. a block which has no
incoming and outgoing recursion points, since it builds the end of the recursive construction),
also cannot be mapped to a node in the body block. However, these can be programmed
easily.

We can also create the help input vector from the previous option, in which each dummy
input of the original input vector get replaced by a value which does not occur so far in
this vector. This help vector can be used for the upper permutation network of the body
block (consisting of 4 nodes). The path from a recursion point to the first (second) pole
has to be forwarded through the third (fourth) node in this network. So, the programming
of the first two nodes only have to fulfill this task. The task of the third (fourth) node is
to forward the correct recursion point to the first (second) pole. So, the programming of
this permutation network can be easily done. Creating another help vector for the lower
permutation network, which consists the destinations for the lower recursion points for the 4
inputs of this permutation network, makes the programming of this permutation network as
easy as above.

The node between the first two poles can also easily programmed by setting the programming
bit to 1 if out1 = 1. Otherwise, it can be always set to 0. The same goes for the node between
the third and fifth pole.

34

5 Implementation

The programming of the remaining poles is more difficult since we always have to know
which are the real destinations of each input of a node (here we use the original input
vector and not the help input vector without dummy inputs). However, we can easily
determine the destinations of the inputs of the nodes and can forward them as we need
them.

This option is more error-prone due to the manual effort of optimizing the possibilities.
However, we decide to use it over the first option since we predict its performance to be
better than the LUT option.

5.2.2 Topological Ordering

In this section, we provide our realization of the topological ordering process for the EUG
for Γ2 graphs.

The EUG Un(Γ2) has to be topological ordered in order to create the two output files of the UC
(see Section 5.1, fifth step). Therefore, we use the Depth-First Search (DFS) based topological
ordering algorithm, which can be found e.g. in [CLRS01, Section 22.4]. The algorithm starts
at a node, marks this node, checks if all its children are marked to set a topological value to
this node, otherwise it marks all the children and the same process is performed for their
children. So, this process is done recursively.

Since we have an EUG in which we can create a path from the first pole to any other node
or pole, we can start the algorithm at the first pole and all nodes get a topological value.
However, since the real input [output] poles do not have inputs [outputs], we have to delete
the incoming [outgoing] edges from these poles. Therefore, the algorithm labels not every
node (especially the real input poles) with a topological value. We can fix this by labelling
the real input poles by hand in ascending order (starting with 1) and run the algorithm twice
starting with both children of the first pole.

The first thing we have to do is to determine the size of the EUG since the algorithm starts with
the biggest value for the topological ordering and ends with the value 1 at the first pole. This
can be done by counting the nodes and poles of each block in the EUG.

The algorithm is recursive and this becomes a problem with large size EUG. The number
of recursion pointers on the stack depends on the depth of the EUG. For a high depth, we
get problems with the stack due to the high number of entries so that the stack is full - the
program crashes. Therefore, we use the stack class from C++ where we can manage a stack
by hand. So, we push every node which is visited on the stack and remove them when they
get their topological value. With this method we get much less entries on the step since we
do not have to save the temporary values for each node too. We show our C++ procedure
for the topological ordering in Listing 5.1.

35

5 Implementation

Listing 5.1: Topological Ordering Algorithm in C++

1 void ValiantUC : : topo log i ca lOrde r ing (u in t32_t input s) {
2 uint32_t topValue = this−>s i z e − 1;
3 s td : : s tack<UCNode∗> df s ;
4 for (in t i = 0; i < i nput s ; i++) {
5 this−>poles [i]−> s e t T o p o l o g i c a l V i s i t e d (true) ; // mark node
6 this−>poles [i]−>setTopologicalNumber (i) ;
7 this−>topOrderedNodes [i] = this−>poles [i] ;
8 }
9 UCNode ∗ currentNode ;

