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Abstract

The cryptographic primitive Secure Function Evaluation (SFE) enables the evaluation of a
function public function f (x , y), under input parameters that are provided by different parties
without them revealing their specific value. Restricting SFE further by requiring the function
to be only known by one party is called Private Function Evaluation (PFE). Furthermore
Semi-Private Function Evaluation (SPF-SFE) can help to increase the maximum function size
which can be evaluated in a somewhat private manner. One way to achieve SPF-SFE is to split
the function into blocks, as was shown in [PSS09]. However their implementation was crafted
specifically for Yao’s garbled Circuit protocol. Therefore there are protocols, namely Goldreich-
Micali-Wigderson (GMW), by which it could not be evaluated.

We provide circuit designs for different Privately Programmable Blocks, which are constructed
to work with the GMW protocol as well. Additionally we provide a toolchain to achieve
SPF-SFE efficiently. Furthermore we implemented a tool used in the toolchain, which uses the
aforementioned designs and can combine them with plain circuits and Universal Circuits (UCs)
to build a single programmable circuit. A function designer can use the toolchain to balance
out his needs for function privacy with performance.
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1 Introduction

Secure Function Evaluation (SFE) is a cryptographic primitive that allows for a function
f (x , y) to be evaluated by two parties Alice and Bob. However there is the condition that only
Alice knows x and only Bob knows y and neither is comfortable with revealing their value.
One such situation in which SFE might be applied is that Alice and Bob want to meet each
other in a given week. And since both are rather occupied they want to minimize travel time
and because they are reasonably concerned about their privacy they want to avoid sharing
their respective locations throughout the week. Therefore they need to evaluate a function
which determines their optimal meeting place and time through an SFE protocol and their
requirements will be met. Another, more theoretical example is the millionaire’s problem as
described in [Yao82a]. Here two millionaires want to compare their wealth without disclosing
it to each other.

Private Function Evaluation (PFE) goes one step further and requires the function f to be
private as well. However this condition also allows to simplify the function to be evaluated
as f (x) since the second input parameter can be hardcoded into the function itself. One
example where PFE could be applied is a web based image manipulation service for privacy
conscious users, that developed some proprietary filter. In this case the private function is
the filter and the private input is the image.

However when the complexity of f increases the protocols that implement PFE get infeasible.
Trading function privacy against evaluation performance is one way to diminish this effect
and allow for more complex functions to be evaluated in a somewhat private manner. This
concept is known as Semi-Private Function Evaluation (SPF-SFE), some aspects about the
function do not necessarily have to be hidden, since an attacker would simply infer the
information from the domain. For example in the web based image manipulation service
mentioned above, an image filter is usually applied to every pixel in the image and takes
the values of the surrounding pixels into consideration. A party trying to reconstruct the
proprietary algorithm would most likely assume this fact even if the whole function is kept
private. Therefore if the completely private function can not be evaluated, because of its
size, and the less private version is small enough to be evaluated SPF-SFE is reasonable
solution.

A very specialized version of SPF-SFE was used in [PKV+14]. They proposed a relational
data base system which allows a user to issue queries whilst revealing the general struc-
ture of the query but keeping the values, tables and columns hidden. Furthermore it still
allows the data base owner to restrict access to tables and columns on a user by user ba-
sis.
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1 Introduction

1.1 Contributions

In total there are three main contributions we made. The first of which is designing and
implementing the pipeline of different tools which can be used to enable the easy design
and efficient evaluation of semi private functions. We detail the design of this toolchain in
Section 4.1. In this pipeline we use two existing tools, one to translate a function into a
circuit, which we mention in Section 2.3. The second tool compiles a circuit definition into a
Universal Circuit (UC) and we refer to it in Section 2.3.1.

Further we designed three Programmable Blocks which can be used in a semi private circuit.
Namely one block which encapsulates the boolean operators AN D, OR, XOR, NAN D, NOR
and X NOR. The second block we designed is one, which can either be used as a <, >, =, ≤
or a ≥ comparison. And the final block can either compute an addition or a subtraction. We
describe each of them in detail in Section 4.2.

Our final contribution is a tool which translates a high level circuit design, containing Pro-
grammable Blocks, UCs and plain circuits into one circuit. We detail the implementation of
the tool in Section 5.1.

1.2 Outline

In the following in Chapter 2, we provide the necessary preliminaries for later sections, such
as a short definition for Boolean circuits in Section 2.1, a overview on SFE in Section 2.2,
and its extension PFE in Section 2.3.

Furthermore in Chapter 3.1, we introduce SPF-SFE by highlighting the concept of a Privately
Programmable Block in Section 3.1 and discussing a framework in which it was implemented
in Section 3.2.

Then we present the design of our two contribution in Chapter 4, namely a pipeline for
SPF-SFE in 4.1 and the circuits we used for the Privately Programmable Blocks in Sec-
tion 4.2.

Next in Chapter 5 we discuss the implementation of our tool for Generalizing SPF-SFE in
Section 5.1 and the testing it underwent in Section 5.2.

And in Chapter 6 we present one example for the use of our aforementioned tool in multiple
configurations, namely using a circuit constructed purely from Privately Programmable Blocks
in Section 6.1, a plain circuit in Section 6.2, a combination of Privately Programmable
Blocks with a plain circuit in Section 6.3, a UC in Section 6.4 and a combination of Privately
Programmable Blocks and one UC in Section 6.5.

Finally we conclude in Chapter 7.
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2 Preliminaries

In this chapter we describe the basic concepts used in the design and implementation of our
tool for generalising SPF-SFE. First we introduce Boolean Circuits in Section 2.1, secondly
we describe the concept of SFE in Section 2.2. We mention two protocols that can be used for
SFE, first of which is Yao’s Garbled Circuit Protocol in Section 2.2.2 and second of which is
the GMW Protocol in Section 2.2.3. In Section 2.3 we discuss PFE and one method to achieve
it, namely UCs in Section 2.3.1.

