
Bachelor Thesis

Web application for privacy-preserving
scheduling

Oliver Schick
December 12, 2017

Technische Universität Darmstadt
Center for Research in Security and Privacy

Engineering Cryptographic Protocols

Supervisors: Dr. Thomas Schneider
M.Sc. Ágnes Kiss

Thesis Statement
pursuant to §23 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I, Oliver Schick, have written the submitted thesis indepen-
dently. I did not use any outside support except for the quoted literature and other sources
mentioned in the paper. I clearly marked and separately listed all of the literature and all
of the other sources which I employed when producing this academic work, either literally
or in content. This thesis has not been handed in or published before in the same or similar
form.

I am aware, that in case of an attempt at deception based on plagiarism (§38 Abs. 2 APB),
the thesis would be graded with 5,0 and counted as one failed examination attempt. The
thesis may only be repeated once.

In the submitted thesis the written copies and the electronic version for archiving are identical
in content.

For a thesis of the Department of Architecture, the submitted electronic version corresponds
to the presented model and the submitted architectural plans.

Darmstadt, December 12, 2017

Oliver Schick

Abstract

Arranging a meeting between multiple parties is a highly recurring task, that is becoming
more and more time consuming, the more people and organisations get involved. Without
any means of automatization, the arranging of a meeting between a larger amount of parties
is very difficult to handle and thus, the need for automatic tool support arises. However, using
these tools also raises some concerns regarding the privacy of the participants, as private
information may be inferred from the availability patterns the participants publish when
partaking in the poll.

In this work we will introduce a protocol that allows to schedule meetings even between large
amounts of participants, without requiring any participant to reveal his or her availability
pattern to any other party. The protocol requires an evaluation function to be defined in
order to find the scheduled time and allows for a large set of possible evaluation functions
to be used, i.e. every function that can be represented by a Boolean circuit can be used as
evaluation function in our protocol.

Our protocol needs two servers to compute the evaluation function using a secure two-party
computation protocol in order to keep the availability patterns of the participants secret.
Therefore, we have to assume that the servers do not collude in order to gain knowledge about
the inputs of the participants. Furthermore, if the secure two-party computation protocol
used when implementing our protocol does not provide security in the presence of malicious
adversaries, we have to assume that the servers are semi-honest.

Contents

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 2

2 Preliminaries 3
2.1 Dining Cryptographer Network . 3
2.2 Commitment Scheme . 4
2.3 Boolean Circuits . 4
2.4 Oblivious Transfer Protocol . 5
2.5 Secure Two-Party Computation . 5

2.5.1 Yao’s Garbled Circuit Protocol . 6
2.5.2 GMW . 7

3 RelatedWork 8
3.1 Doodle and DFN . 8
3.2 Kellermann’s Protocol for Semi-Honest Participants 8

3.2.1 Poll Generation . 9
3.2.2 Voting Process . 10
3.2.3 Evaluation Process . 10

3.3 Extension of the Protocol to Protect Against Malicious Participants 10
3.3.1 Detection of (-1)-Attacks . 11
3.3.2 Detection of (+2)-Attacks . 11
3.3.3 Identification of the Attacker . 12

3.4 Extending the Protocol to Increase Usability . 13
3.4.1 Dynamically Insert Participants . 13
3.4.2 Dynamically Remove Participants . 13
3.4.3 Additional Options . 14
3.4.4 Changing Votes Retrospectively . 14

3.5 Discussion . 15

4 Design 16
4.1 The Protocol . 17

4.1.1 Poll Generation . 18
4.1.2 Voting Process . 19
4.1.3 Evaluation Process . 20

I

Contents

4.2 Security . 21
4.2.1 Potential Attacks of the Frontend Server . 21
4.2.2 Potential Attacks of the Backend Servers 22
4.2.3 Potential Attacks of the Participants . 22
4.2.4 Potential Attacks of the Initiator . 22

4.3 Extension of the Protocol . 23

5 Implementation 24
5.1 Frontend . 24
5.2 Backend . 25

5.2.1 The ABY Framework . 26
5.2.2 Boolean Circuit Generation . 26
5.2.3 Executing the Boolean Circuit and Revealing the Result 28

6 Evaluation 29
6.1 Estimate on the Number of AND Gates in the Circuit Constructions 29
6.2 Circuit Size Comparision . 31
6.3 Runtime Measurements . 32

7 Conclusion 38

List of Abbreviations 41

Bibliography 42

A Appendix 44
A.1 Here might be an appendix section . 44

II

1 Introduction

Arranging a meeting between multiple persons or organisations is a highly recurring task that
can take a lot of time, the more people and organisations get involved. While most bigger
companies already provide internal solutions to this problem, these solutions only apply when
scheduling internal meetings. As soon as the need arises to schedule a meeting between
multiple organisations, the internal solutions do not work anymore. There are multitudes of
available online solutions to this problem, but several concerns regarding the privacy arise
when using these solutions.

The first privacy issue is that all participants can see the selections made by other participants,
which raises some privacy concerns as information might be leaked through the availability
patterns of the participants. For example a participant P knows that another organisation A
will hold an important board meeting and knows that all members of the executive committee
will attend, but since the date is being held secret, P does not know when. If all members
of the executive committee participate in a poll for arranging another, unrelated meeting
in which P also participates, then P can gain information about the date of the board
meeting, simply by checking when none of the members of the executive comittee are
available. Submitting votes anonymously does not solve this problem as availability patterns
are individual and thus leak information about the person. Another concern, which cannot
be solved by simply anonymizing the votes, is that the last users submitting their votes can
lie about their availability in order to make their preferred date more likely to be chosen, for
example by saying they are not available at a given date d, although they are, because they
see, that d is likely to be chosen if they say they are available that day.

The second security issue arises when the selections made by the participants can only be seen
by a subset of participants (or non-participants) called administrators. Unfortunately a set of
administrators cannot always be found, especially when arranging a meeting among several
organizations, as an organization might trust one of their employees to see all selections
made by their staff but none of the employees of another organization and vice versa. Also,
since only the administrators can see the selections made by the participants, they have
the opportunity to cheat by selecting the date they prefer and not the best date in terms
of, for example, number of available participants. A simple solution would be to let the
server be the only one able to see the inputs of the participants and let the server decide
based on a readily implemented algorithm, like for instance, selecting the date where most
participants are available. This, however, requires trust in the server, which cannot always be
assumed.

1

1 Introduction

1.1 Contributions

There are two main contributions we made: The first being the presentation of a web-based
protocol that allows to arrange a meeting between any number of participants using a
predefined selection function f . The protocol guarantees that no participant gain neither
advantage in the selection of the scheduled time nor information about the selections made
by other participants, by deviating from the protocol. However, the presented protocol does
neither guarantee correctness of the execution, nor nondisclosure of the selections made
by the participants in the presence of a server deviating from the protocol. Furthermore,
the nondisclosure is not guaranteed if the servers participating in the evaluation of the
selection function f collude in order to gain knowledge about the selections made by the
participants.

The second contribution we made is the implementation of two predefined selection functions
f1 and f2. The first selection function f1 allows to select a time, where the number of
available participants is maximized, while the selection function f2 allows to additionally
assign different importance to different participants, thus selecting a time, where the weighted
sum of attendence is maximized. Both functions reveal furthermore the identity of the
participants that are not available for the selected time. Besides the output generated by
the function no additional information is leaked, to neither the participants nor the servers
executing the function.

1.2 Outline

We will introduce in Chapter 2 the concepts used in the subsequent chapters, such as DC-Nets
(introduced in Section 2.1) and Commitment Schemes (introduced in Section 2.2), which are
both used in Chapter 3. We further introduce the concepts of Boolean circuits (Section 2.3),
oblivious transfer (Section 2.4) and secure two-party computation (Section 2.5), all of which
are concepts used in our protocol presented in Chapters 4 and 5.

In Chapter 3 we will describe an already existing web-application for secure scheduling, that
guarantees correct execution of the protocol and nondisclosure of the selections made by the
honest participants in the presence of malicious participants and server. However, that protocol
only allows for a limited set of predefined selection functions f and furthermore reveals the
sum of each selection made by the participants in each time slot.

We then introduce our protocol in Section 4.1, later discussing its security guarantees and
weakpoints in Section 4.2 and finally suggesting possible extensions in order to increase the
usability in Section 4.3. We then proceed by presenting the design choices taken during the
implementation of our protocol in Chapter 5 and continue by explaining the thought processes
made, so that our protocol minimizes the overhead in computation and communication
incurred. We then present the runtime measures of our implementation in Chapter 6. Finally,
we suggest some potential improvements of our protocol for the future

2

2 Preliminaries

In this chapter we introduce the concepts used in the subsequent chapters. We first give a
short explanation of Dining Cryptographer Networks in Section 2.1 and Commitment Schemes
in Section 2.2, both of which are concepts used in Chapter 3. In Section 2.3 we illustrate the
concept of Boolean circuits and in Section 2.4 oblivious transfer, both of which are necessary
building blocks of the secure two-party computation protocols presented in Section 2.5. We
further introduce two widely known protocols for secure two-party computation, namely
Yao’s protocol (Section 2.5.1) and the GMW protocol (Section 2.5.2).

2.1 Dining Cryptographer Network

A Dining Cryptographer Network or DC-Net for short, is a network introduced by David Chaum
as a solution to his proposed Dining Cryptographer Problem in [Cha88]. DC-Nets allow
messages to be broadcasted within a network, without allowing neither internal nor external
observers to identify the sender.

Consider n participants in a ring (overlay-) network, which additionally allows for broad-
casting messages. Each participant generates a random 1-bit key and shares it with his
right neighbor. Now each participant ui, with uh being his left neighbor and u j being his
right neighbor, has two 1-bit keys kh,i and ki, j, the former being shared with uh, the latter
with u j. If ui wants to send a 1-bit message m, assuming he is the only one in the network
sending, he broadcasts bi = kh,i ⊕ ki, j ⊕ m. Every other user broadcasts bq = kp,q ⊕ kq,r ,
where p, q, r 6= i and up, uq, ur being neighbors. One can easily see that b1 ⊕ ...⊕ bn = m,
since every kp,q is contained in both, bp and bq for any neighboring participants up and
uq.

DC-Nets are not limited to only transmit binary numbers. In fact one can, for example,
transmit any element of a group (Zm,+), where m is called the modulus of the DC-Net and +
is the modular addition within Zm. The protocol described above is thus a DC-Net over the
group (Z2,⊕).

3

2 Preliminaries

2.2 Commitment Scheme

A Commitment Scheme is a cryptographic primitive that allows one party P, that does not
want to reveal a secret value ν yet, to instead send a commitment message µ to a recipient R,
which allows R to verify if ν was changed after receipt of µ or not.