10 // push both c h i l d r e n o f the f i r s t po l e on the s t a c k
11 df s . push (this−>poles [0]−>getCh i ldren () [0]) ;
12 df s . push (this−>poles [0]−>getCh i ldren () [1]) ;
13 while (! d f s . empty ()) {
14 currentNode = df s . top () ; // top node on the s t a c k
15 currentNode−>s e t T o p o l o g i c a l V i s i t e d (true) ;
16 bool foundSomething = f a l se ;
17 for (auto c h i l d : currentNode−>getCh i ldren ()) {
18 // check i f a l l c h i l d r e n are v i s i t e d
19 i f (! ch i ld−>g e t T o p o l o g i c a l V i s i t e d ()) {
20 df s . push (c h i l d) ;
21 foundSomething = true ;
22 break ;
23 }
24 }
25 i f (foundSomething) {
26 continue ;
27 }
28 currentNode−>setTopologicalNumber (topValue) ;
29 topOrderedNodes [topValue] = currentNode ;
30 topValue−−;
31 d f s . pop () ;
32 }
33 }

36

6 Evaluation

In this chapter, we compare the sizes of the 2-way split and the 4-way split UC constructions.
Therefore, we take a look at the sizes of the EUG constructions in Section 6.1. Thereafter, we
compare the number of AND gates of the whole UC construction in Section 6.2. We finish
this chapter with providing a future work direction in Section 6.3.

6.1 Size of k-way EUG

Considering Valiant’s 4-way split EUG construction as chain of blocks in which each chain
can have 4 sub-chains simplifies the programming of the nodes. The underlying idea comes
from [LMS16], who regard a group of k poles as block (see Section 3.2.2). Nearly every
block consist of k incoming and k outgoing recursion points (only the head and the tail of
the chains behave differently). In this section, we compare the sizes of Valiant’s 2-way and
4-way EUG construction and develop a formula for calculating the size of a k-way split EUG
construction provided that the sizes of the single blocks are known.

We denote with bi(k) and zi(k) the number of blocks and the number of recursion points at
the i−th recursion step of Valiant’s k-way split EUG construction, respectively. This means,
the base chain consists of b0(k) = d

n
k e blocks and has z0(k) = d

n
k e − 1= b0(k)− 1 recursion

points when having n poles. It is easy to see that the number of poles at the i−th recursion
step is zi−1(k). Therefore, we can define bi(k) and zi(k) as follow:

bi(k) =











d n
k e if i = 0

0 if zi−1(k) = 0

d zi−1(k)
k e else

(6.1)

zi(k) =











b0(k)− 1 if i = 0

0 if bi(k) = 0

bi(k)− 1 else

(6.2)

This recursion terminates at zt(k) = 0. With this approach we can calculate the size of the
EUG constructions.

37

6 Evaluation

We now have to define a function fk which returns the size of any block in Valiant’s k-way split
EUG construction. The values bi(k) and zi−1(k) can be used to determine such a function. We
notice that we have to set z−1(k) = n for the case i = 0. The last input of the function fk is a
value 1≤ j ≤ bi which can be interpreted as the j-th block in the current chain of blocks. Now
that we have this, we can define fk(j, bi , zi−1) to return the size of the j-th block in the i-th
recursion step chain. The formula for k = 4 is given in Equation (6.3).

f4(j, bi , zi−1) =























































7 if bi = 1∧ zi−1 = 4 (Recursion Base Block (4 poles))

zi−1 if bi = 1∧ zi−1 6= 4 (Recursion Base Block (zi−1 poles))

14 if bi > 1∧ j = 1 (Head Block)

14 if bi > 1∧ j = bi ∧ zi−1 mod 4= 0 (Tail Block (4 poles))

11 if bi > 1∧ j = bi ∧ zi−1 mod 4= 3 (Tail Block (3 poles))

7 if bi > 1∧ j = bi ∧ zi−1 mod 4= 2 (Tail Block (2 poles))

4 if bi > 1∧ j = bi ∧ zi−1 mod 4= 1 (Tail Block (1 pole))

19 else (Body Block)

(6.3)

Since we compare the 4-way split EUG construction with the 2-way split EUG construction,
we also provide a definition of f2(j, bi , zi−1) in Equation (6.4).

