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Abstract

Private Function Evaluation (PFE) allows two parties to compute a function f (x) based on
their private inputs, where one party provides the function f and the other party provides the
input x without either party knowing about the other’s input, therefore preserving privacy.
Secure Function Evaluation allows two parties to compute a global function f (x , y) based on
their private inputs x and y . A Universal Circuit (UC) is a globally known structure that can
simulate functions. We can therefore achieve PFE using SFE by making the UC global and
providing it with private inputs f and x from the two parties. The UC is a structure made up
of nodes which have to be programmed (setting control bits for each node) according to the
function it has to simulate.

Valiant proposed the first Universal Circuit (UC) constructions, which are recursive and use
either 2-way or 4-way recursion split methods (STOC’76). The most recent UC implementation
based on Valiant’s 4-way UC construction was realized by Günther et al (ASIACRYPT’17),
which is also modular. Lipmaa et al. generalized a k-way UC construction which is depicted
in a modular manner (Eprint 2016/017). Günther et al. prove that their modular 4-way
split UC construction outperforms the 2-way split UC construction by Kiss and Schneider,
that is, results in asymptotically smaller UCs. Though being modular, this UC construction
stores every internal state of the algorithm in memory and therefore, memory becomes a
bottleneck. For this reason, this construction cannot be used in practice for large-scale UC
applications.

We introduce a scalable approach of UC generation based on Günther et al.’s modular 4-way
split UC generation. Our approach leverages the file system storage with very little use of
memory and can yield UC sizes in the orders of billion. Also, multiple instances of our UC
implementation can be run in parallel on big machines, which was not possible or reasonable to
do in older UC implementations. We show our scalable file-based UC generation which makes
it extremely intuitive to perform the next step: the programming of the UC. With this scalability,
we can realize large-scale PFE applications, for instance remote diagnostics of smart cars for



autonomous driving, remote diagnostics of cars for automobile insurance, home automation
and remote patient monitoring. Users of the aforementioned applications will no longer be
concerned with sharing sensitive data to owners of the applications.
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1 Introduction

Secure Function Evaluation (SFE) allows two parties to securely evaluate a function on their
respective private inputs, without revealing anything other than the result to the other party.
Being able to keep the respective inputs of both parties x and y private with SFE, the problem
of evaluating function f privately is transformed into the problem of finding a globally known
structure that can simulate functions based on some data that is provided by one party, and
the input that is provided by the other party, in other words representing the function to be
evaluated as input data. A Universal Circuit (UC) is a global structure for simulating any
Boolean function f (x). By the application of the function input bits x = {x1, ..., xu}, a UC
can be programmed with program bits p = {p1, ..., pm} to compute different functions, such
that, UC(x , p) = f (x).

Valiant proposed two theoretical ways of UC construction based on two recursive methods: 2-
way split and 4-way split, where the recursive structure consists of either 2 or 4 sub-structures
respectively [Val76]. For an input Boolean circuit of size n, Valiant’s construction has asymp-
totically optimal size O(n log n) [Val76; Weg87]. Valiant’s 2-way split UC construction method
was brought to practice in two concurrent and independent works of [KS16] and [LMS16].
Lipmaa et al. proposed a generalization of Valiant’s construction known as k-way split UC
construction in [LMS16]. Günther, Kiss and Schneider brought into practice, Valiant’s 4-way
UC construction with a concrete size of 4.75n log2 n in [GKS17]. They also proposed a
generic hybrid UC construction which yielded better UC sizes than the 2-way and 4-way UC
constructions for all circuits tested in their evaluation.

1.1 PFE Applications of Universal Circuits

We mention some PFE applications of UCs in this section with referral to [KS16] for more
details.

Private Function Evaluation with UC allows for easy integration into existing SFE frameworks.
For instance, using outsource SFE to outsource UC-based PFE [KR11]. [BPSW07] shows
privacy-preserving evaluation of diagnostic programs, where the owner of the program does
not want to reveal the diagnostic method and the user does not want to reveal his data.
Medical systems [BFK+09] and remote software fault diagnosis are both examples of such
programs, where in both cases privacy-preserving is desired for the function and the user’s
input. Remote streaming data can be obliviously filtered using secret keywords [OI05], from
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1 Introduction

which data privacy can be preserved by using PFE to search the matching data with a private
search function.

1.2 Contributions

We provide the following contributions:

Scalable Universal Circuit Generation: We design and implement a per-block 4-way UC
generation based on the modular 4-way UC construction of [GKS17], which we detail in
Chapters 4 and 5. Implementation presented in [GKS17] holds the UC structure in memory
which poses an obvious bound on the maximum size of UC that can be generated. We
show that our per-block UC generation requires memory that is only linear in the size of
the input circuit n (as opposed to O(n log n) for [GKS17]) and runs efficiently using far less
memory than the implementation of [GKS17] in Section 6.2. Our per-block UC generation can
generate UCs of billions of nodes, making it possible to realize large-scale PFE applications
for instance remote diagnostics of smart cars for autonomous driving and home automation,
while preserving the privacy of the users of the application. Multiple instances of our per-
block UC generation can be run in parallel on big machines. We report slower runtimes
of our per-block UC generation with an average factor of 3.0 compared to the generation
by Günther et al., which is acceptable because UC generation is a precomputation step in
most applications and therefore, a constant runtime factor increase is not going to become a
bottleneck.

Scalable Implementation Using The File System: We leverage the file system for storage
in our UC generation which amounts to many files used, which we do to avoid memory
overflow. We detail our algorithm in Section 5.1.3. We show that the extra disk space used in
the UC generation (apart from generated UC files) is very small though the extra space can
be larger in intermediate steps of the algorithm but never exceeds the maximum disk space
necessary when the UC files are also created (in Section 6.2).

ScalableUCProgramming: We propose steps to how the generated UC can be programmed
using the supergraph construction of [KS16] and our scalable files generation, which we leave
as future work. We describe the algorithm and show how our scalable generation of files
makes it very intuitive to program the generated UC (Section 5.2).
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1 Introduction

1.3 Outline

In Chapter 2, we provide basic concepts in Boolean Circuits in Section 2.1, some graph theory
about directed acyclic graphs in Section 2.2, a primer on SFE in Section 2.3 and some basic
concepts about file systems in Section 2.4.

We discuss some existing UC constructions in Chapter 3. We begin by briefly introducing PFE
in Section 3.1. We then discuss using UCs for representing functions as data in Section 3.2.
Thereafter, we discuss the steps in Valiant’s UC construction [Val76] and also discuss other
UC constructions [KS08a; LMS16; KS16; GKS17] in Section 3.3. Next, we discuss some
limitations of existing UC implementations in Section 3.4.

We detail our per-block UC generation design in Chapter 4. In Section 4.1, we discuss the
modularity of Günther et al.’s 4-way UC generation. Thereafter, we detail our per-block UC
generation in Section 4.2. We then discuss edge-embedding for Valiant’s 4-way UC construc-
tion [Val76] and our per-subgraph edge-embedding in Section 4.3.

In Chapter 5, we detail the implementation of our per-block UC generation in Section 5.1.
We then discuss how our scalable UC and files generation can be leveraged to program the
UC in Section 5.2.

We present the results of our experiments in Chapter 6. We begin by discussing the evaluation
criteria used in our experiments in Section 6.1. Thereafter, we discuss our evaluation results,
comparing our benchmarks with the 4-way UC construction of [GKS17] using measurements
from the maximum memory consumption, UC generation runtime and maximum disk space
usage in Section 6.2.

Finally in Chapter 7, we conclude our work and discuss future work in Sections 7.1 and 7.2,
respectively.
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2 Preliminaries

In this chapter, the necessary background to Valiant’s Universal Circuit construction is pro-
vided. We begin by discussing gates and Boolean circuits in Section 2.1. Then we move
on to the underlying graph theory upon which Valiant built his UC constructions in Sec-
tion 2.2. Next is a primer on file systems, then finally we describe Valiant’s UC construc-
tions.

2.1 Boolean Circuits

In this section, we begin by discussing logic gates in Section 2.1.1 which are the precursor to
Boolean circuits. We then discuss Boolean circuits in Section 2.1.2.

2.1.1 Logic Gates

Gates, also known as logical gates, are used for binary computations. A gate implements a
Boolean function f : {0, 1}m→ {0, 1}n that maps m inputs to n outputs. That is, they take as
input m binary values and return as output n binary values. The most common gates include
AND, OR, XOR, NOT, NAND, for which m≥ 1 and n= 1.

As an example, let us consider the 2-input, 1-output AND gate. For an AND gate with two
inputs, a binary output of 1 is only obtained when both inputs are 1. Additionally, the AND
gate gives a 0 output if either (or all) of its inputs is (are) 0. The table that describes the
configuration and functionality of a given gate is known as a gate table. The gate tables of a
few logic gates are shown in Figure 2.1

2.1.2 Boolean Circuits

Logical gates are a precursor to Boolean circuits. Boolean circuits are used in engineering to
represent and model logical functions used in components such as registers in computers.
A Boolean circuit is implemented with logical gates and is defined by Ck

u,v for u inputs, v
outputs and k logical gates in the given Boolean circuit. The inputs and outputs u and v
denote input and output wires of the Boolean circuit. A Boolean circuit can have several
inputs as well as several outputs. The output wire of a logical gate in a Boolean circuit can
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2 Preliminaries

Figure 2.1: Gate tables of selected example gates

serve as the input wire of another logical gate in the same Boolean circuit. An example is
shown in Figure 2.2a.

2.2 Graph Theory

A Boolean circuit with u inputs, v outputs and k gates denoted by Ck
u,v can be represented

as a Directed Acyclic Graph (DAG). The Boolean circuit Ck
u,v can therefore be transformed

into a DAG by creating a node for each input, gate and output. For each wire in the circuit,
we introduce a directed edge. This is called an acyclic graph because during traversal of the
graph, each node is visited only once and this is done in a sequence known as topological
order. We wish to define an ordering for the DAG in Γd(n) (where n is the size of the DAG and
d is the maximum number of incoming or outgoing edges of nodes in the DAG) such that, all
nodes V = {a1, ..., an} are mapped as η : V → {1, ...n}. This mapping is called a topological
order if (ai , a j) ∈ E⇒ η(ai)< η(a j) and ∀a1, a2 ∈ V : η(a1) = η(a2)⇒ a1 = a2. To provide
a clearer description, a topological ordering of a DAG with nodes V = {a1, a2, ..., an}, is a
linear ordering of the nodes such that for every Ei, j belonging to E ⊂ V xV from ai to a j , ai
is ordered before a j. The nodes are therefore traversed in this defined order. Obtaining a
topological order comes with a complexity of O(n+ dn) [KS16]. A given DAG can have more
than one topological order, since the starting node as well as the strategy on finding the next
node can differ significantly from each other. For example, two possible topological orders of
the DAG in Figure 2.2b are {a2, a1, a3, a4, a5} and {a1, a2, a3, a4, a5}. Topological ordering is
further discussed in Chapter 4. Considering a DAG with nodes V = {a1, ..., an}, if node a1 is
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2 Preliminaries

Figure 2.2: Fig. 2.2a shows an example Boolean circuit and Fig. 2.2b shows its corresponding
DAG.

first to be traversed according to the graph’s topological order, then node a1 would not be
revisited.

Consider the Boolean circuit shown in Figure 2.2a with two inputs, one output and three gates.
Its corresponding DAG is shown in Figure 2.2b. The Boolean circuits we consider are acyclic,
and therefore can be represented by a DAG. [RB12] proposes the use of cyclic topologies for
Boolean circuits and shows that the complexity of implementing Boolean functions can be
reduced with cyclic topologies than with acyclic topologies, therefore arguing that circuits
can be designed with fewer gates if they contain cycles. However, in this thesis we assume
acyclic topologies.

A DAG is defined by the relation G = (V, E), with V being a set of nodes, V = {a1, ..., an} and
E the set of edges E ⊆ V xV . The DAG shown in Figure 2.2b has five nodes and six edges.
The direction of an arrow depicts a from-to relation in the directed graph. The number of
incoming or outgoing edges of a node is known as its indegree or outdegree, respectively. For
instance, from Figure 2.2b, node a1 has indegree 0 and outdegree 2. The fanin or fanout of a
graph is the maximum number of edges coming in or going out from its nodes respectively.
We denote with Γd(n) the set of all Directed Acyclic Graphs (DAGs) with n nodes and fanin
and fanout d, where n = u+ v + k. From Figure 2.2b, a3 for example has fanin and fanout of
2.

For the purpose of this thesis, all Boolean circuits and their corresponding DAGs are assumed
to have maximum fanin and fanout of 2. For Boolean circuits with gates with higher fanin,
that is d > 2, the introduction of additional gates would reduce these gates to gates with fanin
2 (two inputs). This can be done based on Shannon’s expansion theorem [Sha+49; Sch08].
For Boolean circuits with higher fanout, that is d > 2, copy gates are added in order to reduce
the fanout of the circuit to 2. This is described in [Val76; KS16].
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2 Preliminaries

2.3 Secure Function Evaluation

Secure Function Evaluation (SFE) enables the computation of a globally known function which
represents a Boolean circuit, f (x1, ..., xn), to be computed based on the inputs of the commu-
nicating parties, P1, ..., Pn. In the end, the parties compute f (x1, ..., xn) without knowing any
of the other parties’ inputs. Fairplay [MNPS04]was the first implementation to achieve Secure
Function Evaluation between two parties. Fairplay and FairplayMP [BNP08] were proposed
for secure two-party and multi-party computations respectively.