Commitment schemes can be implemented using cryptographic hash functions. On the one
hand it is, for a cryptographic hash function h, computationally hard to find a ν′ such that
h(ν) = h(ν′), which prevents P from changing ν retrospectively. On the other hand, given a
hash value µ, it is computationally hard to find any ν such that µ= h(ν), thus preventing R
from inferring the secret value ν.

2.3 Boolean Circuits

Let B be a finite set of Boolean functions g : {0,1}p→ {0, 1}. A finite directed acyclic graph
containing n input nodes, m output nodes and k gate nodes is called a Boolean circuit over
B. The input nodes represent a binary input i ∈ {0, 1}, the output nodes a binary output
o ∈ {0,1} and the gate nodes a Boolean function g ∈ B. Every gate node has at least one
outgoing edge and exactly p incoming edges, where p is the arity of the Boolean function
represented by the gate node. Incoming edges of a gate node model an input to the Boolean
function, while outgoing edges model the output of the previously mentioned function.
Output nodes have at least one incoming edge and no outgoing edge. Input nodes have no
incoming edges and at least one outgoing edge. For every input node there is at least one
path to at least one output node.

Boolean functions can be defined by simply listing an output value for every possible in-
put value in a table, which is then called a truth table. If for every Boolean function
b : {0,1}q→ {0, 1} there exists a Boolean circuit over B, then B is called functionally com-
plete. An example of such a set is {AN D, XOR}, where AN D : {0,1}2→ {0,1} is defined as
the logical conjunction and XOR : {0, 1}2→ {0, 1} is defined as the logical exclusive disjunc-
tion. A Boolean circuit over a functionally complete set B can represent any mathematical
function f : {0,1}n→ {0, 1}m, which in turn represents any mathematical function h : A→ B,
over finite sets A, B, by simply defining an injective function pi : A→ {0,1}n and a surjective
function po : {0,1}m→ B and then setting h := po ◦ f ◦ pi. If not otherwise stated, Boolean
circuits are always assumed to be over {AN D, XOR}.

The number of gates in a Boolean circuit C over B is referred to as size of C and the path
from an input to an output node containing the most gates is referred to as the depth of C .
If B = {AN D, XOR} then the number of AN D gates is referred to as the multiplicative size of
C and the path from an input to an output node containing the most AN D gates is referred
to as the multiplicative depth of C . Edges in a Boolean circuit are considered as wires. More
information about Boolean circuits can be read in [Vol99, p. 8].

4

2 Preliminaries

Figure 2.1: A Boolean circuit over {AN D, XOR} with 4 input nodes and 2 output nodes. The
⊕-nodes represent XOR gates and the ∧-nodes represent AN D gates. The circuit
size is 4, the multiplicative size is 1 and the multiplicative depth is 1 (the path
shown in red being the path containing the most AND gates).

2.4 Oblivious Transfer Protocol

A 1-out-of-n oblivious transfer (OT) protocol is a protocol where the a sender wants to
transfer 1 out of n distinct messages m1, ...mn, while the receiver holds a selection number
s ∈ {1, ..., n}. The sender wants the receiver to only gain information about one out of the n
messages and no information about the others, while the receiver does not want the sender to
gain any information about s. After executing the OT protocol, only the selected message ms
is learned by the receiver and no information is gained about s by the sender. OT protocols
use rather slow public key operations, but can considerably be sped up by using a small
amount of so called base-OTs to compute a large amount of OTs using faster symmetric key
operations, which is then called OT extension [IKNP03; ALSZ13].

2.5 Secure Two-Party Computation

Secure two-party computation is a cryptographic primitive allowing two parties to jointly
evaluate a function without any party revealing any information about their input, not
accounting for any information leaked by the output of the function. The protocol is required
to provide the same secrecy about the input as would a perfectly trustworthy and incorruptible
third party evaluating the function. Secure two-party computation can be generalized to
include more parties.

Respective to the security models, there are two important adversary models: the semi-honest
and the malicious adversary model. In the semi-honest model, the adversary is assumed
to follow the protocol but using every intermediate value of the protocol execution to gain
information about the secrets. In the malicious model, the adversary is allowed to arbitrarily

5

2 Preliminaries

deviate from the protocol to gather information about the secrets. The protocols presented in
Section 2.5.1 and Section 2.5.2 assume a semi-honest adversary.

2.5.1 Yao’s Garbled Circuit Protocol

Yao’s garbeled circuit protocol [Yao86] or Yao’s protocol for short, is an asymmetric protocol
that allows two parties to jointly compute a function while none of the inputs to the function
is revealed to the other party. The function to be computed is described as a Boolean circuit
(Section 2.3). One party, usually referred as garbler or Alice first generates for each wire
two random strings of length k (usually 128) called labels, where one label represents the
boolean value 0 and the other represents 1. The truth table of each gate is replaced by the
corresponding labels and the output is set to Encka

x
(Enckb

y
(kc

z)), where Enck(•) is a symmetric

encryption scheme and ka
x , kb

y , kc
z are labels corresponding to the values a, b, c ∈ 0,1 of

the wires x , y, z. The encrypted table is called garbled table. Alice then sends the labels
corresponding to her input value and for each gate a random permutation of the encrypted
output value to the other party, called the evaluator (Bob). Bob gets his input labels from Alice
by using a 1-out-of-2 OT (Section 2.4) protocol and evaluates the circuit by decrypting the
encrypted output value using the obtained input labels from Alice. For every gate, Bob can only
decrypt one output value correctly, which is then used as input label for the next gate, or sent
back to Alice if and only if the label corresponds to a wire going to an output node. Alice then
reveals the corresponding plain text value of the output label to Bob.

There are several optimizations to the original protocols, one important being the Free-XOR
optimization [KS08], which allows for garbling and evaluating the XOR gates basically for
free, since neither communication nor cryptographic operations are needed to evaluate
it. Circuits are therefore optimized in minimizing the number of AND gates instead of
minimizing the size of the circuit. Other optimizations to Yao’s protocol include the Point-
and-Permute-optimization, which allows Bob to immediately find the correct row to decrypt,
without trying decrypting every row until the right one is decrypted, the Fixed-key-Blockcipher-
optimization, speeding up the garbling and evaluation of the AN D-gates by using fixed-key AES
(see [BHKR13]) and the Half-And-optimization, which allows to transmit 2 rows of the garbled
table instead of 4 when evaluating an AN D-gate (see [NPS99]).

When considering the communication cost there are two relevant factors to take into account:
the number of communication rounds and the communication itself. While Yao’s protocol is
cheap regarding the number communication rounds, which is independent of the circuit and
therefore constant, the communication itself is rather expensive, since a garbled table has to
be transferred for every AND gate in the circuit.

6

2 Preliminaries

2.5.2 GMW

The GMW protocol is a symmetric protocol used for secure two-party function evaluation. Like
Yao’s protocol, the GMW protocol needs a Boolean circuit representation of the function to be
evaluated. In the GMW protocol every value v of each wire is shared among the two parties
using a secret sharing scheme such that v = v0 ⊕ v1 for two random-looking shares v0, v1 and
one party holding v0 and the other holding v1. XOR gates can be evaluated locally by simply
XORing the shares, due to the associativity of the XOR operation. There are two ways to
evaluate an AND gate. One way of evaluating x ∧ y with x = x0 ⊕ x1, y = y0 ⊕ y1 is using a
1-out-of-4 Oblivious transfer. The sender chooses a random share s1 and provides four data
points s1 ⊕ ((x0 ⊕ x1)∧ (y0 ⊕ y1)) for every possible combination of x0, y0. The receiver can
then obliviously get the right data point using his two shares x0, y0. Another way of evaluating
x ∧ y are multiplication triples. Multiplication triples are random shares ai , bi , ci satifying
c0⊕c1 = (a0⊕a1)∧(b0⊕ b1) and which can be generated before evaluating the circuit, during
the setup phase. The parties exchange di = x i ⊕ ai and ei = yi ⊕ bi to obtain d = d0 ⊕ d1 and
e = e0 ⊕ e1. The output shares can then be computed as z0 = (d ∧ e)⊕ (b0 ∧ d)⊕ (a0 ∧ e)⊕ c
and z1 = (b1 ∧ d)⊕ (a1 ∧ e)⊕ c1. Using the aforementioned property of the multiplication
triples one can easily see that z0 ⊕ z1 = x ∧ y .

Unlike Yao’s protocol, which has a constant number of rounds, the number of rounds of the
GMW protocol are linear in the multiplicative depth of the circuit. However, the commu-
nication itself is very low compared to Yao’s protocol: GMW only transfers 4 bits per AND
gate during the online phase, when using multiplication triples, while Yao’s protocol needs to
transfer a garbled table per AND gate. The GMW protocol is therefore usually more efficient
when working on a circuit with low multiplicative depth and/or executing it on a low latency,
low bandwith network, while Yao’s protocol is much better when the multiplicative depth of
the circuit is high and/or the network’s latency and bandwith are high.

7

3 RelatedWork

In this chapter we will present already existing web-based scheduling applications. We will
first introduce the currently most popular and used scheduling application in Doodle1 and
mention the scheduling application provided by the "Deutsches Forschungsnetzwerk", or DFN
for short2, which is an already existing alternative to doodle that provides security by trust.
We finally present the protocol proposed by Benjamin Kellermann.

3.1 Doodle and DFN

Doodle is the currently most popular web-based solution to scheduling between multiple
parties. A poll can easily be initiated by a participant, who defines the title and the available
time slots the participants of the poll may select from. The inputs of every participant
is visible to everyone and no access control is provided by default, hence whoever is in
possession of the link leading to Doodle, can see the selections made by all other participants.
Moreover, Doodle also mentions, that all data sent to Doodle may be used for advertising
purposes.

The DFN proposed an alternative scheduling application, which essentially works like Doodle,
but promises to use the data sent to them only for the scheduling. They also guarantee to
delete all data they received and thus require the poll initiator to input a termination date,
where all data related to the poll will be deleted. However, one has no means to check, if
they are indeed deleting the data and not using them elsewhere, hence the DFN provides
only security by trust.

3.2 Kellermann’s Protocol for Semi-Honest Participants

Benjamin Kellermann suggested a protocol in [Kel11] that allows participants to schedule
a meeting without revealing their availability patterns to neither the server nor other par-
ticipants. Kellermann first describes a simple protocol which requires the participants to
only give valid inputs in order for the protocol to work correctly. He then shows how to
extend the protocol to prevent malicious participants from gaining any advantages in the

1http://www.doodle.com
2https://terminplaner.dfn.de/

8

http://www.doodle.com
https://terminplaner.dfn.de/

3 Related Work

time selection, by sending invalid inputs. Finally, Kellermann proposes some extensions to the
simple protocol, which increase the usability by introducing additional features like dynamic
insertion and removal of participants, without requiring any additional trust into neither
particiants nor the server.