2.1 Boolean Circuits

A given function f : 0, 1n→ 0,1m can be represented as a Boolean circuit with n input wires,
m output wires and a number of gates k. Whereas a gate is a simple Boolean function with
two inputs and one output. A gate can be defined through a truth table, listing the output for
every combination of input values. For two input wires and one output wire the table has four
entries. If for every truth table there is a combination of gates so that its evaluation result is
equivalent to the truth table, the set of gates is called functional complete. The functional
complete set of gates we will focus on is {XOR, AN D}. Figure 2.1 depicts a XOR gate and
Figure 2.2 represents an AN D gate.

Figure 2.1: A single XOR gate Figure 2.2: A single AN D gate

2.2 Secure Function Evaluation

SFE is a cryptographic primitive which allows to solve the problems similar to the following
situation. Two parties want to evaluate a function f (x , y) on their private inputs, under the
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2 Preliminaries

added condition that each party only has information about its own input and no trusted
third party is to be used.

For example we take Alice and Bob, who want to arrange a meeting. Obviously both know
their own schedule and would greatly prefer not to reveal their entire schedule. Therefore SFE
can be used to calculate the set intersection between the timeslots in which they respectively
are available. There exist interactive protocols, such as Yao’s Garbled Circuit Protocol or
the GMW protocol, that work on a Boolean circuit representation of the function which are
used to solve SFE. We discuss Yao’s Garbled Circuit Protocol in Section 2.2.2 and GMW in
Section 2.2.3. One of the primitives used in the two protocols is Oblivious Transfer (OT),
which we describe in Section 2.2.1.

2.2.1 Oblivious Transfer

In a 1-out-of-n OT protocol there are two parties, the sender and the receiver. The sender
has n messages and the reciever knows the index of the message he should recieve. The goal
however is for the messages not selected by the receiver to remain hidden. OT can be executed
very efficiently due to the OT extensions from [IKNP03; ALSZ13].

2.2.2 Yao’s Garbled Circuit Protocol

In Yao’s garbled circuit protocol [Yao86; Yao82b] there are two parties involved. One is called
the function provider and the other one is the function evaluator. The function provider knows
the circuit representation of the function and his own input. The function evaluator only knows
his input. For every gate in the circuit the function provider creates an encrypted truth table by
assigning seemingly random values for the possible input and output values. Those encrypted
truth tables and the encrypted input values from the function provider are transferred to
the function evaluator, who uses 1-out-of-2 OT, which is described in Section 2.2.1, to get
the encrypted values corresponding to its input. The function evaluator now evaluates the
encrypted gates with the encrypted values. When the evaluation is finished the function
provider reveals the plain value corresponding to the encrypted output.

Furthermore there are several optimizations for this protocol. For example in [KS08a] a
method was proposed which allows to evaluate XOR gates without communication between
the function evaluator and the function provider.

2.2.3 GMW Protocol

Another protocol for SFE is the GMW protocol [GMW87], which is based on secret sharing. In
contrast to Yao’s protocol it only allows for AN D gates and XOR gates. Every input and output
per gate is secret shared between the two parties. Therefore each party i has a seemingly
random value vi where v = v0 ⊕ v1.
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XOR gates can be evaluated as follows. The secret shared output z of the XOR gate has to fulfill
(z0⊕z1) = (x0⊕x1)⊕(y0⊕y1). Which is equivalent to (z0⊕z1) = (x0⊕y0)⊕(x1⊕y1). Therefore
both parties can evaluate the XOR gate locally without communication by calculating zi =
x i ⊕ yi .

There are two methods for the evaluation of AN D gates. The first of which is based on OT,
the second of which utilizes so-called Multiplication Triples.

The OT based method works as follows. The inputs x and y are each secret shared as described
above. Party 0 and party 1 use a 1-out-of-4-OT protocol, as described in Section 2.2.1, to
calculate their respective secret shared part of the result. Where party 0 acts the the receiver
in the OT protocol and party 1 acts as the sender in the OT protocol. Party 1 chooses a
random value as its part of the result z1 and provides four inputs to party 1 via OT. Whereby
party 0 receives his part z0 = z1 ⊕ ((x0 ⊕ x1)⊕ (y0 ⊕ y1)).

The Multiplication Triple based method works as follows. When 3 values a, b, and c satisfy
c = a ⊕ b they are called a Multiplication Triple. When all those values are secret shared
between both parties, which can be achieved via OT, they can be used to calculate the
secret shares for the AN D gate output. Both parties calculate di = x i ⊕ a1 and ei = yi ⊕ bi
and exchange the results plainly, which enables them to calculate d = d0 ⊕ d1 and e =
e0 ⊕ e1. With d and e calculated they can calculate their respective part of the result as
follows:

z0 = (d ⊕ e)⊕ (b0 ⊕ d)⊕ (a0 ⊕ e)⊕ c0 (2.1)

z1 = (b1 ⊕ d)⊕ (a1 ⊕ e)⊕ c1. (2.2)

2.3 Private Function Evaluation

In the example mentioned in Section 2.2 the function was allowed to be public knowledge.
However not every situation warrants this condition. PFE allows to evaluate a secret function
on a secret input. The specific methods for PFE have a major drawback, as they become
impractical for more complex functions. In Section 2.3.1 we give an overview of one method
for PFE, namely UCs.

2.3.1 Universal Circuits

The idea behind UCs is that given a specific circuit, a programmable circuit can be constructed
that can evaluate any circuit of the same size, by assigning values to the programming bits.
Since the UC does not leak information about the specific function that is to be evaluated it
can be shared between both parties. The private evaluation of the function can then be seen
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2 Preliminaries

as an application of a circuit based SFE protocol where the circuit is the UC and one parties’
input is the programming bits that define circuit C .