Resembling C, Secure Function Definition Language (SFDL) is a language provided by the
Fairplay framework to users in order to provide a high-level abstraction. Using this, users
provide a high-level description of the function to be computed [BNP08]. The next step is to
compile the given user specification (SFDL) into a low-level specification known as Secure
Hardware Definition Language (SHDL). This specification is a Boolean circuit description as
introduced in Section 2.1.2. The resulting SHDL file is then fed as input into two independent
programs (in the case of two-party computation). Both parties then begin to communicate
in order to achieve the final result using Yao’s garbled circuit protocol [Yao86], which is
a two-party computation protocol. For simplicity, in a two-party scenario where the glob-
ally known function is f , and the two parties both have x and y as inputs, then we have
f (x , y) as the result. The most prominent protocols used to achieve SFE are Yao’s Garbled
Circuit [Yao86] and the GMW protocol [GMW87], which we describe in detail in Section 2.3.2
and Section 2.3.3, respectively.

2.3.1 Oblivious Transfer

SFE is achieved by using special protocols which are coupled with Oblivious Transfer (OT)
for sending and receiving messages obliviously. OT is a fundamental building block of many
protocols that allows a sender to send two or more messages. The receiver is able to select
one of the messages without the sender being able to learn which message was selected
and without the receiver getting to know the content of the other messages. Assume Alice
and Bob want to communicate with each other using OT. Alice has two inputs x0 and x1.
Bob has an input bit b. Alice obliviously sends xb to Bob using OT while Bob gets to know
nothing about the other input x1−b, neither does Alice get to know the input selected by
Bob.

One of the most commonly used OTs is the above defined 1-out-of-2 OT where one of two
sent inputs is selected by the receiver. This can be generalized to 1-out-of-n OT where one
of the n sent inputs is selected by the receiver. OT is commonly used at the gate or input
wire level for secure two-party and multi-party computations (which involves more than two
communicating parties).

In a more practical scenario, the complexity of secure computations becomes high, hence
more communication rounds are necessary. This comes at high costs of OTs thereby increasing
the amount of time for computations. There exists so called OT Extensions which are used for
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Table 2.1: Garbled table of an AND gate with input wires a1 and a2. ki
w denotes the key of

input wire w having bit i and Eki
w

denotes encryption using the key.

large-scale OT protocols that use a number of initial seed OTs (base OTs) [Bea96; ALSZ13;
IKNP03]. The initial seed OTs are created using expensive public-key operations, and can be
extended using cheap symmetric cryptographic operations to obtain many OTs. In [ALSZ15],
the authors present an OT extension protocol for the setting of malicious adversaries that is
more efficient and uses less communication than previous works.

2.3.2 Yao’s Garbled Circuit

Yao’s protocol is a two-party computation protocol which makes use of OT for exchanging mes-
sages between the computing parties [Yao86]. It is used for computing functionalities based
on Boolean circuits. Yao’s protocol has a constant number of rounds.

Let us assume Alice and Bob want to compute a function and that the functionality here is
represented by a Boolean circuit. Alice assigns the garbled values which are random values
to her corresponding wire inputs. The process is repeated for the other gates in the Boolean
circuit. That is, k0 for input bit 0 and k1 for input bit 1. Alice is called the garbler. In addition,
each gate is encrypted with the generated keys such that, for any given input wire xn with
its corresponding key kn, the corresponding output wire on can be also generated. Table 2.1
shows the garbled table of a garbled AND gate. This garbled table resembles a Boolean truth
table but instead of bits as inputs, we have a key associated with each input wire (for example
ki

a1
for input wire a1 with input bit i). In addition, the result column is replaced with the

encryption of the output wire key using the two input keys, that is, Eki
a1
(Ek j

a2
(kx)) where kx

is the output wire key and i and j are input bits.

The garbled table has the structure of a logic gate’s truth table and since the order can
be guessed by an attacker, the garbled table is permuted to hide the order as well as to
avoid any predictions on the part of the receiver, Bob. In the occurrence of encrypting an
output gate type, the decryption of the output wire also has to be provided in the output
translation table. However, Table 2.1 is not permuted as discussed for the sake of familiarity
of order.

The whole encrypted circuit known as the garbled circuit is now sent to Bob as well as the
keys generated for all of Alice’s input wires. Bob is called the evaluator. In order to guarantee
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2 Preliminaries

the right garbled table entry is decrypted by Bob, Alice adds a bit for every input wire aside
the generated key to inform which entry to decrypt. Depending on the number of Bob’s inputs
n, Alice and Bob run in parallel, n OTs for Bob to learn the remaining input keys. At this
point, all keys have been obtained and Bob can retrieve the result.

Yao has a multiparty variant known as Beaver-Micali-Rogaway (BMR) which also has a
constant number of rounds [BMR90]. [KS08b] introduces free XOR gates evaluation as
optimization of Yao’s Garbled Circuit protocol. That is, XOR gates are evaluated without the
use of the associated garbled tables.

2.3.3 GMW Protocol

The protocol of Goldreich-Micali-Wigderson (GMW) was considered as less efficient compared
to Yao’s Garbled Circuit protocol [GMW87]. This is because Yao’s Garbled Circuit is popular
for its constant number of rounds. In [SZ13], the GMW protocol was optimized for two
party computation by using means of load balancing and parallel processing of multiple
gates.

GMW makes use of secret sharing of inputs. In the preprocessing or offline step, no inputs are
needed yet. However, each computing party is assumed to know the number of AND gates in f .
This determines the number of OT computations that have to be done during this preprocessing
step. For each AND gate, a multiplication triple is first generated according to the relation
(a1 ⊕ a2)(b1 ⊕ b2) = (c1 ⊕ c2) by both parties. This is done by means of one 1-out-of-4
OTs. [ALSZ13] shows how to generate these using two 1-out-of-2 OTs.

In the online phase, in a multiparty scenario with n computing parties, each party shares its
input bits. With party A having input bit a1, party A shares random bits b1, ..., bn−1 with all

other n− 1 parties (each party gets a different random bit) and sets its share as a1 ⊕
n−1
∑

i=1
bi.

This is such that XORing the individual shares generates the original input value a1 of party A.

That is, b1⊕ b2...⊕ bn⊕(a1⊕
n−1
∑

i=1
bi) = a1 for n communicating parties. At the end, each party

will have n shares, one from each other party including its own share.

For the sake of simplicity, henceforth, let us assume a two party computation scenario with
Alice and Bob as the communicating parties. Now in the online phase, the next step is
to evaluate the circuit. This is done in a gate by gate approach. Evaluating XOR gates is
straightforward. This is carried out in a non-interactive manner since the computation can
be done individually by each party. From sharing, Alice has received 2 inputs a1 and b1.
Alice computes c1 = a1 ⊕ b1. Likewise, Bob computes c2 = a2 ⊕ b2. This is accurate because
a⊕ b = (a1 ⊕ a2)⊕ (b1 ⊕ b2) = (a1 ⊕ b1)⊕ (a2 ⊕ b2).

Evaluating AND gates involves one round of communication. To evaluate an AND gate, Alice
would need in addition to the shares she possesses, a respective input share from Bob the
value of which she does not know. The process is repeated this time by Bob to obtain the
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Protocol Yao’s garbled circuit GMW

Number of Par-
ties

2-party and multi-party exten-
sion

Both 2-party and multi-party
computations

Rounds Constant number of rounds offline: constant rounds. on-
line: the number of rounds is
linear in the depth of the circuit

Gates Evaluation XOR and AND gates are evalu-
ated differently with free XOR
optimization. AND gates re-
quire offline and online symmet-
ric key operations and offline
communication.

XOR and AND gates evaluated
differently. For AND gates: mul-
tiplication triples generated of-
fline using OT. Requires 1
round of communication online.
XOR gates are evaluated for free

Table 2.2: Comparison table of Yao’s garbled circuit and GMW protocols.

missing shares needed for the gate evaluation. Now to the actual AND operation, both Alice
and Bob compute di = x i⊕ai and ei = yi⊕bi and send them to the other respective party. The
multiplication triples ai and bi are used to mask the input shares x i and yi . They both then
compute d = d1⊕ d2 and e = e1⊕ e2. Finally, Alice and Bob compute d b1⊕ ea1⊕ c1⊕ de and
d b2⊕ea2⊕c2 respectively as the output shares of the AND gate [SZ13].

The number of rounds of the GMW protocol is O(d) where d is the depth of the Boolean
circuit. Table 2.2 enlists a few differences between Yao’s garbled circuit protocol and the
GMW protocol.

2.4 File Systems

In this section, we describe the file system. We begin by detailing general file system ab-
stractions and types in Section 2.4.1. We then move on to describe file system tables in
Section 2.4.2. Lastly we describe the file access service provided by the file system in Sec-
tion 2.4.3.

2.4.1 File System Abstractions

Every computer, irrespective of the Operating System it runs or the purpose of the device, has
a file system associated with it, so long as there is the need for storage of some sort for the
functioning of the device. If this device has to store or record data as part of its functionality,
then it most likely has a storage device embedded in it. The file system therefore acts as an
abstraction on top of the storage device. Devices range from micro-controllers, smart phones,
personal computers to super computers and many others. Taking a personal computer as
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Figure 2.3: Figure of sample File System Table and File Metadata

an example, the view of the Operating System’s file system and directories presented to
users and applications is just but an abstraction. In computers, the hard drive is a primary
example.

Disk partitions divide a hard drive into two or more regions or partitions. A partition is a
region with content on a hard drive that is managed by the Operating System. Each partition
is represented visually by the Operating System as one or more logical drives which occupies
part of the whole hard drive or disk. It is on these logical drives that the file system and files
are created. The logical drive also contains information about the file system, such as the file
system type and also the boot record.

2.4.2 File System Tables

Files and directories on a hard drive make up the file system objects. The file system stores data
and metadata for files and directories. The file system table stores the attributes and location(s)
of the data of the files and directories. Metadata includes location on disk, last updated time,
time created, user id, number of links and file mode as shown in Figure 2.3. There are two
main types of metadata, in particular block allocation bitmaps and data structures, that keep
track of files and the disk blocks to which they belong [Reu06].

In block allocation, available disk space is divided into groups of fixed block sizes. The alloca-
tion of block size to each fixed group is done in a dynamic fashion.

The data structures that keep track of files and the disk blocks to which they belong are
stored in the file system table. A list of blocks that belongs to each file is maintained in the
table.
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2.4.3 File Access

Files can be opened for either sequential or direct access.

In sequential access, the current file pointer position moves in a linear manner. That is, the
file is accessed from the beginning to the end. This is done in a byte sequence order. However,
it is possible to reposition the current file position pointer by means of a system call, for
instance a system call to reopen the same file or a system call to write data to the same file.
Sequential access works best when our aim is to process files consisting only of text, such as
the files created with a typical text editor. That is, files in which data is not divided into a
series of records. One major problem with sequential access is preprocessing or going through
all previous lines (in the case of a text file) prior to the point of interest. In this work, we
open files for sequential access.

In direct access, the current file pointer position can be repositioned to any point in the
file. This is random as opposed to the linear byte sequence approach used in sequential
access. File systems that are optimized for use with databases are accessed in terms of
records rather than a byte sequence (that is direct, based on an index for instance, rather
than sequentially).

12



3 Existing Universal Circuit Constructions

3.1 Private Function Evaluation

Private Function Evaluation involves two or more parties who would like to compute a
function where one party P1 has the function f (x1, ..., xn), to be computed represented as
a circuit C f , and the other party(ies) P2, ..., Pn provide the input(s) to the function. For
simplicity, let us assume there are only two parties involved in this computation. The goal is
to enable in the end, both parties to compute the function f (x) without knowing the input of
the other respective party. In other words, P1 provides f and P2 provides x and together they
compute f (x), without P1 learning anything about the input x and P2 learning anything about
the function f . [MS13] presents a general framework for Private Function Evaluation for both
Boolean and arithmetic circuits. They further improve this result to achieve security against
malicious adversaries in [MSS14]. These protocols have better computation complexities
than the method studied in this work, but they have worse communication complexities, as
shown in [GKS17].

3.2 Universal Circuits for Representing Functions as Data

Secure Function Evaluation (SFE) allows two parties to securely evaluate a function on their
respective private inputs, without revealing anything other than the result to the other party
(cf. Section 2.3). Being able to keep the respective inputs of both parties x and y private
with SFE, the problem of evaluating function f privately is transformed into the problem
of finding a globally known structure that can simulate functions based on some data that
is provided by one party, and the input that is provided by the other party, in other words
representing the function to be evaluated as input data. The idea here is to achieve Private
Function Evaluation by using Secure Function Evaluation. In this sense, the need to make
the function f private introduces the necessity to maintain a publicly known entity. In this
publicly known structure, the private function f is provided by one party and the private
input x provided by the other party in order for both parties to compute f (x). The globally
known structure is a Universal Circuit (UC).

Valiant proposed a method of constructing Universal Circuits based on the use of so-called
Edge-Universal Graphs (EUGs) [Val76]. He lays down the underlying foundations for the
construction of Universal Circuits: representing circuits as DAGs, finding an Edge-Universal
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Graph (EUG) and the method with which it can represent this graph and transforming it
into a UC. He provided two theoretical ways of Universal Circuit construction based on two
recursive methods: 2-way split and 4-way split, where the recursive structure consists of
either 2 or 4 sub-structures respectively. Valiant’s UC construction has asymptotically optimal
size O(n log n) [Val76].

Another independent UC implementation was proposed by Kolesnikov and Schneider with
size 0.75k log2

2 k + 2.25k log2 k + k log2 u + (0.5k + 0.5v) log2 v [Sch08; KS08a]. Actual
implementations of Valiant’s UC construction were realized in two independent works [KS16;
LMS16] using the 2-way construction. For the sake of more efficient and optimized Universal
Circuit constructions, Günther, Kiss and Schneider realized an implementation of the 4-way
split Universal Circuit construction with size of 4.75n log2 n in [GKS17]. In that same work,
they also discuss the possibility for a more efficient Universal Circuit based on a novel 3-way
split, which is then proven to be less efficient than the 2- or 4-way split methods. We detail
these methods in the next section.