Kellermann’s protocol consists of the three steps Poll Generation (Section 3.2.1), Voting Process
(Section 3.2.2) and Evaluation Process (Section 3.2.3). In the poll generation phase the basic
data, like participants and available time slots, are initialized. Then the participants each
select their preferred time slots in the voting process and finally, when all participants have
cast their votes, the number of votes for each time slot is calculated in the evaluation process
by each participant individually. Thus, the information about how many participants voted
for each time slot is revealed, which allows the participants to select a winning time slot
according to some selection function (like taking the time slots which gained the most votes
for example).

This simple protocol offers only security against semi-honest participants, as cheating par-
ticipants are able to control to a certain extent the time that will be chosen in the evalua-
tion phase. However, even malicious participants will not gain any information about the
input of the honest participants (aside the information leaked by the result of the proto-
col).

3.2.1 Poll Generation

One party called the poll intitiator starts by defining a set of time options T and a totally
ordered set of participants U . To keep the anonymity of the participants, all communication is
done using a DC-Net (Section 2.1) in the Group (Zn,+) with n>

�

�U
�

�. Every participant u ∈ U
sends to every other participant u′ ∈ U\{u} an equally distributed and independent random
number r t

u′ ∈ Zn for every time slot t ∈ T . Every participant then obtains a DC-Net-key by
calculating:

kt
u,u′ :=

¨

r t
u′ if u< u′

−r t
u′ mod n otherwise

(3.1)

and finally obtain a key matrix:

ku :=

kt1
u,u1

· · · k
tsT
u,u1

...
. . .

...

kt1
u,usU−1

· · · k
tsT
u,usU−1

, {u1, ...,usU

}= U\{u}, sU =
�

�U
�

�, sT =
�

�T
�

�. (3.2)

9

3 Related Work

3.2.2 Voting Process

Every participant u encrypts his voteφ t
u ∈ {0, 1} for a given time slot t as:

d t
u :=

�

φ t
u +

∑

u′∈U\{u}

kt
u,u′

�

mod n (3.3)

and sends the encrypted availability vector
−→
du := (d t1

u , ..., d
tsT
u)T to the server.

3.2.3 Evaluation Process

As soon as all participants delivered their encrypted availability vector, all vectors are revealed
to each participant. They can then individually compute for each time slot t the number of
available participants:

−→ot =
∑

u∈U

−→
du mod n. (3.4)

Due to the fact that ku,u′ ≡ −ku′,u (mod n), −→ot is indeed the sum of the availability vectors
−→
φu = (φ

t1
u , ...,φ

tsT
u)T .

The scheduled date can now be calculated using a selection function S which is only allowed
to take the number of available persons as input. Thus, it is not possible to, for example,
choose a meeting based on who is available and who is not.

3.3 Extension of the Protocol to Protect Against Malicious
Participants

When assuming all participants to be semi-honest, one can assume φ t
u ∈ {0,1} to be

true. However if the participants are allowed to deviate from the protocol, only φ ∈ Zn
can be assumed. Therefore two attacks are possible to manipulate the outcome of the
poll:

The first possibility is to send a value φ t
u < 0 to reduce the indicated number of available

participants ot an thus the probability that time slot t is selected (assuming that a higher
number of available participants yield a higher probability that t is selected). As sending a
(−1) is at least as hard to detect as sending any number ν < 0, this kind of attack is referred
to as (-1)-attack.

The second possibility is to analogously send a value φ t
u > 1 to increase the probability that

time slot t is selected. As sending a 2 is at least as hard to detect as sending any number
ν > 1, this kind of attack is referred to as (+2)-attack.

Kellermann [Kel11] proposes an extension to the aforementioned protocol in Section 3.2 to
detect this kind of attacks.

10

3 Related Work

3.3.1 Detection of (-1)-Attacks

Instead of executing one DC-Net round per time slot, l DC-Net rounds are executed in
parallel per time slot. The vote φ t

u is split among l partial votes ϕ(t,0)u , ...,ϕ(t,l)u such that for

a uniformly distributed, independent r ∈ Zl yields ϕ(t,r)u = ϕ t
u and ϕ(t,q)u = 0, q ∈ Zl , r 6= q.

The participants send each partial vote in a seperate DC-Net and thus exchange a key k(t,i)u,u′

for every time slot t and every DC-Net round index i ∈ Zl instead of just one key kt
u,u′ for

every time slot t. The keys are then used to encrypt each partial vote ϕ(t,i)u as described
in Section 3.2.2 to obtain the encrypted vote d(t,i)u . If all participants are honest, then the
following two assertions can be made:

∀t ∈ T, i ∈ Zl :
�∑

u∈U

d(t,i)u mod n
�

∈
�

0, ...,
�

�U
�

�

	

, (3.5)

∀t ∈ T :
� ∑

u∈U ,i∈Zl

d(t,i)u mod n
�

∈
�

0, ...,
�

�U
�

�

	

. (3.6)

If the DC-Net modulus n� 2 ·
�

�U
�

� then a (−1)-attack can be detected, if, for example, the
attacker sends a (−1) where every other participant sent a 0 for a given DC-Net round δ, since
in that case at least one assertion is violated. The DC-Net modulus is required to be much
higher than 2 ·

�

�U
�

�, else it would be possible that one or multiple (−1)-attacks go undetected,
because the sum is still within the allowed set

�

0, ...,
�

�U
�

�

	

, although all honest participants
sent a 0, due to modulus overflow. Another way of detecting a (−1)-attack is, if only one
participant u sent a 1 for a given DC-Net round δ and the result is 0. In that case u can
publish his vote φδu and show that a (−1)-attack occured.

This protocol is only secure if the server does not cooperate with the malicious participant
um, as in that case um would simply wait for every other participant u′ to commit their votes,
get the votes from the server, calculates the number of available participants for each time
slot and round index and then setting his votes in a way that yields plausible results for every
time slot and round index.

This attack can be prevented if all participants commit to a value using a commitment scheme
(Section 2.2, share the commitment among each other and then send the votes to the server.
This, however, requires an additional blocking protocol round, where the participants have
to wait for every other participant to submit their commitment.

3.3.2 Detection of (+2)-Attacks

To detect a (+2)-attack every participant sends additionaly to his votes φ t
u a test-vote φ t

u
′

such that φ t
u +φ

t
u
′ = 1. The test-vote is then processed the same way the normal vote is (see

11

3 Related Work

Section 3.2 and Section 3.3.1). Since every participant has to send a vote of 1 in either of the
two votes the following assertion can be made:

∀t ∈ T :
∑

u∈U ,i∈Zl

d(t,i)u +
∑

u∈U ,i∈Zl

d(t,i)u
′
≡
�

�U
�

� (mod n) (3.7)

where d(t,i)u
′

is the encryption of the partial vote ϕ(t,i)u
′

of φ t
u
′. If a (+2)-attack was made,

then the assertion is violated, except if the attacker makes a (−1)-attack on the test vote,
which can also be detected as described in Section 3.3.1.

3.3.3 Identification of the Attacker

Detecting an attack on the integrity of the voting process is usually not enough, as an attacker
can still prevent the vote from happening by always sending invalid inputs, also known as
Denial of Service Attack. Therefore it is also necessary to find out the identity of the attacker
to allow the honest participants to launch countermeasures against the attacker, such as
preventing him to participte in subsequent voting processes.

If an attack on the vote has been detected through a violation either of the assertion described
in (3.5), (3.6) or (3.7), then the DC-Net rounds where the violation occured are uncovered.
Let δ be a DC-Net round where an attack has been detected. Every participant u reveals his
(
�

�U
�

�−1) keys kδu,u′ , u′ ∈ U\{u}. These keys can then be used to decrypt the single votes of
every participant and to check for which participant um ∈ U the vote is not whithin the legal
range {0, 1}.

However, um can still cheat at this point. Instead of sending the true key kδum,u′ for any

participant u′ ∈ U\{um}, um sends a false key kδum,u′ = (k
δ
um,u′ − ν)mod n, where ν is the

illegal value which was originally sent by um. In that case it would look like um sent the value

φδum
= 0 and u′ sent the value φδu′ = ν, but since kδum,u′ 6≡ kδu′,um

(mod n) one can not decide
whether um sent the wrong key or u′. To prevent um from changing his key, the participants
send a commitment for each key using a commitment scheme, when sending their votes to
the server. This prevents um from retrospectively change his key.

The drawback of this detection is that each participant has to publish their partial vote
for a DC-Net round δ where an attack has been detected. If all rounds where an attack
occured are uncovered, then an attacker can make all other participants publish their avail-
ability patterns, by attacking all DC-Net rounds. It is therefore necessary that only a few
of the attacked DC-Net rounds are uncovered. Moreover, if the potential publication of a
vote is a concern, the participants may agree on skipping the identification of the attacker.
This, however, has to be agreed upon before the protocol execution, as an attacker could
simply refuse to publish his keys if his attack has been detected, thus preventing his own
identification.

12

3 Related Work

3.4 Extending the Protocol to Increase Usability

Kellermann’s protocol so far allows to securely schedule a date, but provides the absolute
minimum in terms of usability. To this point, it is not possible to dynamically remove or
add any participants, the participants cannot change their vote retrospectively and they are
required to choose between only two options. Kellermann [Kel11] proposes extensions to
address these issues.

3.4.1 Dynamically Insert Participants

When adding participants to the poll after starting the poll, some participants might already
have submitted their vote. In that case the new participant exchanges keys only with the par-
ticipants, who did not submit a vote yet. The participants who did not submit a vote yet, then
use the key of the new participant as well, when submitting their vote.

It has to be noted that this extension only works if at least one participant did not submit his
vote yet. If all participants submitted their votes, then no single participant can be added, as
there would be no one to exchange keys with.

3.4.2 Dynamically Remove Participants

Dynamically removing participants from the poll is more important than dynamically adding
participants, as the sum of the votes can only be computed, if all participants submitted their
vote. Therefore a participant might block the protocol by simply never submitting his vote.
To remove a participant ui from the poll, every participant u publishes the key kδu,ui

he shares

with ui . Using those keys, a substitution vector
−→
dδu consisting of the following elements can

be calculated:
dδu = 0−

∑

u∈U\{u}

kδu,ui
mod n. (3.8)

The substitution vector is basically an encrypted substitution vote φδui
= 0 of the removed

participant ui .

If a malicious participant um is able to hold back the messages of another participant u′, then
um can convince the other participants to remove u′ and thus obtaining all keys necessary to
decrypt the inputs of u′. Unfortunately, no solutions to this attack have been proposed by
Kellermann.