f2(j, bi , zi−1) =



































7 if bi = 1∧ zi−1 = 4 (Recursion Base Block (4 poles))

zi−1 if bi = 1∧ zi−1 6= 4 (Recursion Base Block (zi−1 poles))

4 if bi > 1∧ j = 1 (Head Block)

4 if bi > 1∧ j = bi ∧ zi−1 mod 2= 2 (Tail Block (2 poles))

2 if bi > 1∧ j = bi ∧ zi−1 mod 2= 1 (Tail Block (1 pole))

5 else (Body Block)

(6.4)

Having fk(j, bi , zi−1), we can provide a general formula for the size of a k-way split EUG
construction in Equation (6.5).

sizeEUG(k) =
t
∑

i=0
bi 6=0

ki
bi
∑

j=1

fk(j, bi , zi−1) (6.5)

Since bi = 0 for i > t, the sum terminates in any case. We compare the 2-way and 4-way split
EUG constructions with this formula. The results are shown in Figure 6.1.

We see that up to n = 40 000 there is only an insignificant difference between the 2-way
and 4-way split EUG constructions. The 4-way split EUG constructions has smaller sizes

38

6 Evaluation

for n> 40 000 (this point is marked with a green line in Figure 6.1). There is an exception in
the area of 90 000 < n < 130 000 in which the 2-way split EUG constructions has a better
size in some cases (this area is marked with red lines in Figure 6.1). However, from a certain
value n, the 4-way split EUG construction always yields better results since there are linear
terms which dominate the logarithmic function term when the logarithmic function is not yet
big enough.

The reason for the fact that in some areas the 2-way split performs better are the jumps, e.g.
at n = 130 000 for the 2-way split and at n = 85 000 for the 4-way split. These jumps are the
results when the number of recursion for the EUG constructions increases by 1. Lets assume
we have the maximum number of poles n where we have i recursions and the i-th recursion
chain consists of one block with 4 poles and if we increase n by 1, there occurs a fifth pole

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·105

0

1

2

3

4

5

6

7

8
·106

Numer of Poles

Si
ze

of
th

e
EU

G

2-way
4-way

Figure 6.1: Comparison between the 2-way and 4-way split EUG constructions with up to
200 000 poles

39

6 Evaluation

in the i-th recursion step. The EUG construction for n poles has 4i · 7 nodes only in the i-th
recursion steps (7 is the size of the 4 poles recursion block). If we construct an EUG for n+ 1
poles, the i-th recursion step contains of 5 poles, i.e. the chain contains of two blocks - one
head block of size 14 and one tail block of size 4. So, the i-th recursion steps contain now
in sum 4i · 18 nodes which is a giant jump for large i. If we compare an EUG having a tail
block with 3 poles in the main chain (i.e. the 0-th recursion step), then the one larger EUG
construction only exchanges this tail block of 3 poles (size 11) with a tail block of 4 poles
(size 14). So, in this case the size only grows by 3. The same applies for the 2-way split EUG
construction.

If the 4-way split EUG construction has such a scenario, the size grows significantly for big n -
it can even get larger than the 2-way split EUG construction. However, after such a jump the
4-way split EUG construction has a large break before another big jump occurs. Therefore,
the construction has much time to recover so that the 2-way split EUG construction grows
over it. So, our construction has a better size for most n values, and for big enough n it
always outperforms the 2-way split construction.

6.2 Size of the UC

In this section we provide the size of our UC construction.

The size for a UC is counted with the number of AND and XOR gates. An X switching block
can be implemented with 1 AND and 3 XOR gates, a Y switching block with 1 AND and 2
XOR gates and a UG with 3 AND and 6 XOR gates [KS16].