3.3 Valiant’s Universal Circuit Construction

In this section, we begin with some background of Valiant’s UC construction that is specific for
Edge-Universal Graphs in Section 3.3.1. This is followed by the construction methods includ-
ing the 2- and 4-way split methods in Section 3.3.2. The latter is the construction on which our
implementation of improving the scalability of UC for large-scale Private Function Evaluation
is based. Finally in Section 3.3.3 we discuss other UC constructions.

3.3.1 Edge-Universal Graphs

We consider a DAG with a set of nodes V = {a1, ..., an} and a set of edges E ⊆ V xV . The DAG
has size n with fanin and fanout d. This means that the DAG is in Γd(n) (cf. Section 2.2).
Having a set of DAGs D = {d1, ..., dk} each with an arbitrary size n, one can construct a
generic graph or structure so that we can map each and every graph contained in this set
D to this generic graph. In other words, all the graphs can be obtained from this generic
graph by a defined mapping. An EUG is such a universal representation of all directed acyclic
graphs of a given arbitrary size n. This mapping defines a unique path on every DAG in D
with size n to its corresponding EUG Un(Γ2). This mapping is such that, for every edge e ⊆ E
in the DAG, there exists a unique path on the EUG.

The Structure of an EUG

Figure 3.1 shows two graphs that are able to represent DAGs of size 5 and fanin and fanout of
one and two in Figures 3.1a and 3.1b, respectively. These graphs are edge-universal graphs
denoted by U5(Γ1) and U5(Γ2). Both graphs contain poles P = {p1, ..., p5} represented as
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squares and special nodes (dark circles). In Figure 3.1a, the EUG, denoted as U5(Γ1) is of
size 12, that is five poles plus seven special nodes. The poles are the original nodes of the DAG
which can be derived from this EUG. The size is greater than its corresponding DAG because
of the special nodes that are added to enable multiple paths so that all possible combinations
of paths are covered. Poles map to the actual nodes of a DAG, whereas the special nodes of
the EUG help with multiple routing. There also exists a difference between fan-in/out of the
EUG and the set of DAGs it represents. As depicted in Figure 3.1a, the special node marked
with the letter A shown in the picture contains two incoming and outgoing edges, that is fanin
and fanout of two. This implies that, for a DAG of a given size with fanin and fanout one, its
corresponding EUG may have nodes with two incoming and/or outgoing edges, therefore,
the special nodes may have fan-in/out of two. However, poles have fanin and fanout of one
in the case of Figure 3.1a.

Ideally, we require Un(Γ2) in order to represent DAGs with fanin and fanout of 2. Hence, all
nodes in the graph Un(Γ2) will have fanin and fanout of 2 irrespective if the node is a pole or
a special node. For a given EUG Un(Γ1), we obtain Un(Γ2) by combining two Un(Γ1)s. This
graph is denoted by U5(Γ2) and is obtained by merging two U5(Γ1)s as shown in Figure 3.1b.
Specifically in our case, the graph has fanin and fanout of 2 and 14 special nodes. In the
EUG U5(Γ2) formation procedure, poles of the two Un(Γ1) graphs are merged and therefore
the number of poles remains unchanged, only their fanin and fanout is increased from one
to two. In addition, new special nodes are introduced into the structure. They help each
pole in achieving fanin and fanout of 2 and they also help with multiple routing of edges
E ⊂ V xV in the DAG. Hence, an EUG for Γ2(n) has double the number of special nodes
compared to an EUG for Γ1(n), since it is merged from two EUGs for Γ1. We look into
the concrete constructions proposed by Valiant in [Val76] and improved in [KS16; LMS16;
GKS17].

3.3.2 Valiant’s Universal Circuit

In this section, we begin by discussing the stages of obtaining Un(Γ2) for all Γ2(n). We move on
to discuss Valiant’s recursive universal graph constructions proposed in [Val76].

The aim is to construct a UC from which circuits of a specific size can be derived. Having
an EUG, we can derive DAGs of a certain size n. By mapping a circuit that has u inputs, v
outputs and k gates to a DAG of size n= u+ v + k, we can make use of Un(Γ2) (built out of
two Un(Γ2)s) to construct a UC that can simulate circuits of that given input, output and gate
size.

For a given graph G = (V, E) representing a Boolean circuit Ck
u,v with size n = u + v + k,

there are three stages involved in the construction of its UC: firstly a derivation of Un(Γ1);
followed by a derivation of Un(Γ2) from merging two Un(Γ1)s; then finally constructing the
actual UC.
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Figure 3.1: (a) Universal graph U5(Γ1) that can represent DAGs of size 5 with fanin and
fanout 1 (Γ1(5)) and (b) Universal graph U5(Γ2) that can represent DAGs of size
5 with fanin and fanout 2 (Γ2(5)).
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Figure 3.2: An overview of the recursive 2-way split EUG construction for Γ1(n).

Constructing Un(Γ1)

Valiant proposed EUG constructions which serve as the recursion bases for Γ1 graphs in [Val76].
For the sake of simplicity, we denote by Un the Un(Γ1) graphs. From these recursion bases,
all other EUGs Un of a given size n can be constructed. These recursion bases are U1, U2,
U3 and U4. U1 is a graph with a single pole. U2 and U3 are graphs with two and three
connected poles respectively. U4 has alternating poles and nodes from top to bottom, hence 3
additional nodes. Valiant also proposed hand-optimized structures for U5 and U6, which is
shown in [Val76; KS16]. To derive Un greater than the aforementioned base cases, a recursive
construction algorithm is utilized. The construction algorithm is recursive such that it halts
when any of the base cases is reached. Valiant proposed two methods of EUG construction:
the 2-way and 4-way split methods. Figure 3.2 shows the 2-way split construction from a
high-level perspective. From this figure, the construction graph is structured like a binary
tree where the parent or root node is the EUG of size n to be constructed, that is, Un. The
last leaf node is one of the base case EUG graphs.

It is evident at each graph level that each EUG consists of two new EUGs so called subgraphs.
Each subgraph Un contains its own set of poles V = {p1, ..., pn}. Let the first two subgraphs
Un/2

1 be represented by U1
n/2 and U2

n/2 respectively, where U1
n/2 = {q1, ...,q[ n−2

2 ]
} and U2

n/2 =
{r1, ..., r[ n−2

2 ]
}. U1

n/2 and U2
n/2 are the poles of the next recursion step, which will in turn be

used to create the next subgraphs U11
n/4 and U12

n/4 (for U1
n/2) and U21

n/4 and U22
n/4 (for U2

n/2) in
the following recursion step. This process is repeated until the number of poles is same as

1We denote U(n−2)/2 with Un/2 for the sake of simplicity of notation.
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either of the recursion bases. The 2-way split has since its proposal by Valiant, been brought
to practice by [KS16] and [LMS16].

Valiant’s 4-way split method is implemented in [GKS17]. Analogously to the 2-way split
construction method, there are 4 subgraphs at each EUG-split level in the 4-way split. Let the
first four subgraphs be represented by U1

n/4, U2
n/4, U3

n/4 and U4
n/4 where U1

n/4 = {q1, ...,q[ n−4
4 ]
},

U2
n/4 = {r1, ..., r[ n−4

4 ]
}, U3

n/4 = {s1, ..., s[ n−4
4 ]
} and U4

n/4 = {t1, ..., t[ n−4
4 ]
}. Four subgraphs are

created at each subgraph level per EUG until a base case is reached. This is equivalent to
taking every second layer from the construction depicted in Figure 3.2. In the 4-way split
construction method, there are different types of underlying construction blocks used so called
the head, body and tail blocks (we give further details in Chapter 4). Unlike in the 2-way
split where there are 1 or 2 alternating poles and special nodes between subgraphs in the
main skeleton (that is, after every second alternating pole and special node, the graph splits
into two new subgraphs), the 4-way split could have 1, 2, 3 or 4 poles per block depending
on the size and different number of special nodes depending on the position of the block in
the construction.

Having an EUG with number of poles n, we should be able to map every DAG of size n in Γ1(n)
into the given EUG. This mapping is called edge-embedding. For a given DAG G = (V, E) with
nodes V = {a1, ..., an} and edges E ⊂ V xV , all nodes are mapped one-to-one to the poles of
the EUG P = {p1, ..., pn}. In terms of edges, every edge (i, j) in the DAG is mapped to a path
that connects the poles pi and p j . The mapping should be such that there exists edge-disjoint
paths between poles i and j as well as subsequent poles. In other words, every path between
two poles pi and p j mapped into the EUG should be unique and an edge E ⊆ V xV is used
only for one path.

Constructing Un(Γ2)

As pointed out earlier, the next stage of the Universal Circuit construction is to create a
structure from which all DAGs of fanin and fanout 2 and size n (Un(Γ2)) can be derived.
From Figure 2.2, our aim would be to obtain U5(Γ2) (from Figure 3.1b) to represent this
DAG.

We derive Un(Γ2) by merging two Un(Γ1)s (described earlier in this section) by their poles P =
{p1, ..., pn}. As mentioned in Section 3.3.1, the number of poles in the new structure remains
unchanged and the special nodes introduced help the poles in achieving fanin and fanout of
2. All poles and nodes therefore have fanin and fanout of 2 after merging, which enables the
embedding of twice as many edges to paths in the EUG than before.

To define the unique paths of edges of the DAG unto the universal graph, a method so called
coloring is employed. This method is based on König-Hall’s theorem [LP09]. A given DAG
denoted as G = (V, E) belonging to Γ2(n) can be divided into two graphs with fanin and
fanout of 1 G1 = (V, E1) and G2 = (V, E2) with same n number of nodes [Val76]. Hence,
the two set of edges E1, E2 ⊆ V xV can be each edge-embedded into two Un(Γ1) (which
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together build up Un(Γ2)). A topological ordering of the nodes of the derived Un(Γ2) has
to be ensured. We edge-embed the Γ2 graph G = (V, E) into the derived Un(Γ2) EUG, such
that every edge e ∈ E ⊆ V xV is mapped to a unique path. We discuss the edge-embedding
method in Chapter 4.

Constructing UC

To actually construct the UC, we need to program the Un(Γ2) EUG according to the edge-
embedding of the DAG. For the given DAG with size n= u+ v + k, k gates are programmed
as universal gates and all other nodes are programmed either as so-called X or Y switches.
We discuss this in detail below.

Valiant’s UC construction has asymptotically optimal size O(n log n) [Val76]. Concretely, the
2-way split UC construction has complexity ∼ 5n log n, while the complexity of the 4-way
split construction is ∼ 4.75n log n [GKS17].

In this section, we begin by introducing so-called modular block types of the EUG as detailed
in [GKS17].

For a given Boolean circuit Ck
u,v to be edge-embedded, k gate nodes are programmed as

universal gates and the remaining nodes of the universal circuit are programmed as either X
or Y switches.

Valiant’s UC construction is applied to acyclic circuits with logic gates that realise one of
the Boolean functions {0,1}2 → {0,1} [Val76]. Valiant introduced universal gates which
accept two inputs x0, x1 and c = {c0, c1, c2, c3} which are the input wires and control bits
respectively [Val76]. With four control bits, every universal gate U(x0, x1; c0, c1, c2, c3) accepts
two inputs and has 16 possible functionalities it can represent for every fixed assignment of
control bits c = {c0, c1, c2, c3}. This is shown in Equation (3.1).

y = c0 x0 x1 + c1 x0 x1 + c2 x0 x1 + c3 x0 x1 (3.1)

As mentioned before, the remaining nodes are programmed as either X or Y switches. X
switches have two inputs x0, x1 and have one control bit c to define their behavior. X switches
denoted by (y0, y1) = X (x0, x1; c) return as outputs, the two inputs either in the same order
or reversed order. Equation (3.2) shows its functionality.

y0 = cx0 ⊕ cx1 y1 = cx0 ⊕ cx1 (3.2)

Y switches are also defined by two inputs and one control bit. Y switches denoted by y =
Y (x0, x1; c) return as output either one of their two inputs as shown in Equation (3.3).

y = (x0 ⊕ x1)c ⊕ x0 (3.3)

From the above equations, it is observed in [KS16] that universal gates can be implemented
using six XOR gates and three AND gates. X and Y switches or gates are implemented using
one AND gate and three XOR and two XOR gates, respectively.

19



3 Existing Universal Circuit Constructions

3.3.3 Other Universal Circuit Constructions

In this section, we discuss other UC constructions of which some are based on Valiant’s UC
construction. We begin with UC construction for smaller circuits proposed in [KS08a]. This
is followed by the generic k-way split and the hybrid UC constructions, that are extensions of
Valiant’s UC construction. Finally, we discuss Universal Arithmetic Circuits (UAC) as proposed
in [LMS16].

UC Construction for Smaller Circuits

[KS08a] introduced a universal block Uk with inputs and outputs for every logic gate Gi in a
Boolean circuit with size k. For each gate Gi, there exists a simulation gate GSim

i . Now to
construct the UC, an input selection block Su

2k≥u which permutes and selects maximum 2k
inputs from the actual circuit to Uk is used. This also hides the input wiring by assigning
duplicates to the input selection block. Additionally, an output selection block Sk≥v

v maps k
outputs from Uk to the actual outputs of the UC. This combined entity yet to be programmed
is known as a programmable block and is denoted as Bu

v , where v is the number of outputs
from the output selection block which is essentially k. The topological order of the gates
is then ensured such that for (Gi , G j) ∈ Ck

u,v ⇒ η(Gi) < η(G j). In other words, if Gi comes
before G j, then Gi should have no inputs that are outputs of G j. As in the 2-way split UC
construction, two Uk/2 blocks are then combined to form Uk.