13

3 Related Work

3.4.3 Additional Options

Most scheduling applications allow for more than two options to be selected. For instance,
the most widely used scheduling platform Doodle3 allows the participants to select one of the
three options "yes", "no" or "maybe". In the current protocol a participant u has to vote either
"yes" (φ t

u = 1,φ t
u
′ = 0) or "no" (φ t

u = 0,φ t
u
′ = 1). In order to allow for multiple options,

instead of sending a vote and a test-vote, a participant simply sends η votes φ(t,0)u , ...,φ(t,η)u

where φ(t,λ)u = 1 if u selects option λ and φ(t,µ)u = 0 for any µ 6= λ. The following assertion
holds for any given time slot:

∀t ∈ T :
∑

λ∈Zη

φ(t,λ)u ≡ 1 (mod n) (3.9)

And thus analogously to the assertion in Eq. (3.7):

∀t ∈ T :
∑

u∈U ,i∈Zl ,λ∈Zη

d(t,i,λ)u ≡
�

�U
�

� (mod n) (3.10)

This can be used to detect (+2)-attacks or illegal answers, like selecting two different options
simultaneously.

3.4.4 Changing Votes Retrospectively

Often the participant’s availability might change over time. Therefore it is often necessary
that the participants are able to change their vote after they already submitted it. If a
participant u simply submits a new encrypted vote dδu , then his vote can simply be inferred
by calculating:

∑

u′∈U\{u}

dδu′ + dδu −
�

sumu′∈U\{u}d
δ
u′ + dδu

�

mod n. (3.11)

If the server can be trusted and the votes have not already been published, then the server
simply replaces the old vote with the new one. If the server cannot be trusted, then u can use
the following scheme, without introducing an additional protocol round: Let U1 be the set of
participants who have already submitted their votes to the server excluding u and U2 the set
of participants who have not submitted their votes to the server yet. Before submitting his

vote, u exchanges new keys kδu,u′ , u′ ∈ U2 with the participants of U2 and then calculates the
new encrypted vote:

dδu =
�

φδu +
∑

u′∈U1

kδu,u′ +
∑

u′∈U2

kδu,u′

�

mod n. (3.12)

3www.doodle.com

14

www.doodle.com

3 Related Work

The participants u′ ∈ U2 then encrypt their vote using the following formula:

dδu′ =
�

φδu′ + kδu′,u +
∑

u∗∈U\{u,u′}

kδu′,u∗
�

mod n. (3.13)

This scheme is secure as long as the server does not cooperate with all participants in U2 to
gain knowledge about u’s vote.

3.5 Discussion

The protocol presented by Kellermann in [Kel11] provides security against malicious par-
ticipants and to some extent malicious servers at the cost of increased communication
and computation cost, compared to the insecure case. However, the number of blocking
communication rounds, where the participants need to wait for the submission of every
other participant, remains the same as in insecure protocols, if security against malicious
participants cooperating with malicious servers is not a concern. If it is a concern, then
the participants need to execute an additional commit round before executing the voting
process.

As Kellermann’s protocol is a web application, one needs to keep in mind that, at the time of
this work, all web applications are vulnerable to getting malicious Javascript code from the
server. As all cryptographic operations are done in Javascript, the only means a client has to
protect himself from the Javascript leaking his secrets, is to check the Javascript code before
executing it, which is an unrealistically high burden on the client. Kellermann suggested
that the Javascript code could be checked by one or multiple parties and then appending a
digitally signed confirmation to the Javascript code, forming a system based on reputation.
The browser can then check those signatures and show to the participant how trustworthy the
downloaded Javascript code is. However this is not implemented in any browser currently in
use and thus would require a special browser extension.

15

4 Design

Kellermann’s protocol [Kel11] prevents the server and the participants from gaining any
information about the input of the other participants, but comes at the cost of increased
computation and communication and reduced flexibility. While the increased computation
and communication may not be a big concern, the reduced flexibility is. Extending the
protocol to dynamically insert and remove participants (Sections 3.4.1 and 3.4.2) is difficult
and in the case of removing a participant u, all other participants are required to publish
the key they share with u and thus they must wait until everyone else has published the key.
Additionally, this feature opens new means for a malicious participant for decrypting the
inputs of another participant u′ as described in Section 3.4.2.

Another drawback of Kellermann’s protocol is that the sum of participants who made a
selection for each individual timeslot is revealed, which can leak some information. For
example if two organisations A and B want to schedule a meeting, then the members of
organisation A could share the selections they made among each other, thus obtaining the sum
of each possible selection and each time slot t made by participants of organisation B. This
knowledge could leak some information about the internal workings of organisation B, like
for example if all participants in organisation B selected "no" for the timeslot t, the members
of organisation A could infer that B is holding an important meeting at t. Additionally, the
selection function f is very limited, as it can only take the number of votes for each time
slot as input. For example, if a company wants to securely schedule a press conference with
different media representatives, one usually weights more importance to the attendance of
the representatives of media companies with higher reach. However, Kellermann’s protocol
does not allow to make a weighted sum over the participant’s votes.

The security guarantees provided by Kellermann’s protocol are quite high. While one cannot
always trust a server, assuming a server to be semi-honest is usually sufficient and in fact,
as discussed in Section 3.5, it is very difficult to protect against a malicious server sending
malicious javascript code, thus one usually has to assume a semi-honest server for web-based
applications or at least a server unwilling to take the risk of getting caught sending malicious
Javascript code.

In this work, we introduce a protocol based on secure two-party computation between two
computing servers S1 and S2, also referred to as backend servers and an additional third
server S, referred to as frontend server, which does not take part in the secure two-party
computation.

16

4 Design

The protocol provides security against malicious participants, a semi-honest frontend server
and at least semi-honest backend server, which can be extended by the implementation to
give protection against non-colluding backend servers. The protocol maintains almost all the
flexibility of insecure protocols, does not reveal the number of participants who voted for
each timeslot and allows any selection function that can be represented by a Boolean circuit.
As we will show in Section 4.2, all three servers are required to be at least semi-honest in
order for the protocol to be secure.

Table 4.1: Comparison between the security and usability features of the different already
existing solutions to privacy-preserving scheduling. The parenthesized checkmarks
(Ø) indicate that a feature is either not fully available, or introduces security
concerns.

Doodle/DFN
Kellermann
[Kel11] Our Work

nondisclosure
in presence of

semi-honest participants × Ø Ø
malicious participants × Ø Ø
semi-honest server(s) × Ø Ø
malicious server(s) × Ø ×

correctness
in presence of

semi-honest participants Ø Ø Ø
malicious participants × Ø Ø
semi-honest server(s) × Ø Ø
malicious server(s) × Ø ×

visibility of participants’ identity public not disclosed
frontend
server +
initiator

possible selection functions any only sum
any

predefined

dynamically add participants Ø (Ø) Ø
dynamically remove participants Ø (Ø) Ø
multiple options (e.g. yes, no, maybe) Ø Ø Ø
change votes retrospectively Ø Ø Ø

4.1 The Protocol

In this section we present our protocol, which consists, in a similar fashion to the protocol
proposed by Benjamin Kellerman [Kel11] (see also Section 3.2), of the three phases Poll
Generation, Voting Process and Evaluation Process. In the poll generation, the data needed
for the poll, like the identity of the participants and the selectable time slots, are initialized.

17

4 Design

Then, in the voting process, the participants each select their preferred time slots and finally,
when all participant have cast their votes, the votes are evaluated to calculate a winning
time slot, without revealing the selections made by the participants to any party and finally
revealed to the participants.

The participants never communicate directly with the backend servers and always send the
selections they made to the frontend server. In order to prevent the frontend server S from
gaining any information about the selections made by the participants, S receives a public key
k1 from the first backend server S1 and a public key k2 from the second backend server S2,
which S will then forward to the participants participating in any poll. The keys k1 and k2 are
public keys of any semantically secure asymmetric encryption scheme (2048-bit RSA [RSA78]
with the padding described in PKCS #1 Version 1.51 in our case).

4.1.1 Poll Generation

Figure 4.1: (1) S gets the two public keys k1 and k2 from the backend servers S1 and S2.
(2) The poll Initiator defines the set of participants U and the set of available
time slots T and sends them to the frontend server S.
(3) S generates unique urls for each participant and sends them to the corre-
sponding participant.

1See RFC 2313: https://tools.ietf.org/html/rfc2313

18

https://tools.ietf.org/html/rfc2313

4 Design

The poll is initiated by a party called the poll initiator, who defines a set of time options T and
a set of participants U and sends this information to a server S. S then generates |U | partially
random and unique urls and sends one of them to each participant.

4.1.2 Voting Process

Figure 4.2: (4) S sends the available time slots T and the two public keys k1 and k2 to the
participants, who request the previously sent url.
(5) The participants send back their encrypted selections Enck1

(ϕ⊕ρ), Enck2
(ρ)

back to S
.

The participants who followed the url obtained by S, proceed by selecting one of the op-
tions "yes", "no" or "maybe" for every time slot t, but instead of sending their selections
−→
φ = (φt1

, ...,φt|T |)
T , t1, ..., t|T | ∈ T directly back to the frontend server S, the participants

generate a random vector −→ρ = (ρt1
, ...,ρ|T |)T , where ρ1, ...,ρ|T | are random numbers. They

then calculate the selection vector
−→
d = (φt1

⊕ρt1
, ...,φt|T | ⊕ρt|T |)

T and send the encryptions

Enck1
(
−→
d) and Enck2

(−→ρ) back to S, where they are stored. S is a server, that only sends
the Javascript code necessary for executing the protocol to the participants and that collects
the selections of the participants to send them back to the servers S1 and S2 when the poll
finishes. As a consequence, S does not possess the corresponding private keys to the public

19

4 Design

keys k1 and k2 and is therefore unable to learn either
−→
d or −→ρ . The semantic security of the

asymmetric encryption scheme also prevents the server from gaining information about the
input of the participants by perfoming a guessing attack.

4.1.3 Evaluation Process

Figure 4.3: (6) S sends the encryptions {Enck1
(ϕ ⊕ ρ)}u∈U to S1 and the encryptions

{Enck2
(ρ)}u∈U to S2

(7) The two backend servers securely calculate the evaluation function.
(8) S1 sends the result to S1.
(9) S forwards the result to each participant

When every participant has submitted their input or the poll initiator triggers the end of the

poll, S sends the encrypted selection vectors
−→
du he obtained from every participant u ∈ U

to the server S1 and the random vectors −→ρu to the server S2. S1 possesses the private key
to the public key k1 and S2 possesses the private key to the public key k2. S1 then decrypts

the selection vectors
−→
d and S2 decrypts the random vectors −→ρ . S1 and S2 then securely

evaluate any previously defined selection function f , using either Yao’s garbled circuit protocol
described in Section 2.5.1 or the GMW protocol described in Section 2.5.2. The result of f ,

20

4 Design

which is the winning time slot t and the participants who selected "no" for t is then sent back
to S, who then reveals it to the participants and the initiator.

4.2 Security

As already mentioned, our protocol provides security against malicious participants and semi-
honest servers. S is not able to decrypt the encrypted vectors obtained by the participants,
as S does not possess the private keys necessary for decryption. However, if any of the
servers are allowed to deviate from the protocol, neither the nondisclosure of the participants’
inputs, nor fairness in the selection of the scheduled time can be guaranteed. We will show
in the subsequent sections, which are the potential attacks each party can execute on the
protocol.