One construction scheme was proposed in [KS08b] and is implemented in the Fairplay
extension FairplayPF. For a circuit of size n it increases the circuit size in the order of O(n ∗
log2 n). A different and better scaling design was proposed in [KS16; Val76] and was
implemented the framework detailed in [KS16]. In the circuit size it scales in the order of
O(n ∗ log n).
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3 Semi-Private Function Evaluation

One approach to improve the scaling in the function size mentioned in Section 2.3.1 is to
split the function into parts which absolutely have to be private and parts where secrecy is
less of a concern or none at all. Those techniques are called SPF-SFE. It allows to make a
fine-grained trade-off between the privacy of the function and the evaluation performance as
shown in [PSS09].

If the use case of the function reveals some internals of the function and the performance is of
importance there is little reason to hide that specific part. For example in a credit checking al-
gorithm it is expected that the age of the person requesting the credit is compared to some con-
stant. In Section 3.1 and 3.2 we describe the contributions from [PSS09].

3.1 Privately Programmable Blocks

The concept of a Privatlely Programmble Block (PPB) was proposed in [PSS09]. Generally
a block is a boolean function and can be represented as a circuit. Therefore a PPB is a
boolean function which depending on one of the inputs behaves equal to one function from
a set of functions. The private part is achieved through the protocol by which the circuit
is evaluated. For every PPB b ∈ B where B : {0,1}log2 |F | × {0,1}n → {0,1}m there is a set
F of functions and for every f ∈ F where F : {0,1}n → {0,1}m there is a programming p
so that ∀x ∈ {0,1}n : b(p, x) = f (x). For example F can be the set of comparisons like
{<,>,=}.

The PPB has a privacy of log2 |F | bits, since it can, depending on an input, evaluate equal
to every function in F and the set of functions is revealed whereas the input is kept pri-
vate.

A UC, as introduced in Section 2.3.1, can be viewed as the most generic version of such a
PPB. Therefore it is only natural when constructing an entire function to be able to use UCs
and PPBs alongside one another to hide what is required to be hidden and to reveal what is
assumed to be known.

[PSS09] includes implementations for the following PPBs:

1. A comparison block which encompasses {<,>=,≤,≥, 6=},

2. An addition and subtraction block, which is comprised of the respective functions,
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3 Semi-Private Function Evaluation

3. A boolean block, which can evaluate equal to either AN D, XOR, OR, NAN D, NOR and
X NOR,

4. A permutation block, which takes n input wires m of those input wires are forwarded
as output wires, however the order of the outputs depends on an programming input
parameter,

5. A selection block, takes n input wires and, dependent on a programming input paramter
outputs one of the input wires,

6. A Y-multiplexer, which is a special case of the selection block, which takes exactly two
input wires,

7. An X-switch, which is a special case of the permutation block, it has two input and two
output wires and either inverses the order or keeps it as it is,

8. A UC, which was constructed according to the scheme from [KS08b] and therefore has
a size of O(n log2 n).

However next to the PPBs they implement multiplication as a non programmable block.

The PPBs are constructed as circuits. Therefore they can be evaluated with circuit based
SFE algorithms, for example Yao’s Garbled Circuit Protocol, as described in Section 2.2.2.
However since the function is not entirely private using a SFE algorithm to evaluate a circuit
containing PPBs leads to SPF-SFE.

3.2 FairplaySPF Framework

In [PSS09] they implement SPF-SFE based on the PPBs and UCs, according to the construction
from [KS08b] in a framework called FairplaySPF. To describe the function and its partitioning
into blocks they proposed a description language called SPBDL. Every line in SPBDL either
specifies a set of input wires which together represent an input value, a multi-wire which
they call vector and condenses multiple wire sets into a single wire set, a block as described
in Section 3.1 or a set of output wires.

The file begins with an input specification, which consists of a number of lines, each estab-
lishing their index and their bitsize. After that each line defines a block and which blocks or
inputs serve as its input. And the final lines each indicate a block index which is used as an
output.

This SPBDL circuit description can be interpreted by FairplaySPF compiler to generate an
SHDL circuit specification which in turn can be evaluated by the FairplaySPF runtime environ-
ment. FairplaySPF uses Yao’s Garbled Circuit Protocol to evaluate a circuit on private inputs.
Yao’s Garbled Circuit Protocol allows arbitrary function tables for every gate, therefore the
Programmable Block constructions from [PSS09] make use of those arbitrary function tables
to minimize the size of the circuit. However the Goldreich-Micali-Wigderson (GMW) Protocol
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does not offer this freedom which means their constructions can not be used in GMW without
further transformations.

Therefore we generalize the PPB construction as shown in Section 4.2 to only use gates which
are supported by GMW, namely XOR and AN D gates.
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4 Design

In this chapter we first discuss the pipeline for SPF-SFE we designed in Section 4.1. And second
we present the circuits for the Privately Programmable Blocks in Section 4.2.

4.1 Semi-Private Function Evaluation Pipeline

To evaluate a given function in a semi-private manner we use multiple different tools in
conjunction. First there needs to be a tool, which translates a given function into a circuit
representation. Second we use a tool to compile a plain circuit, such as the one provided by

Figure 4.1: Semi-Private Function Evaluation Pipeline
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4 Design

the first tool, into a UC. And third we combine plain circuits, UCs and the Programmable
Blocks that are defined in Section 3.1 and designed in Section 4.2.

The Fairplay framework was proposed in [MNPS04] and was improved in [FairplayImprevement
], it includes tools to compile a function into a circuit description and to evaluate those circuits
privately. It was extended in [KS08b] which, importantly for us changes the circuit compiler
to only use gates with two input wires. Furthermore the extension allows to build UCs
according to the construction from [KS16]. The extended framework is called FairplayPF, and
we use its function to circuit compiler.