At first, we calculate our theoretical size of the k-way split UC with n poles using the formula
in Equation (6.5) from the previous section. However, we cannot distinguish between Y and
X switching blocks that way. Therefore, we only provide an upper bound for the number
of AND and XOR gates by only considering X switching blocks. The upper bound is given
in Equation (6.6). We notice that a UC consists of two EUG that only share the same poles
(see Section 3.2). Therefore, the size of the EUG has to be multiplied by 2. Since the number
of AND and XOR gates are different for UG and the X switching blocks, we have to count
them seperately. So, the first part of the equations in Equation (6.6) calculates the number of
AND and XOR gates for the X-switching blocks, while the second part of the equations counts
the number of AND and XOR gates for the UGs.

sizeAND(k, n) = (2 · sizeEUG(k)− 2 · n) + 3 · n= 2 · sizeEUG(k) + n

sizeXOR(k, n) = (2 · sizeEUG(k)− 2 · n) · 3+ 6 · n= 6 · sizeEUG(k)
(6.6)

We provide our upper bound for number of poles up to 200 000 in Figure 6.2.

As for the size of the EUG, the number of AND and XOR gates is for most n less for the
UC constructed with two 4-way split EUGs. However, we see that the difference between

40

6 Evaluation

the number of AND gates is very small even for large n, i.e. for a setting of PFE with free
XOR gates evaluation [KS08b] (e.g. with ABY [DSZ15]) the difference between the two
constructions is not significant for smaller n values.

6.2.1 Improvement for the UC Size

[KS16] use an improvement for their UC construction that decreases the UC size rapidly.
This optimization outperforms our 4-way split construction described in Chapter 4 for n
up to at least 200 000. However, we can also adapt this optimization for our UC construc-
tion.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

·105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
·107

Numer of Poles

N
um

be
r

of
G

at
es

2-way AND
4-way AND
2-way XOR
4-way XOR

Figure 6.2: Comparison number of AND and XOR gates between UC constructed with 2-way
and 4-way split EUG construction with up to 200 000 poles

41

6 Evaluation

Circuit u k v k∗ − k [KS16] 4-way split
AES-non-exp 256 31 924 128 14 539 2.875 · 106 2,866 · 106

AES-exp 1 536 25 765 128 11 089 2.303 · 106 2.333 · 106

DES-non-exp 128 19 464 64 12 290 1.876 · 106 1,860 · 106

DES-exp 832 19 526 64 11 785 1.876 · 106 1,883 · 106

md5 512 43 234 128 22 623 4.250 · 106 4,124 · 106

sha-1 512 61 466 160 33 132 6.334 · 106 6,213 · 106

sha-256 512 132 654 256 67 584 1.448 · 107 1.400 · 107

add_32 64 187 33 58 8 878 9 516
add_64 128 379 65 102 20 682 21 984

comp_32 64 150 1 1 4 846 5 478
mult_32x32 64 6 995 64 5 079 6.304 · 105 6,340 · 105

Branching_18 72 121 4 3 4 328 4 850
CreditChecking 25 50 1 6 1 264 1 477

MobileCode 80 64 16 0 3 132 3 410

Table 6.1: Comparison of the AND sizes between the UC implementation of [KS16] and ours
(the improved one) using circuits provided by [TS15]. We emphasize the best
values with bold numbers. The most part of this table are from [KS16, Table
3]. k∗ − k denotes the additional number of gates (see Step 1 in Section 5.1).

The optimization occurs at the tail block and the body block before the tail block. If the tail
block does not contain 4 poles, the number of input recursion points can be reduced to the
number of poles. So, the last two blocks of the chain can be modified so that the lowest
recursion points can be reduced to the number of poles within the tail block. This reduces
the size of the next recursion steps, too.

In the context of this work, we only implement the construction of this modified UC con-
struction so that we can compare the AND sizes with the implementation of [KS16]. The
edge-embedding for this improvement is not implemented so far and is left as future
work.

We now look at exact AND sizes for some example input graphs provided by [TS15]. Therefore,
we reuse parts of [KS16, Table 3] and add our results in Table 6.1.

We see that our UC implementation provides better results for large circuits while the im-
plementation of [KS16] is better for small circuits. This result is expected since Valiant’s UC
construction [Val76] is asymptotically optimal, i.e. the AND size of our UC implementation
is better for a circuit size greater than around 40 000, which also fits with our theoretical
AND sizes in Figure 6.1. Therefore, one should use our improved UC construction for large
circuits.