4.2.1 Potential Attacks of the Frontend Server

If the frontend server S was allowed to deviate from the protocol, he could send his own
public keys instead in order to be able to decrypt the inputs. While this kind of attack might
be prevented by requiring ssl certificates2 that are issued and verified by a trusted third
party, usually called certificate authority, this protection is very limited, as the asymmetric
encryption is done within the Javascript code sent by the server S. As such, S might, instead
of sending Javascript code to encrypt the participant’s selections before submitting them,
send Javascript code to not encrypt the selections at all.

Another potential attack S can execute on the protocol is, instead of sending the encrypted
selections of the participants to S1 and S2, send the encrypted inputs of only one participant
u and generate fake selections, so that the result returned by S1 or S2 combined with the fake
selections, reveals information about the selections of u. This attack also has the advantage,
that S does not risk getting caught deviating from the protocol, as opposed to sending
malicious Javascript code to the participants. Furthermore, it can often be assumed that a
semi-honest S stores all data received during the protocol execution. If S becomes malicious
at a later time point after the protocol execution - which is a realistic assumption - S could
use the stored inputs to perform the aforementioned attack. Note that the case of sending
malicious Javascript code, S has to be malicious before sending the Javascript code in order
to get the participants’ inputs, but in this case, S can be malicious at a later point and still get
the participants’ inputs.

This attack can be prevented by letting the clients send their encrypted selections directly to
the servers S1 and S2 instead of sending them to S. However, this requires all three servers to
be online at the same time, thus reducing the stability of the protocol, as if only one server is
not available, the participants are not able to cast their votes.

2See http://tldp.org/HOWTO/SSL-Certificates-HOWTO/x64.html

21

http://tldp.org/HOWTO/SSL-Certificates-HOWTO/x64.html

4 Design

4.2.2 Potential Attacks of the Backend Servers

S1 does not gain any knowledge about the selections, as S1 only sees the encrypted selections
φu

t ⊕ρ
u
t , with t ∈ T, u ∈ U , φu

t being a selection and ρu
t being a random number, therefore

providing information-theoretic security [Sha49], as S1 has no knowledge about ρu
t . S2

conversely has knowledge about the random numbers ρu
t , but no knowledge about the

selections φu
t . When executing a secure two-party computation protocol, the inputs of S1

and S2 can be securely combined, to obtain the selections φu
t and evaluate the selection

function f . As the secure two-party computation does not reveal any information about the
input of the other party, S1 learns nothing about ρu

t and S2 learns nothing about φu
t ⊕ρ

u
t ,

thus gaining no information about the selections φu
t . However, if either S1 or S2 were to

deviate from the protocol, he could gain information about the other party’s input and thus
gain information about φu

t , as neither Yao’s garbled circuit protocol (Section 2.5.1), nor the
GMW protocol (Section 2.5.2) guarantee the nondisclosure of the inputs in the presence of
malicious adversaries.

This attack could be prevented by using a secure two-party computation protocol like the
one proposed in [LP07], which achieves nondisclosure of the inputs, even in the presence of
malicious adversaries. However, this approach does not provide any security if both servers,
S1 and S2, are allowed to collude in order to gain information about the selections made by
the participants.

4.2.3 Potential Attacks of the Participants

As the participants do not see the selections of the other participants, they gain no knowledge
about them. As neither server S, S1 nor S2 are able see the inputs made by the participants, a
malicious participant um might send invalid inputs without the servers noticing it. However,
as the servers S1 and S2 reduce the inputs they get using the modulo operation, the inputs sent
by um are always parsed as, in this case unspecified, but valid inputs. Therefore, um is not able
to gain any advantage or break the system by sending invalid inputs. However, if um is able to
guess the partially random part of the unique url sent to another participant u′, then um could
vote in place of u′. However, if the random part of the url is long enough, i.e. the number
of possible unique urls is much larger than |U |, the probability of um successfully guessing
the unique url of any other participant u′ is negligible. As S generates only one random and
unique url for every participant, the server is able to uniquely identify the participants through
that url and thus prevent participants from voting multiple times.

4.2.4 Potential Attacks of the Initiator

It is necessary to assume that the poll initiator ui initiates the poll in a fair way. If ui was to
define a set of participants U , where ui is able to control multiple participants U ′ ⊆ U , then ui
would gain an advantage over other participants, by being able to vote |U ′| times. Moreover,

22

4 Design

if the poll initiator is allowed to add new participants after evaluating the protocol once
and execute it again, he could infer information about the other participants’ selections, by
adding participants he knows the selection of and combining it with the results of the different
execution. While the first attack cannot easily be prevented without revealing the identity
of each participant to every other participant, the second attack can easily be prevented by
allowing only one evaluation per poll.

4.3 Extension of the Protocol

Extending the protocol to allow dynamic insertion and removal of participants is easy, as it
requires no cryptographic operations. Dynamically inserting a participant only requires to
create a new empty entry on the server and dynamically removing a participant only requires
to delete the entry of the participant on the server. Allowing the participants to change their
votes retrospectively is also easy, as the participant simply sends a new encrypted selection
vector and a new encrypted random vector back to S, where S replaces the old vectors with
the new ones. However, as the former selections are encrypted, the participants cannot
obtain their previous selections from S. Another extension, which the protocol presented
by Kellermann [Kel11] does not support, is to allow some sort of weight to the participants,
in order to make it less likely that a time slot is selected if an important participant, i.e. a
participant having a high weight, is unable to attend.

Although extending the protocol is easy to implement, it comes at the cost of assuming the
poll initiator ui to be semi-honest, as ui could use the extensions to gain an advantage in the
time selection. In the case of dynamic insertion of participants, ui could insert additional
participants he controls, right before ending the poll, thus allowing him to vote multiple
times. In the same fashion ui could set a high weight for himself, so that his preferred time
slot is selected.

23

5 Implementation

In this chapter we present the implementation of the design introduced in Chapter 4. The
implementation is seperated in two parts: the first being the frontend part in which the clients
initialize a poll and make their selections. The second part, called the backend part, consists of
securely evaluating the selections made by the clients, in order to find the best time to schedule.
The frontend part is executed by one frontend server and the backend part is executed by two
different backend servers. In order to achieve the security guarantees described in Section 4.2
the two backend servers are required to be executed on different machines. However, the
frontend server is allowed to share one machine with either one of the two backend servers.
Additionally, all communication is secured by Transport Layer Security1 (TLS), to ensure the
integrity of the messages sent between the different entities.

5.1 Frontend

In the frontend part, a client, also known as the poll initiator or initiator for short, starts a
poll by defining a title of the poll and entering his email address. Then the initiator enters
the email addresses of the clients who are allowed to participate in the poll (the initiator is
implicitly a participant, thus additional input of his email address is not necessary). Note that
the poll initiator might input one email address multiple times, but the server will simply
remove duplicates in that case, thus preventing a participant to have multiple votes. Finally,
the initiator selects the time slots, which the participants might choose from. The number of
possible time slots that can be defined is actually limited (we will see later why this is the
case), but since the limit is very high (it equals to 735), this is not an issue for (almost all)
realistic scenarios.

When the initiator finished creating the poll, the frontend server generates a partially random
and unique link for every participant and poll. It is important that the participants do not
share the link with any third party, as whoever is in possession of the link, can make or change
a selection.

When a participant follows the link he received from the server, the server sends the two
different 2048-bit public RSA keys of S1 and S2 and polls the participant for every time slot
to select whether he’s either available (option "yes" encoded as integer 0), maybe available
(option "maybe" encoded as integer 1) or not available at that time slot (option "no" encoded

1See RFC 5246: https://tools.ietf.org/html/rfc5246

24

https://tools.ietf.org/html/rfc5246

5 Implementation

as integer 3). If the participant does not make a selection for a given time slot, then it will
be interpreted as a "no" for that time slot. As soon as the participant submits his inputs
by clicking on the button "Done", random numbers are generated for each time slot. The
selections made by the participant are then XORed with the generated random numbers
and then encrypted with a semantically secure RSA encryption scheme, using the first key
previously received from the server. The generated random numbers are also encrypted
using the same scheme, but using the second key. Finally, the encryptions are sent back
to the frontend server. Note that since the RSA encryption scheme allows to only encrypt
messages not exceeding a certain length, the number of time slot that can be selected is
affected by that limitation. However, since the selections made by the participants are only
2 bits long, 3 selections can be expressed by one base64 digit, enabling 1 byte to hold 3
selections. Therefore, the maximum number of possible time slots to select from, when using
RSA with the padding described in PKCS #1 Version 1.52, is 3 · (2048/8− 11) = 735, which
is far enough for (almost) all possible real world scenarios.

When implementing the extensions suggested in Section 4.3 one can redirect the initiator
to a poll admin page, where he can insert or remove participants from the poll, define
a weight for every participant (which should be 1 for every participant when initiating
the poll), end the poll or input his own selections by executing the procedure described
above.

When every participant made their selections, the server will send the encrypted inputs of
every participant, minus the participants who did not make a selection, to the two backend
servers as described in Section 4.1. When implementing weight support for the participants,
the frontend server could generate a random number rw for each weight w and additionaly
send rw ⊕w to one backend server and rw to the other. The backend servers then evaluate the
circuit as will be described in the following section and send back the result to the frontend
server.

The result obtained by the backend servers consist of the winning time slot and an array of
bits bi , where bi = 1 if the participant at index i selected "no" for the winning time slot and
bi = 0 in all other cases. The frontend server then publishes the winning time slot to every
participant and additionaly the email of the participants who selected "no" for the winning
time slot to the poll initiator.

5.2 Backend

The backend part consists of two backend servers that are connected to each other and
listening for incoming data of the frontend server. As soon as they receive data from the
frontend server, they decrypt the RSA encrypted data of the participants using their RSA
private key and then generate a Boolean circuit that will be used to start a secure two-party
computation finding the optimal time slot. The optimal time slot is calculated by minimizing

2See RFC 2313: https://tools.ietf.org/html/rfc2313

25

https://tools.ietf.org/html/rfc2313

5 Implementation

the number of participants who selected "no" and in case of a tie, select the time slot in which
the fewest participants selected "maybe" among the tying time slots. If there are multiple
optimal time slots, then one will be chosen deterministically. However, it is not specified
which time slot will be chosen among the optimal ones, but executing the circuit multiple
times with the same inputs will always yield the same result.

5.2.1 The ABY Framework

ABY [DSZ15] is a framework that allows to create and execute Boolean and arithmetic
circuits [ADI+17] securely. ABY supports arithmetic sharing to execute the arithmetic circuits
securely and either Yao’s garbled circuit protocol (Section 2.5.1) or the GMW protocol
(Section 2.5.2) to execute the Boolean circuit securely. It is also possible to combine the
different protocols in one execution, as ABY allows for efficient conversion between the
different protocols. We will only focus on the Boolean circuit support of the ABY framework,
i.e. Yao’s garbled circuit protocol and the GMW protocol in this work.