The circuit from the FairplayPF compiler then can either be translated into a UC with the tool
that implements the state-of-the-art UC construction from [Val76; KS16], or it can directly
be used in the combined circuit. The third tool in the chain is described in Section 5.1, it
generates the generalized Privately Programmable Blocks and handles the combination of
different blocks. It writes two separate files, one containing the circuit and one containing
the corresponding programming.

The complete toolchain is depicted in Figure 4.1. There are m functions, all of them are
compiled with the FairplayPF compiler. n≤ m of the circuits are used as plain circuits, which is
visualized on the left side of Figure 4.1 and the remaining m− n circuits are further compiled
by the UC Compiler from [KS08b], which is represented on the right side of Figure 4.1.
Furthermore there are k Privately Programmable Blocks, depicted in the middle of Figure 4.1.
The plain circuits, the Privately Programmable Blocks, the UCs and the programming for both
the Privately Programmable Blocks and the UCs pn, . . . , pm+k are combined by hand using a
high level block description, which is detailed in Section 5.1.1. The Combiner then takes this
description as an input and produces one circuit C and the corresponding programming p′

automatically.

In the end we use the ABY secure computation framework from [DSZ15] with state-of-the-art
optimizations to, under Alice’s input x , evaluate C(p′, x).

4.2 Generalized Privately Programmable Blocks

In this section we discuss the design of the three Programmable Blocks implemented in our
tool. We describe the Boolean Operator block in Section 4.2.1, the Addition and Subtrac-
tion block in Section 4.2.2 and the Comparison block in Section 4.2.3. We require every
circuit to only contain AN D and XOR gates. For every block the goal is to first and fore-
most minimize the amount of AN D gates in the circuit and to a lesser degree minimize the
amount of XOR gates. The correctness of every block was thoroughly tested as described in
Section 5.2.2.

12



Figure 4.2: Boolean Opera-
tor Circuit Figure 4.3: ∧/∨ Circuit

Figure 4.4: Y multiplexer
Circuit

4.2.1 Boolean Operator

The Boolean Operator block evaluation depends on the three input bits and evaluates de-
pendently either equivalent to an AN D, OR, XOR, NAN D, NOR or X NOR gate. The general
structure of the block is depicted in Figure 4.2.

The concept behind the ∧/∨ circuit, which is represented in Figure 4.3, is De Morgan’s law
¬(x ∨ y) = ¬x ∧ ¬y, which equals x ∨ y = ¬(¬x ∧ ¬y). The negations are implemented
as XOR gates, taking the input to be negated and TRU E as inputs. However there is no
constant input in the circuit, to make it programmable the programming bit is used instead
of the constant TRU E in the negation. Therefore this part switches between AN D and OR
depending on the input p0.

∧/∨ (x , y, TRU E) = x ∨ y, (4.1)

∧/∨ (x , y, FALSE) = x ∧ y. (4.2)

The Y-multiplexer follows the construction shown in [KS08b; KS08c] and is shown in Fig-
ure 4.4. If p1 = TRU E the result of the Y-multiplexer is the result from the XOR evaluation
and if p1 = FALSE the result of the Y-multiplexer is the result from the AN D/OR evalua-
tion.

The last XOR represents a conditional negation of the result of the Y-multiplexer. If p2 = TRU E
the former result is negated, otherwise it remains the same.
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4 Design

4.2.2 Addition/Subtraction

The programming bit p must switch the functionality of the Addition/Subtraction block
between an addition and a subtraction. Given a number of input bits n, the number of output
bits m= n+ 1, to avoid over and underflow errors.

The block consists of n one bit addition circuits, one circuit to calculate the most significant
result bit and a conditional negation of the entire second operand. The structure is depicted
in Figure 4.5. Every one bit addition circuit has 3 input wires and 2 output wires. Each of
the input wires represent either one bit of the first operand x i, one conditionally negated
bit of the second operand yi and the carry output of the previous one bit addition circuit
ci−1, whereas c−1 = p. Per one bit addition circuit one of the output wires represent one
output bit of the entire block zi and the other one is the carry output ci . The aforementioned
conditional negation is a XOR gate which takes one bit of the second operand yi and the
programming bit p as inputs.

The most significant output bit, which serves as an over and underflow protection, depends
on the last two carry bits cn−1 and cn−2 and the highest result bit zn−1. It is calculated by
zn = cn−1 ⊕ cn−2 ⊕ zn−1.

Figure 4.5: Addition or Subtraction Circuit
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Figure 4.6: Addition Circuit

Every addition circuit calculates a 3 bit XOR, the result of which is is one bit of the result
number. Additionally each addition circuit also calculates the next carry bit, the structure of
the circuit is illustrated in Figure 4.6, which is taken from [BPP00].

The input numbers x and y are expected to be represented as 2-complements. Under
this representation multiplying a number by −1 is realized as follows: y ∗ −1 = (¬y) + 1.
Programming this block is conceptually realized by either calculating z = x+ y or z = x+−1∗ y
which is equal to z = x + (¬y) + 1. The bitwise not of the second operand y is realized with
y ⊕ p in front of every addition and the plus one is realized by using p as the carry input of
the first addition. Therefore if p = TRU E the block subtracts y from x and if p = FALSE it
adds x to y .

4.2.3 Comparison

The Comparison block must, depending on the programming and given both inputs x and y ,
either calculate x < y, x ≤ y, x = y, x > y or x ≥ y. The circuit used for the comparison
is depicted in Figure 4.7. If the circuit in front of the final, on p2 dependent, conditional
negation is either the result of x < y , x > y or x = y all comparison operators are realized.
From a high level perspective the block consists of one circuit which checks for equality, one
circuit which calculates, depending on the first programming bit p0, either x > y or x ≤ y
and logic to combine those results and is depicted in Figure 4.7. The result of the greater/less
or equal circuit is combined with the negated result of the equal circuit by an AN D, which
leads to it calculating either x < y or x > y . The Y-multiplexer chooses, depending on p1 if
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Figure 4.7: Comparison Circuit

either the result of the equal check or the less/greater check is used for the final conditional
negation.