42

6 Evaluation

6.3 Future Work

We provide an implementation of Valiant’s 4-way split UC construction. However, while our
implementation fits a modular design for UC constructions, the size of the implementation
of [KS16] is better. We adapt their improvements to our UC construction and recognize that
this modified UC construction has better results. The implementation of the edge-embedding
is missing for this optimized construction. This task is not so difficult considering our edge-
embedding approach described in Section 4.2. One can modify our tail block constructions
and include new block which have 4 input recursion points but only 3, 2 and 1 output
recursion points.

[LMS16] calculate the number of k which minimizes the size of their k-way split EUG
construction. They calculated the value k ≈ 3.147 which is closer to 3 than to 4. Although
their understanding of k-way split EUG constructions differs, their block sizes provide an upper
bound for efficient k-way split EUG constructions. So, we think it could be more efficient to
create a 3-way split EUG construction. Therefore, an interesting future research direction is
to optimize head, tail and body blocks by hand and compare the resulting performance with
the existing constructions.

43

List of Figures

2.1 Switching Blocks . 6

3.1 (a) shows a Γ2(5) graph. (b) shows an EUG U5(Γ1) with 5 poles (p1, . . . , p5).
(c)-(d) show the splitted edge-embedding of graph (a) having two U5(Γ1)
instances. (e) shows the edge-embedding of graph (a) with one U5(Γ2) graph. 12

3.2 Valiant’s 2-way EUG [Val76] . 15

4.1 (a) shows Valiant’s 4-way split EUG construction [Val76]. (b)-(e) show our tail
block constructions for different number of poles (denoted in brackets). (f)
shows our head block construction. 19

5.1 Toolchain for UC and PFE of [KS16, Figure 6] . 29

6.1 Comparison between the 2-way and 4-way split EUG constructions with up to
200 000 poles . 39

6.2 Comparison number of AND and XOR gates between UC constructed with
2-way and 4-way split EUG construction with up to 200 000 poles 41

List of Tables

2.1 (a) - (d) show implementation tables of the most common G2 gates. 5

3.1 Implementation table of a UG . 10

6.1 Comparison of the AND sizes between the UC implementation of [KS16] and
ours (the improved one) using circuits provided by [TS15]. We emphasize the
best values with bold numbers. The most part of this table are from [KS16,
Table 3]. k∗−k denotes the additional number of gates (see Step 1 in Section 5.1). 42

44

Abbreviations

DFS Depth-First Search

EUG Edge-universal Graph

LUT Lookup Table

OT Oblivious Transfer

PFE Private Function Evaluation

SFE Secure Function Evaluation

SFDL Secure Function Definition Language

SHDL Secure Hardware Definition Language

UC Universal Circuit

UG Universal Gate

45

Bibliography

[ALSZ13] G. ASHAROV, Y. LINDELL, T. SCHNEIDER, M. ZOHNER. “More efficient oblivi-
ous transfer and extensions for faster secure computation”. In: 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS’13, Berlin,
Germany, November 4-8, 2013. 2013, pp. 535–548 (cit. on p. 7).

[Bea91] D. BEAVER. “Efficient Multiparty Protocols Using Circuit Randomization”.
In: Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11-15, 1991, Proceedings.
1991, pp. 420–432 (cit. on p. 8).

[BNP08] A. BEN-DAVID, N. NISAN, B. PINKAS. “FairplayMP: a system for secure multi-
party computation”. In: Proceedings of the 2008 ACM Conference on Computer
and Communications Security, CCS 2008, Alexandria, Virginia, USA, October
27-31, 2008. 2008, pp. 257–266 (cit. on p. 28).

[CLRS01] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, C. STEIN. Introduction to Algorithms.
2nd. Cambridge, MA, USA: MIT Press, 2001 (cit. on p. 35).

[DSZ15] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “ABY - A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation”. In: 22nd Annual Network
and Distributed System Security Symposium, NDSS 2015, San Diego, California,
USA, February 8-11, 2015. 2015 (cit. on pp. 28, 31, 41).