5.2.2 Boolean Circuit Generation

The selections made by the participants for a given time slot t are encoded as 2 bit values
b(t,u)1 b(t,u)2 with "yes" being encoded as 002, "maybe" being encoded as 012 and "no" being
encoded as 112. The selections are first decrypted within the circuit using the XOR operation
when executing the circuit with Yao’s garbled circuit protocol. When executing the circuit
with the GMW protocol, this step is ommitted as the encrypted values each server posseses
already represent a share of in the GMW protocol. This omits the sharing of the values at the
start of the GMW protocol, thus reducing the communication.

Two summations are then made for each time slot t: the first being over the b(t,u)1 values of

each participant u and the second being over the b(t,u)2 values, obtaining the number of nos
nt and the number of maybes mt for each time slot t. Both sums nt and mt are concatenated,
yielding c t . The concatenation is an operation equivalent to c t = nt · 2nt

+mt , but without
requiring any AND gate. For every c t , an index i t is created and put as a constant known to
both parties into the Boolean circuit, thus obtaining the tuple (c t , i t). Then, the c t values are
minimized, obtaining the tuple (c tmin , i tmin), where c tmin ≤ c t for each time slot t. The value
c tmin is finally discarded and only i tmin is set as the output node.

Since c t = nt · 2nt
+mt with nt being the sum over the b(t,u)1 values, and mt being the sum

over the b(t,u)2 values, the described Boolean circuit minimizes nt and in case of several

minimal nt , minimizes the mt among them. As b(t,u)1 = 1 if and only if the participant u
selected "no" for time slot t, nt is indeed the sum of participants who selected "no". However,
mt does not describe the number of "maybe" selections for time slot t, but the sum of "no"
selections and "maybe" selections for t. Nonetheless, as mt is only minimized when the
number of "no" selections is equal for two time slots t1 and t2, mt1 < mt2 if and only if the

26

5 Implementation

number of "maybe" selections for t1 is smaller than the number of "maybe" selections for
t2.

As the number of legal choices is 3, but the number of possible inputs is 4, the backend
servers have to prevent a participant from gaining any advantage by sending an illegal input.
This case has to be solved within the Boolean circuit, as neither server is able to see and
thus check the inputs for validity. However, the only illegal value is 102 and sending this
value instead of "no" or "yes" yields no advantage in the poll: if a malicious participant um
wanted a time slot t to be selected, then his best bet would be to send 002, as sending 102
would increase the nt value, thus decreasing the likelihood that t is selected. Conversely, if
um wants t to not be selected, his best bet would be to send 112, as sending 102 would yield
a smaller mt value and thus increase the likelihood of t being selected in case of tying nt

values. As sending 102 yields no advantage, the Boolean circuit treats the value 102 as if it
was a legal, thus requiring no additional gates. Note that if the "no" selection was encoded as
102, um would be able to gain an advantage by sending the illegal value 112, thus requiring
additional gates to prevent this from happening.

When generating the Boolean circuit that will be evaluated by either Yao’s garbled circuit
protocol (Section 2.5.1) or the GMW protocol (Section 2.5.2) it is necessary to minimize the
number of AND gates in order to minimize the communication and computation time. Since
the circuit presented above consists mostly of binary adder and the number of AND gates
within these adders is linear in the number of bits of the summands, keeping the bit length
of the summands to a minimum is mandatory. However, the size of the summands rapidly
increase when adding linearly: adding 2 1-bit values yield a 2-bit value, then adding a 2-bit
value and a 1-bit value yield a 3-bit value and so on. Therefore, the summations are made in
a tree-like fashion, which additionally helps decreasing the depth of the circuit. Consequently,
the minimization of the c t values is also done in a tree-like fashion.

The size of the binary adders can be further decreased by keeping track of the maximum
possible value after each operation. For example adding a 2-bit value a and a 1-bit value b
yields a 3-bit value c. However, if it is known that a can only hold at most the integer 2, then
a+ b cannot be greater than 3, thus yielding a 2-bit value c. Since many summations over
1-bit values are made, where the maximum possible value is 1, this track-keeping allows to
remove even more unnecessary AND-gates.

When allowing different weights to the participants, the selections made by a participant u
with weight wu count as if wu participants made the selections. The circuit described above can
simply be extended to support this use case. Instead of adding up the values b(t,u)i , i ∈ {1, 2}
of each participant u, the values v(t,u)i are add up, where the v(t,u)i are calculated as follows:

Let ` be the bit length of the highest weight wmax . Now, the 1-bit value b(t,u)i is expanded to

the bit length `, i.e. the bit b(t,u)i is copied ` times to obtain the `-bit value β (t,u)i , which is

then used to calculate the biwise AND operation between the β (t,u)i value of participant u

and his weight wu, yielding v(t,u)i .

27

5 Implementation

As supporting a weighted sum requires some overhead that increases with the bit length of the
highest weight wmax , it is important that the frontend server sends whether the participants
are weighted and, if it is the case, the value of wmax , as the backend servers only see the
encrypted weights.

5.2.3 Executing the Boolean Circuit and Revealing the Result

The Boolean circuit built as described in the previous section is then executed and the result
tr , which is the winning time slot, published to both backend servers. When requested by
the protocol, a second Boolean circuit is then built, taking the cleartext result tr as input and

returning a vector of bits
−→
bu, where the component bu = 1 if the participant u selected "no"

for the winning time slot tr and bu = 0 in all other cases. This circuit can be built using no
AND gates, by simply retrieving the b(tr ,u)

2 of every participant u. The backend servers finally

send the results tr and
−→
bu back to the frontend server.

28

6 Evaluation

In this chapter, we will show that our implementation is efficient, even when scheduling
meetings between thousands of participants. We will first calculate an estimate about the
maximum number of AND gates that should be in the circuit, depending on the problem size
ps = (nu, nt), where nu denotes the number of participants and nt denotes the number of
time slots. We will then show, that the number of AND gates our circuits have for different ps
is smaller that our estimate, when the size-optimized building blocks of the ABY framework
are used. We finally show the runtimes and communication sizes when executing the circuits
on different ps.

6.1 Estimate on the Number of AND Gates in the Circuit
Constructions

Let nu be the number of participants and nt the number of time slots. When constructing
a circuit as described in Section 5.2.2 for Yao’s garbled circuit protocol (Yao circuit), one
can easily see that the number of adders is exactly 2 · (nu − 1) for each time slot t, as we
make a summation over each bit value b(t,u)1 of the selections made by the participants u at

timeslot t and another summation over all b(t,u)2 values of timeslot t. As we are making these
summations for each time slot t and no other summation elsewhere, the total number of
adders in the circuit is nadd = 2 · (nu − 1) · nt .

In the ABY framework [DSZ15], each adder a has exactly `r AND gates [KSS09], where `r
is the minimum number of bits needed to store the result r = x + y and x and y being the
two inputs of the adder a. `r can be calculated as `r = dlog2(x)e+ dlog2(y)e+ 1). Since we
are only making summations over 1-bit values, each sum st

i over the participants selections

b(t,u)i , i ∈ {1, 2} is st
i ≤ nu and thus, the bitlength `st

i
of st

i is lst
i
≤ dlog2(nu)e. Therefore,

the number of AND gates gadd in each adder is gadd ≤ dlog2(nu)e. More precisely, as the
summation is made in a tree-like fashion and every input at the leaf is exactly 1 bit long, the
add gates at level 1 have 1 AND gate, at level 2, 2 AND gates and so on. Lets denote an adder
at level j of the tree as ADD j and the number of AND gates within ADD j as |ADD j|. We can
easily see that j ∈ {1, ..., dlog2(nu)e} and that there are exactly

� nu
2 j

�

adder at level j of the

tree. The number of AND gates in a summation over all b(t,u)i values of a time slot t can then

29

6 Evaluation

be calculated as:

g t
i =

dlog2(nu)e
∑

j=1

¡

nu

2 j

¤

· |ADD j|= nu ·
dlog2(nu)e
∑

j=1

¡

j
2 j

¤

< 2 · nu ·
�

1−
1
nu

�

= 2 · (nu − 1). (6.1)

Finally, the total number of AND gates within the totality of adders in the circuit can be
calculated as:

gSU M = nt · (g t
1 + g t

2)< 4 · nt · (nu − 1). (6.2)

When the sums st
i for each time slot t are calculated, the st

1 and st
2 sums are concatenated,

which requires no AND gate and yields a value c t of bitlength `c t = `st
1
+ `st

2 = 2 · dlog2(nu)e,
where `st

1
and `st

2
are the bitlength of st

1 and st
2. The c t values are minimized to find the

minimal index i, which consists of nt minimizing with index operations, all of which in turn
consist of one comparison operation and two multiplex operations (one for the value and one
for the index). This is an equivalent construction to the efficient minimum circuit presented
in [KSS09]. Now let iMAX be the maximum index value (i.e. ∀i : i ≤ iMAX) and cMAX be
the biggest number among all c t values (∀c t : c t ≤ cMAX). We define `iMAX

= dlog2(iMAX)e
as being the bitlength of iMAX and `cMAX

= dlog2(cMAX)e as being the bitlength of cMAX . Note
that `c t = `cMAX

for every c t value as the c t are not known during circuit evaluation and
therefore their bitlength is required to be able to hold every possible value, notably cMAX .
The number of AND gates in the efficient minimum circuit can be deduced from [KSS09]
as

gM IN < 2 · `cMAX
· (nt − 1) + nt + 1. (6.3)

The estimate in the number of AND gates within the circuit can thus be calculated, using
Equations (6.2) and (6.3), as follows:

gAN D = gSU M + gM IN < 4 · nt · (nu − 1) + 2 · `cMAX
· (nt − 1) + nt + 1

= 4 · (nt · (nu − 1) + dlog2(nu)e · (nt − 1)) + nt + 1.
(6.4)

When estimating the number of AND gates in our circuit that supports weighted sums
(weighted Yao circuit), we can simply use the fact that the number of AND gates in a circuit
containing one `-bit adder is equal to the number of AND gates in a circuit containing `
1-bit adders. In a similar fashion, we can see that the number of AND gates in a minimizing
with index circuit over `-bit values, is smaller or equal to the number of AND gates in `
minimizing with index circuits over 1-bit values. Let wmax be the maximum weight in the
weighted sum circuit. We can therefore estimate the number of AND gates in the weighted
summations part as gwsum = dlog2(wMAX)e · gSU M and in the minimizing with index part as
gwmin ≤ dlog2(wMAX)e · gM IN . As mentioned in Section 5.2.2 we also need `wMAX

additional
AND gates for every input node, thus obtaining the following estimate in the number of AND
gates:

gWAN D = gwsum + gwmin + nu · nt · dlog2(wMAX)e= dlog2(wMAX e · (gAN D + nu · nt) (6.5)

30

6 Evaluation

6.2 Circuit Size Comparision

In this section we show the circuit sizes for different problem sizes ps, when building the
Yao circuit and the weighted Yao circuit. We can see in the Tables 6.1 and 6.2, that both
circuit constructions undercut the estimates we made in the Equations (6.4) and (6.5), when
constructing for Yao. However, as we can see in Tables ?? and ??, when building for the GMW
protocol, our construction exceeds our estimation by a factor of about 2. This is due to the
fact, that the ABY building blocks optimize for depth instead of size when building for the
GMW protocol, thus obtainig larger, but flatter circuits.