The sign of the result of x − y shows if x is greater then y. Therefore if the most sig-
nificant result bit is TRU E, x is less or equal to y otherwise x is greater y. To make
that programmable between x > y and x ≤ y the result is combined with p0 by a XOR
gate.

Two numbers are equal if all bits are equal. Therefore for all 0 <= i < n we calculate
(x i ⊕ yi)⊕ TRU E and combine the results of the individual equal checks in a chain of AN D
gates which is depicted in Figure 4.8.
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Figure 4.8: Equality Check Circuit
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5 Implementation

In this chapter we provide details on the implementation of the tool for generalizing Semi-
Private Function Evaluation and how both the implementation and the circuit design was
implemented and tested. More specifically in Section 4.1 we describe about the tools we
used to accomplish SPF-SFE and in Section 5.1 we provide an overview on the implementa-
tion of our Tool for generalizing Semi-Private Function Evaluation and the Programmable
Blocks. Finally in Section 5.2 we describe how both, the tool and the circuits were tested for
correctness.

For translating a function to a circuit we use the FairplayPF compiler, which was mentioned
in Section 4.1. It creates a circuit which then can either be translated into a UC with the tool
from [KS16], or it can directly be used in the combined circuit. The third tool in the chain is
described in Section 5.1.

5.1 Tool for Generalizing Semi-Private Function Evaluation

In this section we first describe the input and output format of the tool in Section 5.1.1 and
Section 5.1.2. Secondly in Section 5.1.3 we present how we convert a number of connected
blocks into a circuit Furthermore we detail the general implementation of the programmable
blocks in Section 5.1.4. Implementation details on the way UCs and plain circuits are handled
are in Section 5.1.5 and Section 5.1.6 respectively.

5.1.1 Input Format

The definition of the combined circuit follows the SPBDL format, which was proposed
in [PSS09] and which we slightly modified. The file format differs from the original in
that we only UCs, Privately Programmable Blocks and plain circuits. It allows to specify a
number of input values and their respective bit size, which defaults to 1. Following the input
definition comes the high level circuit combination, which allows to specify blocks and the
wiring between them. Whereas a block can either be a Programmable Block, as described in
Section 4.2, their respective counterparts with a constant value for the second operand, a UC
or a plain circuit. The output wires are then specified in the final lines.
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The specification of a Programmable Block follow the pattern:

< blockindex > [< blockidenti f ier >] out < output bi t leng th> in [< f irstoperandindex >

< secondoperandindex >] p [< programmingidenti f ier >] (5.1)

For every Programmable Block there is a second version, which has the same circuit, but takes
a constant as the second input parameter y . It follows the pattern:

< blockindex > [< blockidenti f ier > c] out < output bi t leng th> in

[< operandindex >] p [< programmingidenti f ier >< constant >] (5.2)

UCs and plain circuits follow the same pattern, which is as follows:

< blockindex > [< identi f ier >] out < output bi t leng th> in [< operandindex >] p

[< numbero f gates >< pathtocirci t f ile >] (5.3)

We note, that the value for the number of gates does not affect the compilation as long as it
does not contain whitespaces. This format limits UCs and plain circuits to only take one input
parameter. To remedy that fact there is a vector block, which takes any number of inputs and
concatenates them to a single output.

5.1.2 Output Format

When the tool for generalizing Semi-Private Function Evaluation is executed it produces two
files as output. The first of which is the combined circuit and the second of which contains
the programming for the used UCs and the used Privately Programmable Blocks. The first
line of the circuit file contains a list of wire indices that represent the input values. After that
there are a number of lines, marked with a P as the first character. Those lines represent the
programming wires for the Programmable Blocks. Each of them contain only a wire index
the corresponding value is in the programming file.

To differentiate between wire indices and values, values are a encoded as negative numbers,
wheres FALSE = −2 and TRU E = −3. When all programming wires are defined, the next
lines each represent a gate in the following pattern:

< gatet ype >< f irst inputwireindex >< secondwireindex >< outputwireindices > (5.4)

Depending on the gate type there are either one or two output wire indices. AN D, XOR, Y
and U gates have one output wire and only X gates have two output wires. The third to last
line represents the wire indices which are used as the output of the entire circuit. After that
there are some statistics containing the number of AN D and XOR gates used in the circuit.
The non-XOR and non-AN D gates each are an abbreviation for a combination of XOR and
AN D gates. A Y gate is implemented as two XOR and one AN D gate, a U gate is implemented
as six XOR and three AN D gates and a X gate is implemented as three XOR and one AN D
gate as mentioned in [KS16].
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The programming file contains all the programming values. There are two different line
patterns used throughout the file. If the line contains only one number it represents a program-
ming value for a UC. However if there are two numbers, the first represents the value and the
second the index of the wire which the value is supposed to be used for.

5.1.3 Converting Blocks into a Circuit

Given the high level circuit specification, the SPBDLParser reads the lines one by one and
constructs a list of GenericBlocks by identifying the type of the specified block. The parser
returns the blocks and a list of indices, which specifies which blocks produce the output of
the entire circuit.

The aformentioned GenericBlock is the base class of every block. It provides the interface
which is used in the CircuitBuilder to combine the circuits for every block into a unified cir-
cuit. The two most noteworthy methods are GenericBlock :: length and GenericBlock
:: gatesWithOffset. GenericBlock :: length returns the number of wires used in
the sub circuit. And GenericBlock :: gatesWithOffset produces the list of gates which
the subcircuit consists of. The returned list however depends on the offset and the input
wire indices. However in case of the programmable blocks, the method GenericBlock ::
setProgrammingWires must have been called before to ensure that the block knows which
indices to use in place of the programming wires. The method adds the offset (the number of
wires, already used in the circuit) to every new wire it introduces to the circuit and uses the in-
put and programming wire indices at their respective positions in the subcircuit. It as well has
the side effect, that it saves the output wire indices of the subcircuit.