[FAZ05] K. B. FRIKKEN, M. J. ATALLAH, C. ZHANG. “Privacy-preserving credit checking”.
In: Proceedings 6th ACM Conference on Electronic Commerce (EC-2005), Vancouver,
BC, Canada, June 5-8, 2005. 2005, pp. 147–154 (cit. on p. 1).

[FVK+15] B. A. FISCH, B. VO, F. KRELL, A. KUMARASUBRAMANIAN, V. KOLESNIKOV, T. MALKIN,
S. M. BELLOVIN. “Malicious-Client Security in Blind Seer: A Scalable Private
DBMS”. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015. 2015, pp. 395–410 (cit. on p. 2).

[GGPR13] R. GENNARO, C. GENTRY, B. PARNO, M. RAYKOVA. “Quadratic Span Programs
and Succinct NIZKs without PCPs”. In: Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings. 2013,
pp. 626–645 (cit. on p. 2).

46

Bibliography

[GMW87] O. GOLDREICH, S. MICALI, A. WIGDERSON. “How to play any mental game or a
completeness theorem for protocols with honest majority”. In: Proceedings
of the nineteenth annual ACM symposium on Theory of computing. ACM. 1987,
pp. 218–229 (cit. on pp. 1, 6–9).

[IKNP03] Y. ISHAI, J. KILIAN, K. NISSIM, E. PETRANK. “Extending Oblivious Transfers
Efficiently”. In: Advances in Cryptology - CRYPTO 2003, 23rd Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 17-21,
2003, Proceedings. 2003, pp. 145–161 (cit. on p. 7).

[KOS15] M. KELLER, E. ORSINI, P. SCHOLL. “Actively Secure OT Extension with Optimal
Overhead”. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I.
2015, pp. 724–741 (cit. on p. 7).

[KS08a] V. KOLESNIKOV, T. SCHNEIDER. “A Practical Universal Circuit Construction
and Secure Evaluation of Private Functions”. In: Financial Cryptography and
Data Security, 12th International Conference, FC 2008, Cozumel, Mexico, January
28-31, 2008, Revised Selected Papers. 2008, pp. 83–97 (cit. on pp. 2, 7, 9, 14,
16 sq., 28 sq.).

[KS08b] V. KOLESNIKOV, T. SCHNEIDER. “Improved Garbled Circuit: Free XOR Gates
and Applications”. In: Automata, Languages and Programming, 35th Interna-
tional Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings,
Part II - Track B: Logic, Semantics, and Theory of Programming & Track C: Security
and Cryptography Foundations. 2008, pp. 486–498 (cit. on pp. 6 sqq., 16, 26,
31, 41).

[KS16] Á. KISS, T. SCHNEIDER. “Valiant’s Universal Circuit is Practical”. In: Advances
in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part I. Full version: Eprint 2016/093 at eprint.iacr.org/
2016/093.pdf. 2016, pp. 699–728 (cit. on pp. 1 sqq., 5 sqq., 13 sq., 17 sq.,
20–24, 27–32, 40–43).

[LMS16] H. LIPMAA, P. MOHASSEL, S. S. SADEGHIAN. “Valiant’s Universal Circuit: Im-
provements, Implementation, and Applications.” In: IACR Cryptology ePrint
Archive 2016 (2016), p. 17 (cit. on pp. 1 sq., 9, 13 sq., 16, 18, 26, 30, 37, 43).

[LP09] L. LOVÁSZ, M. D. PLUMMER. Matching theory. Vol. 367. American Mathematical
Soc., 2009 (cit. on p. 22).

[MNP+04] D. MALKHI, N. NISAN, B. PINKAS, Y. SELLA. “Fairplay-Secure Two-Party Com-
putation System.” In: USENIX Security Symposium. Vol. 4. San Diego, CA, USA.
2004, pp. 287–302 (cit. on p. 28).

47

eprint.iacr.org/2016/093.pdf
eprint.iacr.org/2016/093.pdf

Bibliography

[MS13] P. MOHASSEL, S. S. SADEGHIAN. “How to Hide Circuits in MPC an Efficient
Framework for Private Function Evaluation”. In: Advances in Cryptology -
EUROCRYPT 2013, 32nd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Pro-
ceedings. 2013, pp. 557–574 (cit. on p. 2).