Table 6.1: Comparison between our estimate of AND gates for different promblem sizes, and
the real cicuit size when building the Yao circuit. T denotes the number of time
slots and U denotes the number of participants

Yao Estimates from Equation (6.4)
T = 10 T = 20 T = 30 T = 10 T = 20 T = 30

U = 10 480 999 1509 515 1045 1575

U = 50 2112 4271 6421 2187 4397 6607

U = 100 4128 8307 12477 4223 8473 12723

U = 500 20160 40379 60589 20295 40625 60955

U = 1000 40176 80415 120645 40331 80701 121071

U = 5000 200224 400523 600813 200439 400929 601419

U = 10000 400240 800559 1200869 400475 801005 1201535

Table 6.2: Comparison between our estimate of AND gates for different promblem sizes and
wMAX = 65535, with the real cicuit size when building the weighted Yao circuit. t
denotes the number of time slots and U denotes the number of participants

Weighted Yao Estimates from Equation (6.5)
T = 10 T = 20 T = 30 T = 10 T = 20 T = 30

U = 10 7016 14135 21245 9840 19920 30000

U = 50 33648 67407 101157 42992 86352 129712

U = 100 66944 134003 201053 83568 167568 251568

U = 500 330656 661435 992205 404720 810000 1215280

U = 1000 660912 1321951 1982981 805296 1611216 2417136

31

6 Evaluation

Table 6.3: Comparison between our estimate of AND gates for different promblem sizes, and
the real cicuit size when building the circuit for the GMW protocol. T denotes the
number of time slots and U denotes the number of participants

GMW Estimates from Equation (6.4)
T = 10 T = 20 T = 30 T = 10 T = 20 T = 30

U = 10 711 1441 2171 515 1045 1575

U = 50 4010 8050 12090 2187 4397 6607

U = 100 8204 16444 24684 4223 8473 12723

U = 500 43023 86093 129163 20295 40625 60955

U = 1000 86377 172807 259237 40331 80701 121071

U = 5000 430839 861749 1292659 200439 400929 601419

U = 10000 862233 1724543 2586853 400475 801005 1201535

Table 6.4: Comparison between our estimate of AND gates for different promblem sizes, and
the real cicuit size when building the circuit, supporting weighted summations
for the GMW protocol. T denotes the number of time slots and U denotes the
number of participants. The maximum wight supported by the circuits is always
wMAX = 65535.

Weighted GMW Estimates from Equation (6.5)
T = 10 T = 20 T = 30 T = 10 T = 20 T = 30

U = 10 19308 38728 58148 9840 19920 30000

U = 50 100096 200316 300536 42992 86352 129712

U = 100 201370 402870 604370 83568 167568 251568

U = 500 1001398 2002938 3004478 404720 810000 1215280

U = 1000 2004232 4008612 6012992 805296 1611216 2417136

6.3 Runtime Measurements

In this section we present the runtimes and communications when evaluating the circuits built
as described in Section 5.2.2. We show the runtimes when executing the circuits generated
for Yao’s Garbled Circuit Protocol and the GMW protocol plus the runtimes when executing
the weighted sum circuits for both protocols.

32

6 Evaluation

Table 6.5: Runtimes in milliseconds for Yao’s protocol and the GMW protocol. U denotes the
number of participants and T the number of available time slots. Measured on a
simulated 1 Gbit LAN.

Yao GMW
setup online setup online

T = 10
U = 10 1.1 0.6 1.2 0.8

U = 50 3.1 1.9 2.2 1.7

U = 100 4.2 3.0 3.6 3.3

U = 500 18.9 15.3 11.2 18.3

U = 1000 37.9 30.3 20.9 41.9

U = 5000 184.2 152.8 74.7 247.9

U = 10000 349.7 303.0 141.6 511.8

T = 20
U = 10 2.1 0.9 1.5 1.4

U = 50 5.0 3.5 3.4 5.6

U = 100 8.1 7.1 5.7 8.1

U = 500 37.5 30.3 20.3 43.8

U = 1000 72.3 60.9 33.3 88.8

U = 5000 347.2 304.1 138.1 507.8

U = 10000 697.5 625.7 271.7 1057.7

T = 30
U = 10 2.2 1.2 1.6 1.7

U = 50 7.0 5.2 4.8 8.6

U = 100 13.3 10.9 7.5 14.4

U = 500 54.7 46.5 27.5 65.8

U = 1000 108.6 90.8 50.0 135.8

U = 5000 634.5 469.4 200.4 768.1

U = 10000 1369.7 1022.6 410.6 1627.4

33

6 Evaluation

Table 6.6: Runtimes in milliseconds for Yao’s protocol and the GMW protocol on a circuit
supporting weighted sums up until a weight of wMAX = 65535. U denotes the
number of participants and T the number of available time slots. Measured on a
simulated 1 Gbit LAN

Yao GMW
setup online setup online

T = 10
U = 10 3.7 2.6 8.2 6.6

U = 50 15.2 11.5 24.0 37.3

U = 100 29.7 22.9 40.5 89.4

U = 500 147.5 121.5 156.7 427.6

U = 1000 282.9 250.9 300.2 898.4

T = 20
U = 10 6.4 5.1 11.6 12.0

U = 50 29.5 23.3 42.4 75.5

U = 100 56.0 47.5 71.3 149.1

U = 500 278.2 234.8 307.8 881.7

U = 1000 578.1 459.4 610.2 1873.4

T = 30
U = 10 9.4 7.5 13.7 17.1

U = 50 43.5 36.3 58.9 122.1

U = 100 83.2 68.9 96.0 242.2

U = 500 417.2 335.8 450.6 1347.8

U = 1000 930.6 696.1 885.1 2814.7

We can see that Yao’s protocol is much slower than the GMW protocol in the setup phase,
with increasing differences in increasing circuit sizes. However, Yao is faster than the GMW
protocol in the online phase and the proportional difference increases with the circuit size.
For the weighted circuits, the GMW protocol and Yao’s protocol are about equal in the setup
phase. For the online phase, Yao’s protocol is much faster than the GMW protocol, with a
much bigger proportional difference than in the non-weighted circuit.

34

6 Evaluation

Table 6.7: Communication size in KB for Yao’s protocol and the GMW protocol. For the GMW
protocol the number of protocol rounds is additionally given, as for Yao’s protocol
the number of protocol rounds is constant and equals to 3

Yao GMW
setup online setup online #rounds

T = 10
U = 10 19.7 14.0 44.3 0.9 23

U = 50 82.1 47.1 152.3 2.7 30

U = 100 161.1 94.0 292.3 4.8 32

U = 500 788.1 470.0 1380.3 22.0 41

U = 1000 1569.6 940.0 2736.5 43.2 42

U = 5000 7821.3 4699.8 13509.5 211.6 49

U = 10000 15634.1 9399.5 26994.8 422.3 51

T = 20
U = 10 39.9 28.2 72.3 1.4 28

U = 50 165.5 94.0 288.3 4.8 36

U = 100 323.7 188.0 548.3 9.0 38

U = 500 1575.9 940.0 2736.5 43.2 48

U = 1000 3139.1 1879.9 5448.7 85.6 49

U = 5000 15642.9 9399.5 26978.8 422.1 56

U = 10000 31268.5 18798.9 53945.4 843.5 58

T = 30
U = 10 57.2 42.4 92.3 1.8 28

U = 50 248.7 141.0 412.3 6.8 36

U = 100 484.0 282.0 808.3 13.0 38

U = 500 2363.5 1410.0 4084.6 64.3 48

U = 1000 4708.4 2819.9 8149.0 127.8 49

U = 5000 23464.2 14099.2 40448.1 632.6 56

U = 10000 46904.7 28198.3 80895.9 1264.6 58

35

6 Evaluation

Table 6.8: Communication size in KB for Yao’s protocol and the GMW protocol on a Boolean
circuit construction allowing for weighted sums up until wMAX = 65535. For the
GMW protocol the number of protocol rounds is additionally given. For Yao’s
protocol the number is a constant 3

Weighted Yao Wighted GMW
setup online setup online #rounds

T = 10
U = 10 227.0 17.0 652.3 10.8 51

U = 50 1081.6 84.6 3176.5 50.4 58

U = 100 2150.1 169.2 6344.8 99.9 61

U = 500 10615.3 846.0 31355.2 490.7 69

U = 1000 21218.0 1691.9 62698.2 980.5 73

T = 20
U = 10 457.9 114.7 1260.3 20.5 59

U = 50 2150.6 131.6 6320.8 99.5 66

U = 100 4284.5 263.2 12649.4 198.5 69

U = 500 21239.5 1316.0 62658.2 980.0 77

U = 1000 42537.8 2631.9 125352.2 1959.4 81

T = 30
U = 10 677.2 66.2 1864.4 30.1 59

U = 50 3221.3 178.6 9453.1 148.6 66

U = 100 6438.7 357.2 18946.0 297.0 69

U = 500 31897.9 1785.9 93969.2 1469.2 77

U = 1000 64226.1 3571.8 187994.2 2938.2 81

36

6 Evaluation

We can see that in the setup phase, Yao’s protcol fares better than the GMW protocol. However,
In the online phase, the GMW protocol requires almost no communation in comparison to
Yao’s protocol. However, the communication overall, i.e. the sum of the communication in
the setup phase and the online phase is about equal between Yao’s protocol and the GMW
protocol. This is due to the fact, that the circuits built for the GMW protocol contain more AND
gates (about twice as much), than the circuits built for Yao’s protocol.

37

7 Conclusion

We provided a web-based solution to privacy-preserving scheduling that allows a wider
range of possible privacy-preserving selection functions than comparable solutions presented
so far, while maintaining efficiency in communication and computation for almost all real
world scenarios, taking only a few milliseconds in the most extreme cases of thousands of
participants. Furthermore, our solution is easily extensible to mimic all the features provided
by non-privacy-preserving scheduling applications. The security guarantees provided by our
protocol are high for almost all common use cases.