Kolesnikov and Schneider propose UC construction which resulted in up to 50% reduction in
size as compared to Valiant’s UC construction [KS08a]. This reduction is due to lower constant
factors for small circuits with particular interests for Private Function Evaluation (PFE)
applications of sizes up to 1000. However, Valiant’s UC is asymptotically better. For a
circuit Ck

u,v with u inputs, v outputs and k gates, Valiant’s 2-way UC has size (5k log k +
9.5u+9.5v) log k+O(k) compared to 1.5k log2 k+2.5k log k+(u+2k) log u+(k+3v) log v+
O(k) [KS08a].

k-Way Split UC Construction

Lipmaa et al. proposed a generalization of Valiant’s construction known as k-way split for
UC construction in [LMS16]. A structure known as a supernode is constructed from two
permutation blocks (networks) and an inner block between the permutation networks. The
size of the permutation and inner blocks varies with k, where k is the number of sub-structures
in the recursion to be used in the UC construction. The first permutation network helps to
map any permutation of inputs to nodes and likewise, the latter permutation network maps
any permutation of nodes to output. Both permutation networks have k inputs and outputs.
Lipmaa et al.’s proposed k-way UC construction for k ∈ {2,4} also has decreased the total
size compared to Valiant’s UC construction.
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Hybrid UC Constructions

Kiss and Schneider [KS16] propose a hybrid UC construction which combines techniques from
constructions from both Valiant and Kolesnikov and Schneider [Val76; KS08a]. The hybrid
approach is more efficient for circuits with many inputs and outputs, where the number of
inputs and/or outputs is linear in the number of gates [KS16].

For a UC with u inputs, v outputs and k gates, three scenarios were considered: a constant I/O
case where u and v are both constants; a case of many inputs where u∼ k; and a maximal I/O
case where u∼ 2k and v ∼ k. As it turns out, it is advisable to use the hybrid UC construction
in cases of many inputs and maximal I/O as this yields smaller UC sizes compared to Valiant’s
UC construction with the same scenarios [KS16].

Günther, Kiss and Schneider propose a generic hybrid UC construction that combines multiple
k-way UC constructions [GKS17]. For instance for values k = {2, 4}, their hybrid UC construc-
tion combines 2-way and 4-way split methods. According to their evaluation, the resulting
hybrid UC has the smallest UC size compared to the 2-way and 4-way UC constructions for
any given input circuit [GKS17].

Universal Arithmetic Circuits

Lipmaa, Mohassel and Sadeghian [LMS16] extended Valiant’s UC construction to construct
Universal Arithmetic Circuits (UAC). For a given DAG with fan-in/out of 2, its Un(Γ2) is im-
plemented using arithmetic operations instead of using binary gates. The UAC is constructed
with size of at most O(n) + 5L where L is the number of nodes in the constructed UAC
(with the exception of poles) and n is the number of nodes of the Boolean circuit [LMS16].
They claim that their UAC construction has the same asymptotic complexity as Valiant’s UC
construction for Boolean circuits.

In [LMS16]’s Universal Arithmetic Circuit (UAC) construction, the arithmetic universal gates
are programmed differently from Valiant’s Boolean UC construction. Seven different functions
are required in addition to three control bits c = {c0, c1, c2}. The remaining nodes are
programmed as X or Y switches. For instance, X switches are programmed as: (c, x0, x1)→
((1− c)x0 + cx1, cx0 + (1− c)x1), and Y switches are programmed analogously. More details
on the functions and their implementation can be found in [LMS16].

3.4 Limitations of Existing Universal Circuit Implementations

Though Valiant’s Universal Circuits have efficient implementations, all these implementations
have memory consumption as bottleneck since the whole Universal Circuit is stored and
programmed in memory. In other words, the largest circuit that can be computed is directly
influenced by the available memory. Due to this limitation, the need arises to address
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this issue. The method could be slower, since in most applications, the UC generation
happens in a precomputation step, but should not store more than O(n) information at any
moment in time in memory (as opposed to the current O(n log n) information, for example
in Günther et al.’s implementation), in order to allow for the computation of very large
circuits.

Methods and mechanisms for proactive memory management, such as caching, fail at this
case because, first of all, computations involved in the Universal Circuit construction are
linear and therefore cache hits may be very low. Moreover, for the construction involving very
large circuits, a large amount of addressable memory is needed for successful computation.
Virtual memory automatically swaps some data from memory to disk for later use, but this
occurs when the allocated memory of a program is almost used up. It is only a matter of time
before a bad_alloc error is thrown if the program continues using up memory. We discuss
this further in our evaluation in Chapter 6. Of course, the above indicated flaw is from a
memory-only method’s perspective. In relation to Private Function Evaluation, there have
not been any implementations with regards to solving the boundary presented by the use of
memory.

When it comes to scaling Universal Circuits, not much has been achieved because of the fact
that there has been only a few implementations realized, as discussed above. It is therefore
the purpose of this thesis to explore methods for scaling Universal Circuits for Private Function
Evaluation. The method discussed in this thesis makes use of both memory and the file system
to achieve scalability of UC construction for very large Boolean circuits.
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In this chapter, we detail the design of our improvements to the 4-way split UC construction
implemented in [GKS17] for large-scale private function evaluation. We introduce further
details about the 4-way split UC construction including its block types and a few algorithms in
Section 4.1. This leads us to the next section on refining the blocks covered in Section 4.1 to
improve on the UC construction in Section 4.2. Finally in Section 4.3, we discuss the design
of the scalable programming of the UC.

4.1 Valiant’s 4-way Universal Circuit Construction

In this section, we begin by introducing so-called modular block types of the EUG as detailed
in [GKS17].

Valiant’s 2-way split UC construction was implemented in [KS16; LMS16]. Valiant’s 4-way UC
construction was made modular in the implementation in [GKS17].

With motivation from [KS08a; KS16], Günther, Kiss and Schneider define three types of
programmable blocks for UC construction in [GKS17]. The general body block is denoted
as BP(l)

k,k where l is the number of additional hidden inputs (the program bits) in the pro-
grammable block and k is the input or output permutation block. For a DAG representing
a circuit Ck

u,v, we define a pole as either of u, v or k nodes and is represented as big circles
as shown in Figure 4.1. X and Y switches are represented as smaller circles also known as
special nodes. The body block has four poles and fifteen special nodes. The body block
has eight so-called recursion points in total which are emphasized as squares. Recursion
points are the poles of the subgraphs in the next recursion step. Figure 4.1a shows the body
block.

[GKS17] refines the general body block to design Head and Tail blocks. These are special
programmable blocks that only occur at the top and bottom of a chain of blocks, respectively.
The Head block has no upper recursion points and is denoted as BP(l)

0,k . The lack of upper
recursion points is due to the fact that it is the beginning of a chain of blocks and therefore
has no inputs being passed to the block. Figure 4.1f shows the head block. The Tail block has
no lower recursion points and is denoted as BP(l)

k,0 . Analogously to the head block, the tail
block has no lower recursion points because it ends the blocks’ chain and therefore maps to
the actual outputs of the circuit. The tail block can have either one, two, three or four poles
according to (n mod 4) where n = u+ v + k. When n mod 4 = 0, the number of poles in
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the tail block is 4. Figures 4.1b, 4.1c, 4.1d and 4.1e show tail blocks with one, two, three
and four poles respectively.

In addition to the poles in each block, there are hidden inputs, the number of which is
denoted as l. These hidden inputs enable multiple routing during edge-embedding of the UC.
The value of l depends on the type of block, that is, for body blocks it is l = 15+ 4× nug ,
for head blocks l = 7 + 4 × nug , where nug is the number of universal gates in the body
block.

Actually, the head block has 10 nodes (apart from poles) as we can observe in Figure 4.1f.
However, three of these nodes are special nodes identical to reversed Y switches with one
input and two outputs. For a given input to a reverse Y switch, the outputs can be duplicated
(inputs) and therefore we do not need to present it as an additional gate in the circuit level,
we can use two wires instead. Hence, we require only 7 hidden inputs in the number of
hidden inputs for the head block. Depending on the number of poles in the Tail block, l for
the tail block is calculated as l = nnwp + 4× nug , where nnwp is the number of nodes apart
from poles.

So far we have not described the recursion base block. The recursion base block, which is
constructed in a so-called recursion step subgraph contains the recursion base cases with four
or less nodes. Figure 4.2 shows a recursion base with four poles (recursion points) and three
nodes in the subgraph. As discussed earlier in Section 3.3, the recursion points are the poles
in the next recursion step subgraph. Given a DAG with n= u+ v + k = 20, we can construct
Un(Γ1) with five blocks: one head, one tail and three body blocks. It becomes evident that
there are four recursion point sets, each with 4 poles, that is, {q1, ...,q4}, {r1, ..., r4}, {s1, ..., s4}
and {t1, ..., t4}. We can therefore construct four recursion base graphs with four poles and
three nodes in the subgraph.

For a given EUG Un(Γ1), the UC construction includes at least a head and a tail block. For
n≥ 9, there exists one or more body blocks in the UC construction. As discussed earlier in
Section 3.3.2, two Un(Γ1) graphs are combined to form Un(Γ2). This chain of blocks from the
head block to the tail block represents Un(Γ1) and hence, two chains of blocks are combined
to fully construct the UC.

4.2 Scalable Universal Circuit Generation

In this section, we detail our per-block approach for UC generation in Section 4.2.1. Thereafter,
we discuss our per-block topological ordering in Section 4.2.2. For the subgraphs in the UC, we
discuss a recursive method of generating subgraph nodes in Section 4.2.3.
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Figure 4.1: Figure from [GKS17]. (a) shows Valiant’s 4-way split EUG construction [Val76].
(b)-(e) show tail block constructions for different number of poles (denoted in
brackets). (f) shows head block construction.

25



4 Design

qi

qi+1

qi+2

qi+3

Figure 4.2: shows the recursion base of recursion point set Q = {qi , qi+1, qi+2, qi+3} with 4
recursion points (poles of the subgraph) and 3 subgraph nodes.
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4.2.1 Per-Block 4-way Generation

In the implementation presented in [GKS17], the Universal Circuit structure is held in memory,
which poses an obvious bound on the maximum UC size. The maximum UC that can be
constructed is limited to the available memory capacity on the computing machine or cluster.
In [GKS17] an evaluation was run with an upper bound of n = 2·105 nodes. Our aim is to over-
come this boundary by using the file system for the UC construction.

Our Construction

To avoid the limitations imposed by memory-dependent implementations of Valiant’s UC
construction, we introduce a per-block UC construction approach. The underlying idea behind
this approach is to generate a block one at a time starting from the head block until the
tail block of the chain of blocks, never keeping more than one block and its corresponding
subgraph nodes in memory. In addition, the required recursion step subgraph nodes per-block
are constructed according to their rightful positions in the actual chain of blocks. After the
requisite nodes (including recursion step subgraph nodes) have been created, they are then
topologically ordered and the necessary nodes’ information are output to a file, after which
the created nodes are destroyed.

As discussed in Section 3.3.2, Un(Γ2) is formed from two instances of Un(Γ2). From here on,
we refer to these as the left and right subgraphs of the DAG. From each subgraph, there are
smaller subgraphs known as recursion point subgraphs (or recursion step graphs) that help
during edge-embedding as we will recapitulate in Section 4.3. From Figure 3.2, we see that
these recursion point subgraphs for a 2-way split UC are the set of EUGs {Un/2, Un/4, Un/8, ...}
until the recursion base is reached. For a 4-way split recursive UC construction, the recursion
point subgraphs are the set of EUGs {Un/4, Un/16, ...}. Henceforth in this chapter, we term Un as
the outer skeleton (also known as the recursion step graph) and {Un/4, Un/16, ...} as subgraphs
(also known as recursion step subgraphs).

The subgraphs emerge from recursion points (starting from the head block’s lower recursion
points) and end at the last set of recursion points at the end of the chain of blocks (upper
recursion points of tail block). The last recursion step subgraph nodes at each body block of
the outer skeleton have outgoing wires directed to the lower recursion points of the outer
skeleton’s body block as well as the next node(s) of the subgraph. Head and tail blocks only
have lower and upper recursion points respectively. The head and tail blocks therefore mark
the beginning and end of subgraphs respectively. In other words, the first subgraph nodes are
created after the head block (from its lower recursion points) and the last subgraph nodes
end before the tail block (before its upper recursion points). Therefore the structures we
introduce only apply to body blocks of the outer skeleton (Figure 4.3).

For a given Un(Γ1), there are d n−4
4 e−1 body blocks. For a given body block BP(l)

4,4 , we introduce
two sets of subgraph nodes S = {sq, sr , ss, st} and T = {tq, tr , ts, t t} where S is the set of
last subgraph nodes (from the last constructed body block) for each of recursion points
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Figure 4.3: (a) and (b) show the body block construction with one subgraph node. (a) is
the case for the first normal block and (b) the second. (c) is the case for the
recursion step tail block. (d) and (g) are for recursion step head and body blocks
respectively. (e) and (f) are both recursive construction cases where further
subgraphs are created.
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j ∈ {q, r, s, t} and T is the set of subgraph nodes generated in the current body block for
each of recursion points j ∈ {q, r, s, t}. For every s ∈ S, the size of s can be either 0, 1, 2
or 3 as shown in Figure 4.3. The size of t ∈ T varies and depends on the per-block type
constructed. According to our approach, each block is constructed, ordered topologically
then finally necessary node information are written to a file.