[MSS14] P. MOHASSEL, S. S. SADEGHIAN, N. P. SMART. “Actively Secure Private Function
Evaluation”. In: Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II. 2014,
pp. 486–505 (cit. on p. 2).

[PKV+14] V. PAPPAS, F. KRELL, B. VO, V. KOLESNIKOV, T. MALKIN, S. G. CHOI, W. GEORGE,
A. D. KEROMYTIS, S. BELLOVIN. “Blind Seer: A Scalable Private DBMS”. In:
2014 IEEE Symposium on Security and Privacy, SP 2014, Berkeley, CA, USA, May
18-21, 2014. 2014, pp. 359–374 (cit. on p. 2).

[Sch08] T. SCHNEIDER. “Practical Secure Function Evaluation”. In: Informatiktage
2008. Fachwissenschaftlicher Informatik-Kongress, 14. und 15. März 2008, B-IT
Bonn-Aachen International Center for Information Technology in Bonn. 2008,
pp. 37–40 (cit. on p. 4).

[Sha49] C. E. SHANNON. “The synthesis of two-terminal switching circuits”. In: Bell
Systems Technical Journal 28 (1949), pp. 59–98 (cit. on p. 4).

[TS15] S. TILLICH, N. SMART. Circuits of basic functions suitable for MPC and FHE. 2015
(cit. on p. 42).

[Val76] L. G. VALIANT. “Universal Circuits (Preliminary Report)”. In: Proceedings
of the 8th Annual ACM Symposium on Theory of Computing, May 3-5, 1976,
Hershey, Pennsylvania, USA. Ed. by Ashok K. Chandra, Detlef Wotschke, Emily P.
Friedman, and Michael A. Harrison. ACM, 1976, pp. 196–203. URL: http:
//doi.acm.org/10.1145/800113.803649 (cit. on pp. 1 sq., 4 sq., 9 sqq.,
14 sq., 17–20, 22–26, 28 sqq., 32 sq., 42).

[Weg87] I. WEGENER. The complexity of Boolean functions. Wiley-Teubner, 1987 (cit. on
pp. 1, 14).

[Yao82] A. C. YAO. “Protocols for Secure Computations (Extended Abstract)”. In:
23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois,
USA, 3-5 November 1982. 1982, pp. 160–164 (cit. on pp. 1, 6 sq.).

[Yao86] A. C. YAO. “How to Generate and Exchange Secrets (Extended Abstract)”.
In: 27th Annual Symposium on Foundations of Computer Science, Toronto, Canada,
27-29 October 1986. IEEE Computer Society, 1986, pp. 162–167 (cit. on pp. 1,
6 sq., 9).

48

http://doi.acm.org/10.1145/800113.803649
http://doi.acm.org/10.1145/800113.803649

	Introduction
	Contributions
	Outline

	Preliminaries
	Gates and Circuits
	Graph Theory
	Blocks
	Methods for SFE
	Oblivious Transfer
	Yao's Garbled Circuit Protocol
	GMW Protocol

	Universal Circuit Constructions
	Basic Concepts
	Universal Gates and Circuits
	Edge-Universal Graphs

	Valiant's Universal Circuit
	Overview
	Valiant's EUG Constructions

	A Modular Universal Circuit Construction
	Hybrid Constructions

	Making Valiant's EUG Construction Modular
	Valiant's 4-way Split EUG Construction
	Edge-Embedding
	Block Edge-Embedding
	Recursion Point Edge-Embedding
	Combining both Edge-Embedding Parts
	Edge-Embedding for k-way Split EUG Constructions

	Implementation
	C++ UC Compiler
	Universal Circuit Module
	Methods for Block Edge-Embedding
	Topological Ordering

	Evaluation
	Size of k-way EUG
	Size of the UC
	Improvement for the UC Size

	Future Work

	Abbreviations
	Bibliography