The CircuitBuilder traverses the blocks three times. In the first traversal it gathers the
input wire indices for the entire circuit. The second traversal adds the programming wires
and their value to the circuit and saves the programming wire indices in the block. The third
and final traversal retrieves the gates under the provided offset and the input wire indices
and adds the length of the block to the current wire offset.

5.1.4 Programmable Blocks

There are three distinct sub classes of the GenericBlock which represent the three Pro-
grammable Blocks described in Section 4.2. Most of their methods are very simple in that they
return either constants or values derived from the input bit length. Notably however are the
specific implementations of GenericBlock :: gatesWithOffset.

The most forward implementation is the one for the BooleanOperatorBlock, the corre-
spondig circuit of which was described in Section 4.2.1. It returns a hand written list of gates,
that represent the exact circuit shown in Figure 4.2.

More interesting is the implementation for the AddSubBlock. It traverses the input wires
from the least significant bit to the most significant bit and constructs the single bit adder
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circuits as shown in Figure 4.6. When all input wires are processed it adds the part of the
circuit which calculates the most significant output bit.

The most complex of the three Programmable Blocks, the ComparisonBlock utilizes an
AddSubBlock, which is programmed to be a subtraction to represent the >≤ part of the
circuit. After that the equality check circuit from Figure 4.8 and the result selection is
appended to the list of gates.

5.1.5 Universal Circuits

The fourth distinct subclass of the GenericBlock is the UCBlock. When it is initialized the
UC and the corresponding programming from the given path is parsed. We note that the
file containing the programming has to have the same name as the circuit file except for the
extension, which has to be ‘.programming‘.

Both files are the output from the tool proposed in [KS16]. The circuit file contains first one
line, which states the input wire indices, then a number of lines each describing one gate.
The file ends with one line, defining the output wire indices. The UCParser has three duties.
First it must parse the gates, where we consider input wires as gates. Second it must parse
the programming file and third it must retrieve the output wire indices. When parsing a
gate the first character indicates the type, the next two space separated numbers indicate the
input wire indices and the following one or two, depending on the type, numbers indicate
the output wire indices.

The list of UCGates returned by the static UCParser :: parse parser method is traversed in
the GenericBlock :: gatesWithOffset implementation for the UCBlock. When process-
ing a single UCGate it first retrieves the offsetted output indices of the two input wires for
the current gate and uses them to build one Gate it also saves the offsetted output indices of
the new gate.

5.1.6 Plain Circuits

The fifth and final distinct subclass of the GenericBlock is the PlainCircuitBlock. The
idea behind the PlainCircuitBlock is similar to the aformentioned UCBlock. When it is
initialized the circuit file is parsed and the SHDLGates are build. The GenericBlock ::
gatesWithOffset implementation for the PlainCircuitBlock traverses the SHDLGates
and transforms them to small circuits, which only contain AN D and XOR gates. Those small
circuits are defined in Table 5.1. The negations in those circuits are implemented as x⊕TRU E
and the OR operators are implemented as described in Section 4.2.1.
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Table 5.1: Transforming SHDL gates into small circuits.
SHDL identifer Boolean function
0000 x ⊕ x
0001 x ∧ y
0010 x ∧ (¬y)
0011 x ⊕ FALSE
0100 (¬x)∧ y
0101 y ⊕ FALSE
0110 x ⊕ y
0111 ¬(¬x ∧¬y)
1000 ¬x ∧¬y)
1001 ¬(x ⊕ y)
1010 ¬y
1011 ¬(x ⊕ y)∨ x
1100 ¬x
1101 ¬(x ⊕ y)∨ y
1110 ¬(x ∧ y)
1111 ¬(x ⊕ y)

5.2 Testing

In this section we discuss how the tool described in Section 5.1 was tested. However we must
first examine how a given circuit can be compared against a specified model, we do so in
Section 5.2.1. Following in Section 5.2.2 we can delve into the the implementation behind
the model for the three Programmable Blocks. Afterwards we describe the model generation
for UCs in Section 5.2.3 and the model generation for plain circuits in Section 5.2.3. In the
end we discuss how we combine those five models into a model for a combined circuit in
Section 5.2.4.

5.2.1 Comparing Circuits against a Model

We utilize the case that two boolean functions f : {TRU E, FALSE}n→ {TRU E, FALSE}m are
equal if and only if for every combination of input values the result of both functions is equal.
And because the number of combinations of input values is 2n and therefore finite, we can sim-
ply evaluate both functions for every input and compare the outputs.

Therefore we must first evaluate the given circuit as a boolean function and second we must
define a boolean function which behaves as a model. The specific models used are later
discussed in Section 5.2.2, 5.2.3, 5.2.3 and Section 5.2.4. When parsing the circuit file we
first extract five different lists, one for each gate type. Those gates contain their respective
input and output indices and can be evaluated given two Boolean values. Afterwards we
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extract the wires from the circuit file. A wire represents a result from a gate evaluation which
may not exist yet. The index within the list of wires corresponds to the wire index used in
the circuit file.

Given the gates, wires and output indices the Circuit is constructed.

This Circuit can now be evaluated on a list of inputs and the programming from the
programming file. The evaluation can be split into two distinct phases. First we try to
evaluate every gate based on the current wires. If a gate was successfully evaluated the
value of the destination wire is updated with the result. When all gates have been evaluated
we check if all output wires contain a value. And repeat both steps until the condition is
fulfilled.

5.2.2 Programmable Blocks

The simplest model of the three Programmable Blocks is the BooleanOperatorBlock, since
both input operands already are present as Booleans it matches the programming and uses
native implementation of the according boolean operator. The other two models, the one for
the AddSubBlock and the one for the ComparisonBlock require a further step before they
can call the matching native method to be evaluated. The lists of booleans which represent
the input numbers have to be converted into integers. The conversion however is trivial,
since the inputs are expected to be represented as two-complements.