For simplicity, we explain our per-block body generation with sq ∈ S and tq ∈ T for a given

body block BP(l)
4,0 (where l is the number of additional hidden inputs in the programmable

block and 4 and 0 are the number of upper and lower recursion points respectively) although
the same construction is done for sr , ss, st and tr , ts, t t (and for the other Γ1 EUG outer skeleton
block). sq is constructed in order to set and pass the necessary outgoing wires to qi (from
Figure 4.3) and the subgraph nodes tq. Figure 4.3 shows the different types of head, tail
(with four poles) and body blocks constructed in our block UC construction approach. For the
sake of simplicity, we do not show the interconnection of the outer skeleton poles, that are
the same as in Figure 4.1a. For each of these body blocks, we eliminate the lower recursion
points, since we only want to include each recursion point once. We do this because the
construction of the subgraph nodes does not depend on the lower recursion points and also,
the lower recursion points are the entry points to the next body block and we only need to
save the outgoing wires of the last nodes in the outer skeleton and the subgraph in order
to construct the upper recursion points of the next body block. The per-block construction
denoted as BP(l)

4,0 therefore contains four upper recursion points, four poles and fifteen nodes
in the outer skeleton, and also in addition, the constructed subgraph nodes. Figures 4.3a
and 4.3c show block constructions with only one subgraph node, for the first and last body
blocks (and also other recursion step subgraphs) respectively. In Figure 4.3a, sq is an empty
set because there are no subgraph nodes at the head block level. Figure 4.3b also shows a
block construction with only one subgraph node in both sq and tq. This scenario applies to
the second body block (and also other recursion step subgraphs). Figure 4.3d has four nodes
and one node in tq and sq respectively. Figures 4.3e and 4.3f are the two cases where our
construction uses a recursion. They both have three nodes in sq. These nodes, in particular,

are from two different blocks BP(l)
4,0{i−1} and BP(l)

4,0{i−2} (where i is the current block number) with
one node from the former and two nodes from the latter. The per-body block is recursively
constructed using constructions depicted in Figures 4.3a-4.3g depending on the size of the
DAG n.

Firstly, the outer skeleton body block is constructed, followed by the requisite subgraph
nodes. All requisite subgraph nodes are constructed per-body block. To fully realize our block
construction, two separate blocks (from left and right Γ1 EUG) are merged by their poles, we
term this combined blocks a joint block. The left and right outgoing wires of the poles are
directed to the left and right nodes of the constructed blocks respectively. This applies to all
block types (head, body and tail). In [GKS17], the left and right subgraphs of Un(Γ2) are
constructed separately. This is done to ensure proper wiring of universal gates. We explain
this further later in this section and in Section 4.2.2.
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Each joint block constructed is immediately destructed after writing the requisite information
of the nodes to file. This is done to save memory by never storing O(n log n) information.
Some requisite information are saved in order to correctly construct the next joint block.
This information includes the outgoing wires of the last nodes in the outer skeleton and the
subgraph and the running topological number. The outgoing wires of the last nodes are saved
so that the next block’s upper recursion points and subgraph nodes can be rightly set with
input wires. The description of all nodes are written to a special file (one outer skeleton
or different subgraph files). A node’s description describes its gate or switch type and its
incoming and outgoing wires. Once a joint block is constructed, the input wires to upper
recursion points and the children subgraph nodes of the previous block’s subgraph nodes
are retrieved from file and set accordingly. In addition, the pole types are set depending on
the current block number. The current block number being constructed is d pi

4 e where pi is
the pole index. u input poles are set first, followed by k gate poles, then finally v output
poles.

Other Body Block Construction Methods

Before finalizing our per-block approach of UC construction, we recapitulate an approach
that we started off with but did not result in a successful UC generation. This approach did
not combine both left and right Un(Γ1) EUG blocks as a joint block. Instead, we generated the
graphs separately block by block, while ordering and writing node descriptions and variables
to file. A complication arises when it comes to setting input wires of gate and output poles.
Since all gate and output poles depend on outgoing wires from nodes in both left and right
Un(Γ1) (due to merging), the current block construction has to be halted in order to begin
construction of the other Un(Γ1) EUG until the other incoming wire required by the gate pole
is set. This also means that the wires of the gate poles’ children nodes cannot be set. For
output poles it is not as complicated as with gate poles since output poles have no children
nodes depending on its output wires (children of output poles are cleared). This defies the
purpose of our per-block UC generation approach. For input poles, this does not pose a
problem because input poles have their output wires set as wo1

= wo2
∈ {1, ...,u} where u

is the number of inputs of the DAG. Input poles are also considered to have no input wires
(and therefore have their input wires cleared) which is an optimization in [KS16; GKS17]
that additionally enables these wires to be listed as the first u wires.

4.2.2 Per-Block Topological Ordering

In this section we discuss our per-block (recursive) topological ordering of the joint block.

We mentioned before that we merge the left and right Γ1 per-block constructions to form a
joint block. After each joint block is constructed, we order the nodes of the outer skeletons and
subgraphs topologically. Topological ordering is a precursor to writing the nodes’ descriptions
to file. In the ordering process, all nodes are assigned a topological value.Our topological
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ordering is based on the Depth-First Search (DFS) algorithm. In [GKS17], ordering is started
from the first pole’s children (from the left and right EUGs Un(Γ1)) and worked down greedily.
We also introduce a bottom-up ordering approach for each block where we begin ordering
from the last nodes of the block in Figure 4.3. One reason for our bottom-up ordering is
because we need to write the wires of the last two nodes accordingly to file and later retrieve
them in the construction of the next block and hence we need to know their right order so we
can easily set the input wires of the upper recursion points (of the next block) right. From the
per-block generations depicted in Figure 4.3, it is evident that recursion points have children
nodes from both the subgraph and the outer skeleton. Employing a top-bottom (starting
from top nodes to bottom nodes of the block) ordering approach would include all nodes
(but we want to order outer skeleton nodes and subgraph nodes separately to avoid too
many simultaneous file opening and closing). The subgraph nodes are created and ordered
recursively. We discuss this further in Section 4.2.3. Hence, we go by a bottom-up approach
where ordering is started from the last two nodes (in total four for the joint block) of the
outer skeleton block.

Listing 4.1: Bottom-up topological ordering for our per-block UC generation
1 procedure t opo log i ca lOrde r ing (u, v, k, tn, pi )
2 Let u, v, k be number of inputs , outputs and gates of DAG r e s p e c t i v e l y
3 Let pi be index of f i r s t pole in the cur ren t block
4 Let sizesub be s i z e of cons t ruc ted subgraph nodes at cur ren t b locks ( l e f t and

,→ r i g h t b locks )
5 Let stack be the s tack
6 Let tn be the running t o p o l o g i c a l number from prev ious b locks wr i t t en to f i l e
7 Let sizeB be s i z e of the j o i n t b locks
8
9 Let Ob be the t o p l o g i c a l order vector , r e s i z e to sizeB

10 P ← {ppi+1, ppi+2, ppi+3, ppi+4}
11 Let up(n) be the number of input po les in t h i s b lock
12 up(n)← 0 // i n i t i a l i z e
13 fo r i from 1 to 4 do
14 s e t pole as e i t h e r input , output or gate based on u, v, k, and pi
15 i f Pi i s input do
16 up(n)← up(n) + 1
17 Mark Pi as v i s i t e d
18 Set t o p o l o g i c a l number of Pi to 4 ∗ pi + i
19 I n s e r t pole in Ob at p o s i t i o n i
20 end i f
21 end f o r
22 Let nl1 , nl1−1 and nl2 , nl2−1 be the l a s t nodes in the two outer ske l e ton b locks
23 stack push nl1 ; stack push nl1−1 ; stack push nl2 ; stack push nl2−1

24 Let f ound_node be Boolean fo r t o p o l o g i c a l l y v i s i t e d node found
25 while stack not empty do
26 Let nc be the cur ren t node taken from stack
27 nc ← stack top // node on top of s t ack
28 i f nc i s marked as v i s i t e d do
29 f ound_node = f a l s e
30 Let Np be the parents of nc

31 fo r a l l np ∈ Np do
32 i f np not marked as v i s i t e d do
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33 stack push np

34 f ound_node = t rue
35 break
36 end i f
37 end f o r
38 i f not f ound_node do
39 Set t o p o l o g i c a l number of nc to tn

40 I n s e r t nc in Ob at p o s i t i o n up(n)

41 up(n)← up(n) + 1
42 tn← tn + 1
43 stack pop
44 end i f
45 else
46 Mark nc as v i s i t e d
47 i f nc i s not a recur s i on point do
48 Let Np be the parents of nc

49 fo r a l l np ∈ Np do
50 i f np not marked as v i s i t e d do
51 stack push np

52 break
53 end i f
54 end f o r
55 end i f
56 end i f
57 end while
58 end procedure

Listing 4.1 shows our bottom-up per-block topological ordering of the outer skeleton block.
With this algorithm, the outer skeleton nodes can be ordered without dealing with the
subgraph nodes. We order the outer skeleton block first because otherwise this would involve
the opening and closing of 1+ ns f , where ns f = 2 ·

∑log4n
i=0 4i is the number of subgraphs in

the Γ2 EUG and n is the size of the original DAG. Recursively one can calculate ns f using the
function from Listing 4.2. Our algorithm gets as input the number of inputs, outputs and
gates of the DAG and also the last running topological number which was set and written to
file during construction and ordering of the previously created block. This variable helps to
continue the topological ordering from where we left off, without having to keep the whole
structure in memory. Our next task is to resize the output vector to store the ordered nodes
as seen in lines 8 and 9. This differs in the implementation of [GKS17] because they resize
the vector with the size of the Un(Γ2) EUG. We resize it to the sum of the two outer skeleton
blocks and their subgraphs. This is followed by the setting of the poles of the joint block
as either input, output or gates depending on the pole index and the values of u, v and k.
In [GKS17], this is a prerequisite step to topological ordering as all pole types are set before
ordering of the left and right Γ1 EUGs. Thereafter, if any of the four poles in the outer skeleton
blocks are input poles, we set its topological number and add it to the set of ordered nodes
as seen in lines 15 to 20. We also set them as topologically visited. This flag helps to skip
and identify ordered nodes during the ordering process as we iterate through nodes in the
blocks.
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For the first step of the actual topological ordering, we put the last bottom two nodes of each
block (in total four nodes) onto the stack (as seen in line 23). In [GKS17]’s implementation,
the left and right children of the first pole in the head block are placed unto the stack. Now
for every node on top of the stack, we check if it has been flagged as topologically visited.
If not, we mark the node as visited then we check if any of its parents is also flagged as
topologically visited. If any of its parent is flagged as visited, we push the first found parent
node unto the stack and break from the loop (lines 46 - 52). Otherwise if none of its parents
is flagged as topologically visited, we check the next node on top of the stack and repeat the
process by checking if it is flagged as topologically visited. We skip unflagged nodes which
are recursion points since there are no further nodes to check (no parent nodes). Now if a
node on top of the stack is already flagged as visited, we still check if any of its parents is
flagged as visited and push them onto the stack. Otherwise, we set its topological number
and insert it into the set of ordered blocks as shown in lines 39 and 40. The index of the set
of ordered nodes and the running topological number are both incremented by one (lines 41
and 42). The index is first initialized in line 12. In [GKS17], the DFS (topological ordering)
is such that the last node in the Un EUG is inserted first into the set of ordered blocks. Hence,
the topValue (index) variable is initially set to the maximum size of the EUG so that the
last node is set in the last index. Afterwards, the index (topValue) gets decremented after
every insertion into the ordered set. In our adaptation of the topological ordering, it’s the
reverse, starting from the bottom and working our way up (bottom-up ordering approach).
Moreover, our approach works block by block, while the approach in [GKS17] handles the
whole structure (that is stored in memory) at once. Therefore, we increment the index and
topological number by one.

We show in Figure 4.5 that our bottom-up approach works effectively and results in a rightful
topological ordering of the block. In Figure 4.5a, we show the order in which nodes are
visited from bottom up. Nodes 1 and 2 are the last two nodes that we put first on the stack.
With node 2 being on top of the stack, the algorithm greedily climbs up and checks its ancestor
nodes. Figure 4.5b shows the resulting ordered nodes. It is noticeable that the right order is
ensured.

4.2.3 Recursive Subgraph Generation

We describe our per-block recursive subgraph generation in this section.

Figures 4.3e and 4.3f show the recursive block constructions with Figures 4.3a, 4.3b, 4.3d, 4.3g
and 4.3c being base cases. From Figure 4.3, each body block construction type is denoted
either by Hn, Bn or T n

x where n= {0, 1, 2, 3} is the position of nodes between two poles in a
head, tail or body in the subgraph and x = {1, 2, 3, 4} denotes the type of tail block. A given
subgraph has node(s) between every two set of recursion points of the parent graph to which
this subgraph belongs. We know that the recursion points, for instance {q1, ...,qd n−4

4 e
} are the

poles of the next recursion step subgraph. n denotes the position of the nodes between two
poles in a head, body or tail subgraph. We define Hn, Bn, T n

x to denote constructions that can
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Figure 4.5: Our bottom up topological ordering process. (a) shows the order in which nodes
of the block are visited and pushed to the stack. (b) shows the topological order
of nodes after bottom-up ordering.
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Listing 4.2: Algorithm for calculating the number of recursion step subgraphs in Un(Γ2).
1 procedure c a l c u l a t e S t e p s (n , c = 0)
2 i f n≤ 4 do
3 re turn 8 · c
4 end i f
5 s← d n−4

4 e
6 c← c + 1
7 c a l c u l a t e S t e p s (s , c )
8 end procedure

be used to construct head, body and tail subgraphs respectively. For instance, Figure 4.3a can
be used to construct only head subgraphs at the first position in a recursion step subgraph
and is denoted as H0. Figure 4.3b can be used in more than one case: B0, T0

4 , H2 and B2.
With our algorithm in Listing 4.4, we can generate the subgraph nodes recursively for all
recursion steps at a given position for nodes n. Let us consider a simple example of a DAG
with n = u+ k+ v = 28. Ideally, our approach constructs two of the same block from the left
and right Un(Γ1) EUGs for each of d n−4

4 e= 6 blocks. In this scenario for Un(Γ1), we have one

head block BP(l)
0,0 (since our per-block generation does not consider lower recursion points for

a given block) which is then built up of H0, H1, H2 and H3 in order, five body blocks BP(l)
4,0

which are all built up of B0, B1, B2 and B3 in order and one tail block BP(l)
4,0 with 4 nodes,

which is then built up of T0
4 , T1

4 and T2
4 in order. Constructing the first joint head block is

straightforward as we do not have to construct any subgraph. We define the current subgraph
level as si = bi − 1 where bi is the number of the current block under construction. There
are sn = d

n−4
4 e − 1 subgraph levels (which is equivalent to the total number of body blocks

to be constructed per Un(Γ1) EUG) in total for a given Un. For n= 28, we have 5 subgraph
levels. For our first three subgraph levels, we construct blocks with subgraphs as shown in
Figures 4.3a (H0), 4.3d (H1) and 4.3b (H2) respectively. At the fourth subgraph level, we
construct our recursive case shown in Figure 4.3e (H3). For the fifth and final subgraph level
we construct the subgraph (together with the outer skeleton block) shown in Figure 4.4c
(T0

2 ). For this scenario with n= 28, we do not create further subgraphs from the recursion
points in the subgraph (in fourth subgraph level). That is, there is only one set of recursion
steps (one from each of eight recursion points from two blocks) generated from the recursion
step graph (outer skeleton).