Future work include on the one hand further optimizing the protocol. The participants
could for example send two arithmetic shares, thus allowing the summations to be made
through efficient additive homomorphic operations. Then the conversion functions in the ABY
framework can be used to convert into a Boolean circuit, which allows for efficient evaluation
of the minimizing function. On the other hand, the security guarantees provided by our
protocol could be further improved. One improvement includes using a secure two-party
protocol that guarantees nondisclosure in the presence of malicious opponents, thus lifting
the semi-honest assumption on the backend servers. Another improvement would be to
combine our protocol with the protocol proposed by Kellermann [Kel11]. This combination
would allow the participants to additionally encrypt their inputs in a similar fashion done
in Kellermanns protocol, ebfore proceeding with our protocol. In this case the frontend
server would generate the keys and send them to the participants instead of letting the
participants generate their own keys and exchange them with every other participant. This
would provide security, even in the presence of colluding backend servers, as in this case,
they would only be able to gain knowledge about the sum of the participants’ selections in
each time slot. However, the resulting protocol would not be able to allow every evaluation
function to be defined, notably the weighted sums evaluation would not be possible in this
protocol.

38

List of Figures

2.1 A Boolean circuit over {AN D, XOR} with 4 input nodes and 2 output nodes.
The ⊕-nodes represent XOR gates and the ∧-nodes represent AN D gates. The
circuit size is 4, the multiplicative size is 1 and the multiplicative depth is 1
(the path shown in red being the path containing the most AND gates). 5

4.1 (1) S gets the two public keys k1 and k2 from the backend servers S1 and S2.
(2) The poll Initiator defines the set of participants U and the set of available
time slots T and sends them to the frontend server S. (3) S generates unique
urls for each participant and sends them to the corresponding participant. . . 18

4.2 (4) S sends the available time slots T and the two public keys k1 and k2 to the
participants, who request the previously sent url. (5) The participants send
back their encrypted selections Enck1

(ϕ ⊕ρ), Enck2
(ρ) back to S 19

4.3 (6) S sends the encryptions {Enck1
(ϕ ⊕ ρ)}u∈U to S1 and the encryptions

{Enck2
(ρ)}u∈U to S2 (7) The two backend servers securely calculate the evalu-

ation function. (8) S1 sends the result to S1. (9) S forwards the result to each
participant . 20

List of Tables

4.1 Comparison between the security and usability features of the different already
existing solutions to privacy-preserving scheduling. The parenthesized check-
marks (Ø) indicate that a feature is either not fully available, or introduces
security concerns. 17

6.1 Comparison between our estimate of AND gates for different promblem sizes,
and the real cicuit size when building the Yao circuit. T denotes the number of
time slots and U denotes the number of participants 31

39

List of Tables

6.2 Comparison between our estimate of AND gates for different promblem sizes
and wMAX = 65535, with the real cicuit size when building the weighted Yao
circuit. t denotes the number of time slots and U denotes the number of
participants . 31

6.3 Comparison between our estimate of AND gates for different promblem sizes,
and the real cicuit size when building the circuit for the GMW protocol. T
denotes the number of time slots and U denotes the number of participants . 32

6.4 Comparison between our estimate of AND gates for different promblem sizes,
and the real cicuit size when building the circuit, supporting weighted summa-
tions for the GMW protocol. T denotes the number of time slots and U denotes
the number of participants. The maximum wight supported by the circuits is
always wMAX = 65535. 32

6.5 Runtimes in milliseconds for Yao’s protocol and the GMW protocol. U denotes
the number of participants and T the number of available time slots. Measured
on a simulated 1 Gbit LAN. 33

6.6 Runtimes in milliseconds for Yao’s protocol and the GMW protocol on a circuit
supporting weighted sums up until a weight of wMAX = 65535. U denotes the
number of participants and T the number of available time slots. Measured on
a simulated 1 Gbit LAN . 34

6.7 Communication size in KB for Yao’s protocol and the GMW protocol. For the
GMW protocol the number of protocol rounds is additionally given, as for Yao’s
protocol the number of protocol rounds is constant and equals to 3 35

6.8 Communication size in KB for Yao’s protocol and the GMW protocol on a
Boolean circuit construction allowing for weighted sums up until wMAX =
65535. For the GMW protocol the number of protocol rounds is additionally
given. For Yao’s protocol the number is a constant 3 36

40

List of Abbreviations

41

Bibliography

[ADI+17] B. APPLEBAUM, I. DAMGÅRD, Y. ISHAI, M. NIELSEN, L. ZICHRON. “Secure Arith-
metic Computation with Constant Computational Overhead”. In: Advances
in Cryptology – CRYPTO 2017: 37th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 20–24, 2017, Proceedings, Part I. Ed. by
Jonathan Katz and Hovav Shacham. Cham: Springer International Publishing,
2017, pp. 223–254. URL: https://doi.org/10.1007/978-3-319-63688-
7_8 (cit. on p. 26).

[ALSZ13] G. ASHAROV, Y. LINDELL, T. SCHNEIDER, M. ZOHNER. “More Efficient Oblivious
Transfer and Extensions for Faster Secure Computation”. In: Proceedings of
the 2013 ACM SIGSAC Conference on Computer & Communications Security.
CCS ’13. Berlin, Germany: ACM, 2013, pp. 535–548. URL: http://doi.acm.
org/10.1145/2508859.2516738 (cit. on p. 5).

[BHKR13] M. BELLARE, V. T. HOANG, S. KEELVEEDHI, P. ROGAWAY. “Efficient Garbling
from a Fixed-Key Blockcipher”. In: Proceedings of the 2013 IEEE Symposium
on Security and Privacy. SP ’13. Washington, DC, USA: IEEE Computer Society,
2013, pp. 478–492. URL: http://dx.doi.org/10.1109/SP.2013.39 (cit. on
p. 6).

[Cha88] D. CHAUM. “The dining cryptographers problem: Unconditional sender and
recipient untraceability”. In: Journal of Cryptology 1.1 (01/1988), pp. 65–75.
URL: https://doi.org/10.1007/BF00206326 (cit. on p. 3).

[DSZ15] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “ABY - A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation”. In: Network and Distributed
System Security Symposium (NDSS’15). 02/2015 (cit. on pp. 26, 29).

[IKNP03] Y. ISHAI, J. KILIAN, K. NISSIM, E. PETRANK. “Extending Oblivious Transfers
Efficiently”. In: Advances in Cryptology (CRYPTO’03). Vol. 2729. LNCS. Springer,
2003, pp. 145–161 (cit. on p. 5).

[Kel11] B. KELLERMANN. “Mehrseitig sichere Web 2.0-Terminabstimmung”. PhD thesis.
Technische Universität Dresden, 2011 (cit. on pp. 8, 10, 13, 15 sqq., 23, 38).

[KS08] V. KOLESNIKOV, T. SCHNEIDER. “Improved Garbled Circuit: Free XOR Gates
and Application”. In: Automata, Languages and Programming: 35th Interna-
tional Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceed-
ings, Part II. Springer Berlin Heidelberg, 2008, pp. 486–498. URL: https:
//doi.org/10.1007/978-3-540-70583-3_40 (cit. on p. 6).

42

https://doi.org/10.1007/978-3-319-63688-7_8
https://doi.org/10.1007/978-3-319-63688-7_8
http://doi.acm.org/10.1145/2508859.2516738
http://doi.acm.org/10.1145/2508859.2516738
http://dx.doi.org/10.1109/SP.2013.39
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40

Bibliography

[KSS09] V. KOLESNIKOV, A.-R. SADEGHI, T. SCHNEIDER. “Improved Garbled Circuit
Building Blocks and Applications to Auctions and Computing Minima”. In:
Proceedings of the 8th International Conference on Cryptology and Network Security.
CANS ’09. Kanazawa, Japan: Springer-Verlag, 2009, pp. 1–20. URL: https:
//doi.org/10.1007/978-3-642-10433-6_1 (cit. on pp. 29 sq.).

[LP07] Y. LINDELL, B. PINKAS. “An Efficient Protocol for Secure Two-Party Compu-
tation in the Presence of Malicious Adversaries”. In: Advances in Cryptology
- EUROCRYPT 2007: 26th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Barcelona, Spain, May 20-24, 2007.
Proceedings. Ed. by Moni Naor. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 52–78. URL: https://doi.org/10.1007/978-3-540-72540-4_4
(cit. on p. 22).

[NPS99] M. NAOR, B. PINKAS, R. SUMNER. “Privacy Preserving Auctions and Mech-
anism Design”. In: Proceedings of the 1st ACM Conference on Electronic Com-
merce. EC ’99. Denver, Colorado, USA: ACM, 1999, pp. 129–139. URL: http:
//doi.acm.org/10.1145/336992.337028 (cit. on p. 6).

[RSA78] R. L. RIVEST, A. SHAMIR, L. ADLEMAN. “A Method for Obtaining Digital Sig-
natures and Public-key Cryptosystems”. In: Commun. ACM 21.2 (02/1978),
pp. 120–126. URL: http://doi.acm.org/10.1145/359340.359342 (cit. on
p. 18).

[Vol99] H. VOLLMER. Introduction to Circuit Complexity: A Uniform Approach. Secaucus,
NJ, USA: Springer-Verlag New York, Inc., 1999 (cit. on p. 4).

[Yao86] A. C.-C. YAO. “How to Generate and Exchange Secrets”. In: Foundations of
Computer Science (FOCS’86). IEEE, 1986, pp. 162–167 (cit. on p. 6).

43

https://doi.org/10.1007/978-3-642-10433-6_1
https://doi.org/10.1007/978-3-642-10433-6_1
https://doi.org/10.1007/978-3-540-72540-4_4
http://doi.acm.org/10.1145/336992.337028
http://doi.acm.org/10.1145/336992.337028
http://doi.acm.org/10.1145/359340.359342

A Appendix

A.1 Heremight be an appendix section

And some text.

44

	Introduction
	Contributions
	Outline

	Preliminaries
	Dining Cryptographer Network
	Commitment Scheme
	Boolean Circuits
	Oblivious Transfer Protocol
	Secure Two-Party Computation
	Yao's Garbled Circuit Protocol
	GMW

	Related Work
	Doodle and DFN
	Kellermann's Protocol for Semi-Honest Participants
	Poll Generation
	Voting Process
	Evaluation Process

	Extension of the Protocol to Protect Against Malicious Participants
	Detection of (-1)-Attacks
	Detection of (+2)-Attacks
	Identification of the Attacker

	Extending the Protocol to Increase Usability
	Dynamically Insert Participants
	Dynamically Remove Participants
	Additional Options
	Changing Votes Retrospectively

	Discussion

	Design
	The Protocol
	Poll Generation
	Voting Process
	Evaluation Process

	Security
	Potential Attacks of the Frontend Server
	Potential Attacks of the Backend Servers
	Potential Attacks of the Participants
	Potential Attacks of the Initiator

	Extension of the Protocol

	Implementation
	Frontend
	Backend
	The ABY Framework
	Boolean Circuit Generation
	Executing the Boolean Circuit and Revealing the Result

	Evaluation
	Estimate on the Number of AND Gates in the Circuit Constructions
	Circuit Size Comparision
	Runtime Measurements

	Conclusion
	List of Abbreviations
	Bibliography
	Appendix
	Here might be an appendix section