5.2.3 Universal and Plain Circuits

There are two different concepts to be considered when we look at UC and plain circuit
models. First the generation of a random UC or plain circuit and its evaluation. Generating
random circuits is necessary because in contrary to Programmable Blocks there are too many
possible UCs and plain circuits to check all of them. We note that we do not generate actual
random UCs but rather a random circuit which is formatted the same way a UC would be
formatted when it is constructed by the tool described in [KS16]. We justify that decision by
noting that the unit under test does not have any understanding of the meaning of the circuit
which it processes. Therefore if it can handle arbitrary circuits in the given format it should
be able to handle arbitrary UCs as well.

To generate random circuit under a given number of input and output values, we choose a
random number of gates greater or equal one and randomly choose which of the three gate
types to use. The two input wire indices are randomly chosen between zero and the number
of wires already used. The output wire index is simply the the current number of gates plus
one, and potentially in case of X gates, the second output wire is the current number of gates
plus two.

Evaluating the circuit works comparable to the evaluation of a circuit as described in Sec-
tion 5.2.1.
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5.2.4 Combined Circuits

When we have models to represent each of the three Programmable Blocks, UCs and plain
circuits, we can combine them arbitrarily to create a multitude of different circuits. To
generate an arbitrary circuit we first randomly choose the number of input and output values
and the number of blocks used in the circuit. Based on these numbers we first randomly
choose a bitlength for each input value and build as many random blocks as specified. To
generate a random block we first choose the number of input and output bits. The relation
between the input and output bitlength limits which block type may be chosen. UC blocks
and plain circuit blocks are allowed for every case, if the number of input bits is one less then
the number of output bits the Addition/Subtraction Block becomes an additional valid choice.
If there is only one output bit, we include the Comparison Block in the pool of valid blocks.
The Boolean Operator Block is taken into consideration if the number of input and output
bits both equal one. To achieve a more equal distribution of block types we include a bias in
the input and output size generation to specifically generate combinations that match the
relation mentioned.

When the blocks are generated we need to wire the blocks between one another. For every
block the number of input values and the size per value is known, therefore for every required
value we take the blocks and circuit inputs with a lower index then the current block and
shuffle them. Then we go over the previous blocks and input values and check whether or not
the value may be chosen as an input for the current block. If the output size of the potential
input block is less then the remaining input size of the current block we add it to the input. We
repeat this process until the remaining input size is zero. We note that the first circuit input
always has one bit, therefore this process is guaranteed to terminate.

If an input for a block consists of the outputs of multiple other blocks or circuit inputs
they are aggregated as a vector block. As a final step we randomly choose blocks as circuit
outputs.

When the circuit is generated we transform it into a string representation matching the format
described in Section 5.1.1. This file now is compiled by our tool and produces a circuit and
the corresponding programming. Finally the circuit in conjunction with the programming
are checked against the model.
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6 Credit Checking Results

As an example function we used a simple credit checking algorithm. Alice applies for a loan
and wants to remain private. Bob has to check if Alice matches a set of criteria and wants to
avoid those criteria becoming public knowledge. The function Bob uses decides, based on
the age, the gender and the amount requested, whether or not to grant the credit. The age is
represented as a seven bit integer, the gender is represented as a single bit and the requested
amount is a 16 bit integer. The conditions for the allowance are as follows. The applying
party must be over the age of 18 and if the person is female she has to be younger then 65.
Furthermore the requested amount has to lie between zero and 50 currency units and the
sum of the age and the requested amount has to be less then or equal to 85. If and only if
any of the conditions is violated, the request will not be granted.

We created multiple different versions of the algorithm described above. The first version
only uses Privately Programmable Blocks, as described in Section 4.2. We present the
corresponding results in Section 6.1. As a lower boundary for the function privacy we simply
use a plain circuit and we discuss the results in Section 6.2. The third version is a combination
of a plain circuits and a number of Programmable Blocks, which we detail in Section 6.3.
For the upper boundary for the function privacy we use a UC and the respective results are
detailed in Section 6.4. As with the plain circuit version we built a circuit, that uses a UC in
combination with multiple Programmable Blocks. It is described in Section 6.5. In the end
we compare the results for the different circuits in Section 6.6.

6.1 Programmable Blocks

The circuit utilizes a Comparison Block to compare the age against the constant 18. A second
Comparison Block compares the age against 65. Both results are combined by a Boolean
Operator Block. Furthermore two Comparison Blocks compare the requested amount against
zero and 50 respectively. The comparison results are again combined by a Boolean Operator
Block.

An Addition/Subtraction Block is used to add the age to the requested amount. This block
requires both input values to have the same number of bits. Therefore we have to pad
the age depending on its sign. This we achieve by using a plain circuit, which consists of
one XOR gate that combines the most significant bit of the age with FALSE. The result
of the aforementioned Addition/Subtraction Block is compared, by a Comparison Block
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against the constant 85. Finally another Boolean Operator Block combines the previous
results.

This circuit combination is depicted in Figure 6.1. In total there are 157 AN D gates and 752
XOR gates used in the circuit and it provides 25 bits of privacy, there are 225 functions which
the circuit can represent.

input alice [7] // age

1 input alice // 2 input alice [16]

// credit_req

3 block [compc] out 1 in [0] p [GE

18]

4 block [compc] out 1 in [0] p [L

65]

5 block [bool] out 1 in [4 1] p

[AND]

6 block [compc] out 1 in [2] p [GE

0]

7 block [compc] out 1 in [2] p [LE

50]

8 block [bool] out 1 in [6 7] p

[AND]

9 block [bool] out 1 in [8 5] p

[AND]

10 block [plain] out 1 in [0] p [0

padding.shdl]

11 vector [10 10 10 10 10 10 10 10

10]

12 vector [11 0]

13 block [addsub] out 17 in [2 12]

p [ADD]

14 block [compc] out 1 in [13] p [L

85]

15 block [bool] out 1 in [14 9] p

[AND]

16 block [bool] out 1 in [15 3] p

[AND]

17 output bob 16

Figure 6.1: Credit checking function, which uses only Privately Programmable Blocks
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6.2 Plain Circuit

The plain circuit version of the function was compiled with the FairplayPF tool from [KS08b].
It executes the algorithm described in Section 6. The circuit combination is displayed in
Figure 6.2. In total there are 133 AN D gates and 251 XOR gates used in the circuit and
it provides 0 bits of privacy, since whole circuit is revealed and it has no programming
input.