As mentioned before, tail blocks have either 1, 2, 3 or 4 poles. We show in Figure 4.4 the
different tail subgraph constructions. Figure 4.4a shows the case for the first position of tail
subraphs with 3 or 4 poles. Figure 4.4d shows a construction that can be used at the second
position for tail subgraphs with 3 poles. There does not exist T n

1 (for tail blocks with one
pole) because the construction of the nodes before the pole of the tail subgraph is already
done by the head or body ({Hn

x , Bn
x}) constructions preceding, in particular our recursive

constructions from Figures 4.3e and 4.3f.
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The number of recursion step subgraphs in Un(Γ2) can be calculated from Listing 4.2. The
function is initially called with arguments n and count c as 0, where n is the size of the DAG.
The function recursively calls itself and updates the subgraph level value and recursion step
count until the number of remaining subgraph levels is 4 or less (base case), where we return
8 · c (8 subgraphs in Γ2 EUG). This function aids in the recursive subgraph generation as we
will discuss further in this section. Figure 4.3f and 4.3g are applied in recursive cases with
the number of subgraph levels greater than seven. That is, with n≥ 40. Figures 4.3e and 4.3f
have variations where either one or both of the last two subgraph nodes have one or two
outgoing wires. This is relevant to recursion steps with tail blocks.

Listing 4.3 shows the function that calls the recursive function in Listing 4.4. Listing 4.3 is
called from the outer skeleton block and has as arguments the set of eight recursion points for
the joint block (left and right), the number of poles in the subgraph and the position of the
current block subgraph being constructed. The recursiveSubgraphGeneration function
is called for each recursion point from both blocks as seen in lines 7 and 11. Listing 4.4
shows our recursive algorithm for generating subgraph nodes at a given subgraph level (see
beginning of this section). For the base case of the recursive function, a recursion base
subgraph node is created if the number of subgraph poles is less than or equal to 4 as seen in
lines 5 and 6. We update the value of the number of subgraph poles in the current recursion
step in line 10. For the generation of Hn, we check if the current subgraph level is less
than or equal to 4 (line 11). We also create recursion points and further Hns in the next
subgraphs if we are at H3 (lines 13 - 16). For the generation of Bn we firstly check if the
remaining subgraph poles are more than or equal to 4 (lines 19 and 20). We do this because,
with less than 4 poles, we can only create a tail recursion step block T n

k (in the recursion
step subgraph). We create new recursion points if we are at B3. However, here we update
the value of the subgraph level in the next recursion step (since H0 can only be created at
subgraph level 1 for a given recursion point) as seen in line 23. Finally, we construct T n

x as
seen in lines 30 to 35.

Listing 4.3: Function to call recursive function from outer skeleton
1 procedure c a l l R e c u r s i o n ( rpts, sp, cl )
2 Let rpts be the upper recu r s i on po in t s vec to r of cur ren t block
3 Let sp be the number of subgraph poles ( r e cu r s i on po in t s ) in a given recur s i on

,→ s tep
4 Let cl be the cur ren t subgraph l e v e l / l a y e r .
5 // l e f t b lock
6 fo r i from 1 to 4 do
7 c a l l recurs iveSubgraphGenerat ion ( rptsi , sp , cl )
8 end f o r
9 // r i g h t block

10 fo r i from 5 to 8 do
11 c a l l recurs iveSubgraphGenerat ion ( rptsi , sp , cl )
12 end f o r
13 end procedure

Listing 4.4: Recursive algorithm for generating subgraph nodes
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1 procedure recurs iveSubgraphGenerat ion ( rp, sp, cl )
2 Let rp be the recur s i on point
3 Let sp be the number of subgraph poles ( r e cu r s i on po in t s ) in a given recur s i on

,→ s tep
4 Let cl be the cur ren t subgraph l e v e l / l a y e r .
5 i f sp ≤ 4 do
6 c rea t e recu r s i on base subgraph node at cl

7 else
8 remsp ← sp − cl − 1
9 Let ns be the number of po les in the next r e cu r s i on s tep subgraph

10 ns ← d
sp−4

4 e − 1
11 i f cl ≤ 4 do
12 c rea t e head subgraph node( s ) at H cl mod 4

13 i f cl mod 4 = 3 do
14 c rea t e new recur s i on po in t s rptsn

15 fo r i from 1 to 4 do
16 c a l l recurs iveSubgraphGenerat ion ( rp, ns, 1)
17 end f o r
18 end i f
19 else i f remsp >= 4 do
20 c rea t e body subgraph node( s ) at Bcl mod 4

21 i f cl mod 4 = 3 do
22 c rea t e new recur s i on po in t s rptsn

23 nl ←
ns−4

4
24 fo r i from 1 to 4 do
25 c a l l recurs iveSubgraphGenerat ion ( rptsi , ns, nl )
26 end f o r
27 end i f
28 else
29 Let x be the number of po les in the t a i l ( subgraph ) block
30 i f remsp mod 4 = 0 do
31 x ← 4
32 else
33 x ← remsp mod 4
34 end i f
35 c rea t e t a i l subgraph nodes ( s ) a t T cl mod 4

x
36 end i f
37 end i f
38 end procedure

With this, we have shown how to generate topologically ordered Universal Circuits using the
file system and achieve a scalable algorithm for Universal Circuit generation that stores at
most O(n) information in memory.

4.3 Universal Circuit Programming

In this section, we begin by discussing the stages in edge-embedding for Valiant’s 4-way
UC construction in Section 4.3.1. Finally, we discuss our per subgraph edge-embedding in
Section 4.3.2.
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4.3.1 Valiant’s Edge-Universal Graph Edge-Embedding

We discussed briefly Valiant’s edge-embedding algorithm in Section 3.3.1. Here, we discuss
the stages in edge-embedding in Valiant’s 4-way split UC construction as a primer to our per
subgraph edge-embedding process.

After the UC generation, we do an edge-embedding of the circuit Ck
u,v the UC represents to pro-

gram the UC. There are three stages in the edge-embedding process: block edge-embedding,
recursion point edge-embedding and the combination of both processes in a final step, as
proposed in [GKS17]. We discuss the stages in the following sections.

Block Edge-Embedding

Each block is responsible for performing its own block edge-embedding, that is, programming
the block nodes. According to Valiant, the underlying idea behind block edge-embedding is
to map and pass the inputs of a block (upper recursion points) to poles, and also to map and
pass poles to outputs (lower recursion points) [Val76]. [GKS17] formalizes the rules for the
input and output vectors used for passing on inputs from upper recursion points to poles,
and from poles to lower recursion points.

Recursion Point Edge-Embedding

Recursion point edge-embedding uses a process presented in [KS16] known as supergraph
construction and is done at the subgraph level from the recursion points. Recursion point
edge-embedding aims at programming the recursion point nodes and also to set the input
and output vectors of the blocks for the block edge-embedding.

For Valiant’s 4-way split UC construction, the supergraph construction generates four sub-
graphs. A supergraph is a graph G1 ∈ Γ1(n) with a binary tree of Γ1 graphs of decreasing size
which define the embedding of every edge e ∈ E from G = (V, E) into Un [KS16]. A given
graph G ∈ Γ2(n) is split into two graphs G1 ∈ Γ1(n) and G2 ∈ Γ1(n). The splitting is done
using the method of 2-coloring as discussed in Section 3.3. The second step is to merge each
of both G1 ∈ Γ1(n) and G2 ∈ Γ1(n) into one G1 ∈ Γ2(

n
2 ) and G2 ∈ Γ2(

n
2 ) graphs respectively, by

merging each two neighboring nodes of the graph to form one node in the merged graph.
The merging is done to preserve node information [KS16]. Since we want to obtain four
Γ1 graphs, we repeat the process again by doing another 2-coloring then merging to obtain
four Γ1 graphs. This is equivalent to doing one 4-coloring and merging 4 nodes into one
node [GKS17]. The entire process is repeated by merging each of the four Γ1 graphs to form
Γ2 graphs then splitting to form Γ1 graphs (both done twice) until the resulting Γ1 graph has
four or less nodes, that is, the recursion base is reached [KS16].

For every block, Günther et al. introduce input and output vectors that help to map edges
in the DAG to paths in the block (for edge-embedding) [GKS17]. Head and tail blocks
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are exceptions as they do not need input and output vectors, respectively. The input and
output vectors are of x and y bits, respectively and they are defined based on the supergraph
construction and they do not depend on the structure of the UC. For a k-way (k = 4 in our
case), the input vector x has a value range of {0, ..., k}4 and the output vector y has a range
of {0, ..., 2k− 1}4 [LMS16; GKS17]. The output vector has a higher range so that a pole can
be forwarded to either another pole or lower recursion point. Values {k, ..., 2k − 1} of the
output vector are reserved for the recursion points.

Combined Edge-Embedding

The two edge-embedding methods are combined by first doing a recursion edge-embedding
followed by a block edge-embedding. For each of the four subgraphs of G ∈ Γ1 graph, we
take each edge e ∈ E we mark and set the control bit of the recursion points and set the
input and output vectors of the corresponding blocks (where the edge can be found). At
this point, the input and output vectors of all blocks have been set and hence the block
edge-embedding is done. The process is repeated for all Γ1 graphs of the supergraph and the
recursion step graphs of the EUG (until the last Γ1 graph of the supergraph with 4 or less
nodes).

4.3.2 Per-Subgraph Edge-Embedding

From the Γ2 graph, we embed each edge of the DAG as a path between poles of the Γ2 EUG.
For each edge e ∈ E ⊂ V xV in the Γ1 DAG G = (V, E) (from the supergraph construction) that
we want to embed, we need to set the input and output vectors first by doing a recursion
edge-embedding.

We detail our per-subgraph recursion edge-embedding in Listing 4.6. The function takes as
arguments the universal graph (subgraph) and its matching Γ1 graph from the supergraph
construction. Each recursion step subgraph information is stored in a separate subgraph
file. We name the subgraph files such that, the name matches the position of the graph
(subgraph) in the EUG and thus it is easy to select both the Γ1 graph from the supergraph
and its corresponding universal graph (subgraph). We perform the recursion point edge-
embedding without going through the generated subgraph files first. We use one dedicated
file for the Γ1 graph and delete its content after successful edge-embedding of the graph. For
the content of the file for the Γ1 graph (of the supergraph), we write the input and output
vectors of the Γ1 graph of the supergraph, that is, we just read the Γ1 graph in the supergraph
and set all recursion point programmings as seen in lines 15 to 34.

For every edge e = (vi , v j) ∈ E in the current Γ1 graph, we locate the blocks in the Γ1 EUG
graph that contain both nodes vi , v j (lines 9 to 12). If both nodes are contained in the same
block, the edge-embedding can be done in the same block so we set the control bit of the
output vector at the corresponding node position (lines 15 to 17). Otherwise if vi and v j are
not in the same block, we have to look for an edge e′ = (v′i , v′j) ∈ E′ in one of the Γ1 graphs
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of the supergraph denoted as Sx (where x is the number of the graph in S as seen in line
22) and mark it. We set the programming bit of the input recursion point at position x to
1. If the nodes between the edge e′ are in subsequent blocks, that is b j − bi = 1, we set the
programming bit of the recursion point at position x to 0 (lines 24 and 25). This means the
nodes are found in subsequent blocks and therefore the path has to enter and leave the next
recursion step graph at the same node [GKS17]. If b j − bi > 1, we set the programming bit
of the recursion point at position x to 1 and therefore the path enters the next recursion step
graph without leaving at the same node. The input and output vectors of the block are then
set as seen in lines 30 and 31. The process is repeated for all other edges e ∈ E of the Γ1
graph of the supergraph. We then write the input and output vectors in the dedicated file
for the Γ1 graph of the supergraph as seen in line 34. Now, all input and output vectors of
the graph have been set and therefore we edge-embed all blocks (block edge-embedding) in
graph G as seen in line 36 with the function from Listing 4.5. For the four subgraphs of G
and the four Γ1 subgraphs of G1, we repeat the recursion edge-embedding (lines 37 - 39).
We do this recursively until the recursion base cases are reached.

Listing 4.5 shows the block edge-embedding algorithm as formalized in [GKS17]. As men-
tioned before, in block edge-embedding each block takes care of its own embedding. The
function takes as arguments the graph (subgraph) and the file containing the set of all input
and output vectors of blocks in the Γ1 graph. The graph’s description and information is
detailed in a file as we discussed before in Section 4.2. We know the number of lines that
make up nodes of a head, body or tail block and therefore it is easy to get information of
nodes in a given block. For each block and its corresponding input and output vectors, we set
the control bits of the paths from the input (upper) recursion points to poles, between poles
or the paths from poles to the output (lower) recursion points. For every input vector value,
we set the path from the input recursion point to the corresponding pole, from pole to pole
and from pole to output recursion points (lines 34 to 42 for body blocks). Lines 15 and 23
begin the procedure for head and tail blocks, respectively. Input and output recursion points
are not considered for head and tail blocks, respectively.

Listing 4.5: Per-block edge-embedding
1 procedure blockEdgeEmbedding (G, fio )
2 Let fio be the dedicated f i l e with the input and output ve c t o r s
3 Let nb be the number of b locks in the Γ1 graph
4 Let In, Out be the s e t of input and output ve c to r s in fio

5 In← {in1, ..., innb
} // read from fio

6 Out ← {out1, ..., outnb
} // read from fio

7 fo r i from 1 to nb do
8 Let in and out be the input and output ve c t o r s of the cur ren t block Bi

,→ r e s p e c t i v e l y
9 Let rp0 and rp1 be the four upper and lower recu r s i on po in t s of Bi

,→ r e s p e c t i v e l y
10 Let P be the s e t of po les in Bi

11 in← Ini

12 out ← Out i

13 P ← {p1, p2, p3, p4}
14 i f i = 1 do
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15 fo r i from 1 to 4 do
16 i f out i 6= 0 and out i < 4 do
17 s e t path from Pi to P1+outi

18 end i f
19 i f out i > 3 do
20 s e t path from Pi to rpi−3

i
21 end i f
22 end f o r
23 else i f i = nb do
24 fo r i from 1 to 4 do
25 i f ini 6= 0 do
26 s e t path from rpi

0 to Pini

27 end i f
28 i f out i 6= 0 and out i < 4 do
29 s e t path from Pi to P1+outi

30 end i f
31 end f o r
32 else
33 // s e t paths
34 fo r i from 1 to 4 do
35 i f ini 6= 0 do
36 s e t path from rpi

0 to Pini

37 end i f
38 i f out i 6= 0 and out i < 4 do
39 s e t path from Pi to P1+outi

40 end i f
41 i f out i > 3 do
42 s e t path from Pi to rpi−3

i
43 end i f
44 end f o r
45 end i f
46 end f o r
47 end procedure

So far we described the edge-embedding process with one Γ1 graph of the supergraph.
We do the same with the other Γ1 graph (and its subgraphs recursively) of the super-
graph.

We reiterate that the above edge-embedding is made easy due to our per-block UC generation.
The files are generated in such a manner identical to the Γ1 graphs of the supergraph. That
is, for every Γ1 graph of the supergraph, there is a corresponding file from the subgraph of
the Γ1 EUG at the same graph position. So for every Γ1 graph of the supergraph that has to
be edge-embedded, there is a file containing the nodes’ information of the corresponding
Γ1 EUG (subgraph). After edge-embedding, we have a resulting Γ1 EUG file, programming
file pair. That is, for every file (subgraph and outer skeleton files) created during the UC
generation, there is a corresponding programming file.

With this, we have shown how to edge-embed the DAG using the scalable generated UC (in
multiple files) and the Γ1 graphs from the supergraph and achieve scalable per-subgraph
edge-embedding.
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Listing 4.6: Per-Subgraph recursive edge-embedding
1 procedure recursionEdgeEmbedding (G, G1 = (V, E))
2 Let G be the subgraph ( f i l e )
3 Let R be the 4 recur s i on s tep subgraph f i l e s of G
4 Let G1 be the Γ1 graph in the supergraph
5 Let S be the 4 Γ1 subgraphs of G1

6 Let B be the s e t of b locks in G
7
8 fo r e = (vi , v j) ∈ E do
9 Locate (vi , v j) in f i l e G

10 Let i′ and j′ denote the p o s i t i o n s of vi and v j in t h e i r b locks
11 bi ← d

i
4 e

12 b j ← d
j
4 e

13 Let out [ r1 ] denote the output vec to r [ r e cu r s i on po in t s ] of Bbi

14 Let in [ r0 ] denote the the input vec to r [ r e cu r s i on po in t s ] of Bb j

15 i f bi = b j do
16 i f vi 6= v j do
17 out i′ ← j′ − 1
18 end i f
19 else
20 Let s = (V ′, E′) ∈ S denote the Γ1 graph with e′ = (pbi

, pb j−1
) ∈ E′ and e′ i s not

,→ marked
21 Mark e′

22 Let x denote the number with s = Sx

23 Set the con t ro l b i t of r x
0 to 1

24 i f b j = bi + 1 do
25 y ← 0
26 else
27 y ← 1
28 end i f
29 Set the con t ro l b i t of r x

1 to y
30 out i′ ← x + 4
31 inx ← j′

32 end i f
33 end f o r
34 wr i te input ( in) and output (out ) ve c to r s to dedicated Γ1 graph f i l e fio

35 // Edge−embed a l l b locks in G with a l l in and out vec to r s s e t so f a r
36 c a l l blockEdgeEmbedding (G, fio )
37 fo r i from 1 to 4 do
38 i f Si e x i s t s do
39 c a l l recursionEdgeEmbedding (Ri , Si )
40 end i f
41 end f o r
42 end procedure
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In this chapter we discuss our implementation. We begin by detailing our scalable UC
generation in Section 5.1. We finally discuss how our UC generation can be leveraged to
program the UC in Section 5.2.

5.1 Scalable Universal Circuit Generation

In this section, we discuss the compilation process and development environment in Sec-
tion 5.1.1. We then detail our per-block 4-way UC generation in Section 5.1.2. There-
after, we discuss our scalable implementation using the file system in Section 5.1.3. We
finally describe the functions of the various classes in our implementation in Section 5.1.4.
.

5.1.1 Compilation and ProgramOutput

In this section, we discuss the tools and environmental setup we used for our implementa-
tion.

The Development Environment. Our per-block 4-way UC generation implementation was
developed in C++ on Linux, specifically Ubuntu 16.04 Long Term Support (LTS). We used
CLion as the Integrated Development Environment (IDE) which is a full-fledged environment
which comes with a debugger, console and terminal to observe program output and the option
to set and use a compiler of choice.

The Compilation Process. We used an open-source, cross-platform build tool known as
CMake for building our program. CMake is also used to test and package software. A binary
file is generated which can then be run. CLion comes with CMake pre-installed. The version
of CMake we used is 3.7.
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ProgramOutput. The running time of the built program (binary file) varies and depends on
the size n of the DAG, the higher the value of n the longer the running time, since it depends
on the size of the UC O(n log n). We elaborate our evaluation in Chapter 6. After successful
running, a number of output text files are created, the number of which also depends on n,
more concretely, is linear in n, and equals to the total number of subgraphs of the UC plus one
(outer skeleton file). The output text files contain the node descriptions of the outer skeleton
and subgraph files (generated UC). The UC format is the same as that of [KS16]. Outer
skeleton nodes are written to one file and subgraph nodes are written to different subgraph
files (which enables the straightforward edge-embedding). There are also dedicated files
that store information from previous generated subgraph nodes for later use. The content,
number and size of the text files vary and we discuss this further in Section 5.1.3 and also in
our evaluation in Chapter 6.

5.1.2 Per-Block 4-way Construction

We discuss implementation details of our per-block 4-way UC construction in this sec-
tion.

Outer Skeleton Block Generation

We begin by defining the value of the size of the DAG. As mentioned before, for a given DAG of
size n, we construct one head, one tail and d n−4

4 e−1 body blocks for the outer skeleton. There
are a total of d n

4 e blocks to be constructed. We write the input wires {0, ..., u−1} of input poles
to the outer skeleton file, where u is the number of inputs of the DAG.

We mentioned in Section 4.2.2 the notion of a joint block as a merged block of the left and
right Γ1 EUGs at their poles in the outer skeleton. The joint head block is created first without
upper recursion points (cf. Section 4.1). From our per-block UC generation, we only construct
upper recursion points per-block of which the head block has none. Therefore we generate
the joint head block without the upper recursion points. We begin the construction of the
joint head block by creating a unique set of four poles {pi , pi+1, pi+2, pi+3} (where i is the pole
index of the current joint block) for the joint block (both head blocks) as shown in Figure 4.1f.
For the joint block i = 0 therefore we generate poles {p0, p1, p2, p3}. We then create all nodes
for both head blocks in the joint block and set the children and parents of each node. We
borrow the construction of nodes from [GKS17]’s implementation.

We do a topological ordering of each constructed joint block. We discuss this further later
in this section. For each constructed joint block, we write to file the outgoing wires of the
last nodes in the left and right blocks (of the joint block). The last nodes are the nodes with
outgoing wires that are the input wires of the lower recursion points as seen in Figures 4.1f
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and 4.1a. We write these outgoing wires so that we can set the input wires of the upper
recursion points of the next joint block construction1.

As shown in Figures 4.3b to 4.3f it is evident that the left input wires of upper recursion
points also have to be set and we obtain this from our per-block subgraph generation as we
will discuss later in this section. We do not save last wires of tail blocks as they end our
per-block UC generation.

The same procedure for constructing the head blocks is applied to the construction of body
and tail blocks. Tail blocks however have {pi , ..., pm} poles created where m= n mod 4. For
each joint body and tail block, in addition to the created poles and nodes, we create upper
recursion points for both left and right blocks. We read from a special dedicated file the output
wires of the last nodes written. We set these as the input wires of the block’s upper recursion
points accordingly. Also, if any of the created poles is an output pole, we write its output wire
to file. We update the output poles’ wires for every joint block and only write it (to the outer
skeleton file) lastly after generating and writing the tail block nodes. The descriptions of all
nodes and poles in the joint block are written to the outer skeleton file. For every node in the
set of ordered nodes in the joint block, if the node has 2 parents and is not an input pole, we
write its node description to file. There is the special case of upper recursion points which
have no parent nodes as they are the top nodes in our per-block generation. Since we set
the input wires of the upper recursion points during the block construction (body and tail
blocks), we count the size of the input wires set and write the description accordingly. For
the first joint body blocks, we set only one input wire and hence the upper recursion points
are reverse Y switches that can be replaced by wires only as described in [KS16]. This is the
case shown in Figure 4.3a.

As mentioned before, a node description indicates the type of the node and its input and output
wires. We encapsulate this information in a string. To obtain this string, we set the type of the
node first. Types include X , Y or U where X is an X switch, Y is a Y switch and U is a universal
gate as described in [KS16]. The input and output wires of the node are concatenated to
the type. A node having 2 parent nodes and 2 children nodes with input and output wires
{227, 218} and {230, 231} respectively has its description as "X 227 218 230 231". For gate
poles (with 2 input wires and 1 output wire (the same output wire is duplicated as two output
wires)), we set the type as U because the same outgoing wire goes to both of its children nodes.
For instance a gate pole’s description may be denoted as "U 233 241 242" where 233 and 241
are the input wire numbers and 242 is the output wire number. A node’s output wire(s) is the
sum of its topological number and the additional wires. We discuss this further later under
topological ordering in this section. For X switches the second output wire is the first output
wire plus one which is evident in the above example. It is noticed that the left children of
recursion points are not created in the joint block generation and hence the input wires of
the right (second) children are set accordingly as output wire plus one. Y switches have two
input wires and one output wire. An example is "Y 138 141 142".

1Alternatively, the outgoing wires of the last nodes can be stored in memory, since we need to store only 8
numbers per-block for the entire UC generation.
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In addition to only joint body blocks, we calculate the value for the number of subgraph
poles in the next recursion step subPoles = d n

4 e − 1 and current subgraph generation level

cl =
pi
4 (where pi is the pole index of the current joint block) as shown in our recursive

subgraph nodes generation algorithm in Listing 4.4. The upper recursion points rpts are
already created from the outer skeleton generation (joint block). We then start generating
the subgraph nodes recursively.

Finally, after generating all outer skeleton nodes and subgraph nodes, we write v output pole
wires to file.

Topological Ordering

As mentioned before, we use a bottom-up topological ordering approach which we discussed
in Section 4.2.2. Our bottom-up approach results in the upper recursion points amongst the
top ordered nodes, hence a topological ordering of the DAG.

In addition, we set each created pole as either an input, gate or output pole. From n = u+v+k,
there are u input poles, v output poles and k gates. For input poles, we also clear its parents,
that is we remove association with its parent nodes. This is an optimization from [GKS17]
which aids in faster writing of nodes’ descriptions since we do not have to consider input
poles. Also, this is done because most circuit description formats require the first u wires to
be the input wires.

We described the purpose of the running topological number in Section 4.2.2. We begin the
topological ordering process by reading the value of the running topological number. Likewise,
we read the value of the number of additional wires set in previous block generations. The
number of additional wires indicates the additional wires set in addition to the topological
values of nodes (including those already set). We have variations of our implementation
where we either store the running topological number and additional wires count in memory
or file2. For head blocks, these values are set to 0.

After successful topological ordering of all joint block poles and nodes, we set the number of
additional wires for each node. For an X switch, we have an extra wire accounted for by the
last outgoing wire. A reverse Y switch has the same input wire duplicated as output wires
which is an output wire from its parent node so we decrement the number of additional wires.
A Y switch has only one outgoing wire and hence we neither increment or decrement the
number of additional wires count. This idea is also borrowed from [GKS17]’s implementation.
For each node, we can then calculate its outgoing wire as the sum of its running topological
number and its additional wires count. The final values of the running topological number
and the additional wires count are saved to memory.

Either the left or right block can be topologically ordered first without affecting the outcome
of the UC generation. To ensure this uniformity, we must ensure the order of the last nodes

2For our experiments in Chapter 6, we store these values including the outgoing wires of the last nodes in
memory making it a total of 10 numbers stored in memory per-block generation for the entire UC generation.
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of either left or right blocks put on the stack (as seen in Listing 4.1) is maintained for each
per-block generation of the outer skeleton. If the last nodes of the left block are put on the
stack first, the right block is topologically ordered first. This is particular for blocks with only
input poles. This does not apply to blocks with gate poles as gate poles require input wires
from both left and right block nodes and can only be ordered if its parent nodes are already
ordered according to the topological ordering.

Recursive Subgraph Generation

The generation of subgraph nodes is done recursively as shown in Listing 4.4. For ev-
ery joint body block generation, we generate the subgraph nodes for both left and right
blocks.