0 input alice [7] // age
1 input alice
2 input alice [16] // credit_req
3 vector [1 2 0]
4 block [plain] out 1 in [3] p [0
plain.shdl]
5 output bob 4

Figure 6.2: Credit checking function, which uses only a plain circuit

6.3 Plain Circuit with Programmable Blocks

In the version of the function, that combines a plain circuit with Programmable Blocks, we
use two Comparison Blocks, one to compare against 18 and one to compare against 65.
Furthermore we use a Boolean Operator Block to combine the comparison results. The plain
circuit part checks if the requested amount satisfies the requirements stated in Section 6,
the structure is detailed in Figure 6.3. In total there are 154 AN D gates and 374 XOR
gates in the circuit and because of the Privatley Programmable Blocks used it has 8 bits of
privacy.

6.4 Universal Circuit

The UC for this version used the same SFDL file as a function description that we use in
Section 6.2, we translate it to a circuit with the FairplayPF tool. The SHDL file, resulting from
the translation was then compiled with the UC compiler from [KS16]. The combination is
depicted in Figure 6.4. In total there are 8923 AN D gates and 25456 XOR gates in the circuit
and it provides 9219 bits of privacy.
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0 input alice [7] // age
1 input alice
2 input alice [16] // credit_req
3 block [compc] out 1 in [0] p [GE
18]
4 block [compc] out 1 in [0] p [L
65]
5 block [bool] out 1 in [4 1] p
[AND]
6 vector [5 3 2 0]
7 block [plain] out 1 in [6] p [0
plain.shdl.uc]
8 output bob 7

Figure 6.3: Credit checking function, which uses Privately Programmable Blocks in conjunc-
tion with a plain circuit

0 input alice [7] // age
1 input alice
2 input alice [16] // credit_req
3 vector [1 2 0]
4 block [uc] out 1 in [3] p [0
plain.shdl.uc]
5 output bob 4

Figure 6.4: Credit checking function, which uses only a UC

6.5 Universal Circuit with Programmable Blocks

The structure we use for this version of the circuit matches the one that uses plain circuits
alongside Programmable Blocks, which is represented in Figure 6.5. The age limits are
checked by two Comparison Blocks and one Boolean Operator Block. And the checks on the
requested amount are executed by the UC, therefore Bob hides these checks completely. In
total there are 7943 AN D gates and 22667 XOR gates in the circuit and it provides 8183 bits
of privacy.
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0 input alice [7] // age
1 input alice
2 input alice [16] // credit_req
3 block [compc] out 1 in [0] p [GE
18]
4 block [compc] out 1 in [0] p [L
65]
5 block [bool] out 1 in [4 1] p
[AND]
6 vector [5 3 2 0]
7 block [uc] out 1 in [6] p [0
plain.shdl.uc]
8 output bob 7

Figure 6.5: Credit checking function, which uses Privately Programmable Blocks combined
with a UC

6.6 Comparison of Results

The results of the different versions of the credit checking function are visualized in Figure 6.6.
The version which only uses a UC is, as expected, the most privacy-preserving version.
Whereas the least private version only uses a plain circuit. Between both extremes are the
versions, which incorporate Programmable Blocks in the following order from least private to
most private: a circuit which combines Programmable Blocks with plain circuits, one which
only consists of Programmable Blocks and one where Programmable Blocks are linked with a
UC.

To assess the performance, we look at the number of AN D gates in the circuit. The performance
ranking is the exact opposite of the privacy ranking. The best performance is achieved with
the plain circuit, the worst performance is observed with the UC. Between them the ranking
is as follows: a circuit combining an UC with Programmable Blocks, one which only uses
Programmable Blocks and a circuit which incorporate a plain circuit among Programmable
Blocks.

The better the privacy becomes the worse the performance, since the number of AN D gates
has the most significant impact on the performance.
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Figure 6.6: Results for the different configurations
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7 Conclusion

We provide a toolchain to evaluate a function in a semi private manner, which we describe in
Section 4.1. Furthermore we implemented one of the tools used in the toolchain, which is
detailed in Chapter 5. Additionally we designed three generalized Privately Programmable
Blocks, which are defined in Section 4.2, in a way so they can be evaluated by both the GMW
protocol and Yao’s garbled Circuit protocol.

The albeit small example, described in Chapter 6 shows the expected results, the less privacy-
preserving the combination is the smaller the circuit becomes. Therefore using Privately
Programmable Blocks amongst UCs and plain circuits appears to allow the circuit designer
to balance function privacy with performance. However more and importantly bigger ex-
amples need to be tested to make a statement on the ratio of lost privacy versus gained
performance is by using the concepts described in Chapter 4 and the implementation from
Chapter 5.

Outstanding improvements for the tool specifically would be to include more different block
types, for example arithmetic operations on floating point numbers or simply multiplications
and divisions on integers and floating point numbers. The pipeline and the tool in conjunction
can be improved by allowing both parties to specify parts of the function which is to be
evaluated between them.

Furthermore the fact that the combination of Privately Programmable Blocks, plain circuits
and UCs has to be optimized manually is more cumbersome than it should be. A method
was proposed recently in [KKW16], which under the input of multiple circuits produces a
single circuit which, dependent on a programming, can evaluate equal to each of the input
circuits.
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