We generate a file for each recursion step subgraph and hence we need a way to detect the
recursion step subgraph location of the nodes being generated. The nodes generated are
written to a file named after this location. We begin this naming with "l" and "r" for the
left and right Γ1 EUGs, respectively. We know that Q = {qi , ...,q n−4

4
} are the poles of the

first recursion step subgraph (and also for the three other recursion point sets R, S, T). Let
cl be the position of the subgraph nodes being generated which is situated between two
subgraph poles qi and qi+1. For each recursion point, we append either of {q, r, s, t} to the
current value of the location. The process is repeated recursively for the naming of the
location for every recursion step subgraph, continuing from the last set location name. For
the first body block generation cl = 1, we have ”lq” as the only location of the subgraph
nodes being generated belonging to the first recursion step subgraph (from recursion point
q) of the left Γ1 EUG. We therefore write the descriptions of the subgraph nodes to a text file
named after this location (one line per node description), ”lq.t x t”. For all other cl values we
write the descriptions of nodes to this same file for the first recursion step subgraph from
point q. For n ≥ 49 at a given cl = 9, we write subgraph nodes for two recursion steps at
locations {lq, lqq, lqr, lqs, lqt} for nodes belonging to initial recursion step point q from the
outer skeleton block.

We introduce tags for each subgraph node. A tag is a unique identification for subgraph
nodes of a given recursion step subgraph at a given cl . A node’s tag is a concatenation of
its subgraph location and its position, that is cl . For instance, subgraph nodes in the first
body block generation have tags {lq1, l r1, ls1, l t1, rq1, r r1, rs1, r t1}. With tags we can
easily obtain the descriptions of nodes in the set of last subgraph nodes from previous blocks
generated S as discussed in Section 4.2. This helps to reduce search times for descriptions of
the last subgraph nodes of S, with a constant number of O(1) lines read in file (only one line
of string in every tag file), since we do not have to search through larger subgraph files for
the right descriptions.

With our algorithm in Listing 4.4, we generate the subgraph nodes recursively for all recursion
steps at a given cl . For H cl , Bcl , T cl

x we generate subgraph nodes as seen in Figure 4.3. For
each set of recursion step subgraph nodes generated at a given cl for all recursion steps, we
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create text files named after the tag of the subgraph nodes. We write the descriptions of the
subgraph nodes as a string in one line to the file. This reduces the complexity of reading the
written information. We do this to read the outgoing wires of the nodes in S when we need
them. For Figures 4.3b to 4.3g we need to get the outgoing wires from the set of subgraph
nodes S. Listing 5.1 shows how we do this in C++. In addition to passing the location and
cl as arguments to the function, we pass variables dist, step and pos. dist is the difference
between the current cl and the cl of the last node(s) being searched for. dist can either be 1
or 2. step is a Boolean value to check if the last subgraph node(s) are in the next recursion
step or not. pos ∈ {0,1,2,3} is the recursion point position of the last subgraph node(s)
which we require when searching for subgraph nodes in the next recursion step. In line 5, we
initialize the tag as an empty string. We next check if we need to look for nodes from the next
recursion step. If so, we update the location to search accordingly as seen in lines 7 to 16.
For the next recursion step, cl is updated to b cl−4

4 c as seen in line 15. A given location lqq34
with pos = 2, step = t rue and dist = 1 will yield tag = lqqs7. If we do not have to search
for subgraph nodes in the next recursion step, we set the tag of the subgraph nodes as the
current location concatenated to the cl − dist as seen in line 18. We use the tag to open the
right text file to and read the line as seen in lines 20 to 24. Finally, we put each description
in the string into a vector and return it as seen in lines 27 to 34.

After obtaining the descriptions of the nodes in S, we set the input wires of the subgraph
nodes generated (T) as seen in Figures 4.3b to 4.3g. Before setting the input wires, we
generate all the nodes required in either H cl , Bcl or T cl

x . Next, the subgraph nodes in T are
ordered topologically. The number of nodes in T are either of {1, 4, 12, 13} (cf. Figure 4.3).
These are relatively fewer nodes than the nodes in the outer skeleton and therefore we order
the subgraph nodes manually. We also set the number of additional wires for each node. We
then write the subgraph nodes descriptions to file as discussed. For every recursion point
in the subgraph nodes, in particular H3, B3, we generate nodes in the next recursion step
subgraph recursively. If the generated subgraph nodes are in the first recursion step subgraph,
we write down the outgoing wires of the last node, in particular the right (second) outgoing
wire. We do this because the wire is the first (left) input wire required by the upper recursion
points in the next outer skeleton joint block construction.

Listing 5.1: Algorithm for obtaining descriptions of nodes in previous subgraph levels

1 s td : : vector<s td : : s t r i n g> Subgraph : : getPreviousSubgraphNodesDesc (
,→ s td : : s t r i n g loca t ion , u in t32_t cur rentLeve l , i n t d i s t , bool
,→ step , i n t pos ) {

2 Let pos be the recur s i on point p o s i t i o n of the node wires being
,→ searched fo r

3 Let s tep be the f l a g fo r search ing in the next r e cu r s i on s tep or
,→ not

4 Let d i s t be the d i f f e r e n c e between the cur ren t subgraph nodes
,→ p o s i t i o n and the p o s i t i o n of the nodes being searched f o r

5 s td : : s t r i n g tag = " " ; //
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6 // search fo r subgraph node wires from l a s t b lock l e v e l in the
,→ next re cu r s i on s tep

7 i f ( s tep ) {
8 switch ( pos % 4) {
9 case 0: { l o c a t i o n += " q " ; } break ;

10 case 1: { l o c a t i o n += " r " ; } break ;
11 case 2: { l o c a t i o n += " s " ; } break ;
12 case 3: { l o c a t i o n += " t " ; } break ;
13 d e f a u l t : break ;
14 }
15 i n t newLevel = ( i n t ) ( cu r ren tLeve l − 4) / 4;
16 tag = l o c a t i o n + s td : : t o _ s t r i n g ( newLevel ) ;
17 } e l s e {
18 tag = l o c a t i o n + s td : : t o _ s t r i n g ( cu r ren tLeve l − d i s t ) ;
19 }
20 s td : : i f s t r eam stream ( tag + " . t x t " ) ;
21 s td : : s t r i n g l i n e = " " ;
22 while ( g e t l i n e ( stream , l i n e ) ) {
23 i f ( l i n e != " " ) {
24 break ;
25 }
26 }
27 s td : : vector<s td : : s t r i n g> r e s u l t ;
28 s td : : i s t r i n g s t r e a m i s s ( l i n e ) ;
29 fo r ( s td : : s t r i n g token ; s td : : g e t l i n e ( i s s , token , ’ , ’ ) ; )
30 {
31 r e s u l t . push_back ( s td : : move( token ) ) ;
32 }
33
34 re turn r e s u l t ;
35 }

5.1.3 Scalable File Generation

From our per-block UC generation, each joint block and subgraph (at a given subgraph level)
nodes descriptions are written to file. The result of our per-block UC generation is having
the descriptions of nodes in files. The number of files created and written to is equivalent
to the total number of subgraphs generated for the two Γ1 EUGs plus the file created for
the outer skeleton. We denote this number as fn = 1+ ns f , where ns f is the result of the
function in Listing 4.2 for a given Un(Γ2) of size n. The files are generated according to the
subgraph structure of the Γ1 graph from the supergraph and this aids in easy edge-embedding
of the graph into the EUG. This makes it easier to locate the subgraph (file) corresponding

50



5 Implementation

to the Γ1 graph from the supergraph which contains the information we need for successful
edge-embedding as discussed in Section 4.3.2. In addition, we create so called tag files for
both writing and reading of descriptions of subgraph nodes when we need information from
previously generated subgraph nodes. This helps reduce search times for descriptions of the
last generated subgraph nodes since we do not have to search through larger subgraph files
for the right descriptions (cf. Section 5.1.2).

We encode our files using ANSI or UTF-8 as a character would be stored in one byte. We
use sequential access when reading and writing files. We do this because our construction
is based on a topological order of nodes and are written to file sequentially in this order.
Likewise this is essential during the edge-embedding process as we traverse nodes (lines) in
sequential order and hence we read files in the same manner.

As mentioned before, we create a text file for appending for each recursion point subgraph.
We create the tag files for both reading and writing. We have variations of our implementation
where we create these subgraph files (not tag files) beforehand or on demand for the first
time. By default, we create the subgraph files dynamically for the first time when node(s)
description(s) have to be written.

It is evident that as our per-block generation progresses, the number of tag files increases.
Also, for a given set of generated subgraph nodes, we may require output wires of previous
subgraph nodes from at most position cl − 2. We therefore discard tag files for subgraph
nodes at position cl − 3 for every generated subgraph nodes (at a given subgraph level (cf.
Section 4.2.3)). At the end of the UC generation, we have only 3 tag files per recursion step
subgraph (which we can then discard). Listing 5.2 shows how we delete unneeded tag files.
Given a tag as argument (for example "lqqr7.txt"), we extract the letters and numbers in
the tag as seen in lines 6 to 12. If the extracted number is less than 4, we return from the
function (because we will need information from those files later), else we set the tag to be
deleted and delete the file accordingly as seen in lines 16 to 22.

Listing 5.2: Deleting Unused Tag Files

1 void F i l e W r i t e r : : de le teUnusedFi le ( s td : : s t r i n g tag ) {
2 s td : : s t r i n g numbers = " 1234567890 " ;
3 s td : : s t r i n g l e t t e r s = " " ;
4 u in t32_t number = 0;
5 // e x t r a c t l e t t e r
6 fo r ( i n t i = 0; i < tag . s i z e () ; i++) {
7 i f ( numbers . f i nd ( tag [ i ] ) == s td : : s t r i n g : : npos ) {
8 l e t t e r s += tag [ i ] ;
9 } e l s e {

10 // then r e s t of tag i s the number
11 number = s t o i ( tag . s ub s t r ( i , tag . s i z e () − i ) ) ;
12 break ;
13 }
14 }
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15 // nothing to de l e t e
16 i f (number < 4) {
17 re turn ;
18 } e l s e {
19 uint32_t toDe le te = number − 3;
20 s td : : s t r i n g newTag = l e t t e r s + s td : : t o _ s t r i n g ( toDe le te ) ;
21 s td : : s t r i n g fi leName = newTag + " . t x t " ;
22 s td : : remove ( fi leName . c _ s t r () ) ;
23 }
24 }

5.1.4 Program Description

We describe the classes used in our per-block 4-way UC construction in this section. The
underlying implementation from [GKS17] defines classes UCNode and ValiantUC already,
which we changed according to our needs.

ValiantUC. Class ValiantUC initiates our per-block 4-way UC construction (cf. Section 4.2).
For a given DAG of size n with u inputs, v outputs and k gates, we set these values accordingly.
We write u inputs to the outer skeleton file. The number of blocks to be generated in the
outer skeleton is then computed (Section 4.2). We call our Block class iteratively to generate
the blocks. Finally, v output wires are written to file.

Block. The Block class creates all joint head, body and tail blocks [GKS17], which consist
of nodes of the class UCNode below. It also creates the edges between the nodes for the
different types of blocks. In addition, it calls the Subgraph class to generate subgraph nodes
per-block. The Block class is also responsible for the bottom-up topological ordering of the
block nodes in the outer skeleton (cf. Sections 4.2.1 and 5.1.2). It also sets the output wires
need for the right input wires of the upper recursion points in the next per-block generation
(Sections 4.2 and 5.1.2).

Subgraph. Class Subgraph recursively generates all recursion point subgraph nodes and
creates the edges between the nodes, per-block generation (Figure 4.3). For the fewer nodes
generated, it also manually orders them (Section 5.1.2). Class Subgraph also sets the tag
file subgraph nodes are written to as well as tag files from which to read (Section 5.1.2). It is
also responsible for the setting of the last output wire to the next subgraph pole (recursion
point of outer skeleton).
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FileWriter. F ileW riter takes care of all file writings. It is called by Block and Subgraph
to write descriptions of outer skeleton nodes and subgraph nodes respectively as discussed in
Section 5.1.2. Wires of input and output poles are also written by F ileW riter. It also writes
subgraph nodes to their respective tag files.

FileReader. Analogous to F ileW riter, F ileReader is responsible for all file reading opera-
tions.

UCNode. We inherit some of the functionality of UCNode from [GKS17]’s 4-way split
UC construction implementation. Class UCNode creates all node types and functionalities
associated with nodes such as setters and getters for input wires, description, children, parents,
topological value and additional wires count.

MemStore. MemStore stores the updated additional wires count and topological numbers.
We have setters and getters for these variables.

5.2 Scalable Universal Circuit Programming

We leave programming of the UC as future work. In this section, we discuss how this can be
implemented using our scalable UC and files generation solution.

As mentioned before in Section 4.3, we embed each edge e ∈ E ⊂ V xV of the Γ1 graph
from the supergraph construction. We know from before that each block takes care of its
own embedding. We can therefore do the block edge-embedding of the outer skeleton and
subgraphs, using their respective generated files. For the block edge-embedding of the first
left and right Γ1 EUGs, we refer to the outer skeleton file for the nodes’ descriptions. We
know the number of nodes (lines) that constitute either a joint head, body or tail block. We
then obtain the nodes descriptions corresponding to the left or right Γ1 graph and set the
control bits of the paths respectively using the input and output vectors set by the recursive
edge-embedding. We write the control bits in a file Px for programming bits of nodes in the
outer skeleton, where x is the location of the graph. For any other subgraphs of the two Γ1
EUGs, we refer to the corresponding subgraph files for the nodes’ descriptions. We write the
programming bits of the subgraph nodes into separate files as well, using a naming system
similar to the subgraph files’ names (for example, Plq).

We discussed in Section 4.3 our per-subgraph recursion edge-embedding. For every Γ1 graph
of the supergraph, we do the recursive edge-embedding and write the input and output
vectors to a file. We then do a block edge-embedding of the subgraph file (that matches the
position of the Γ1 graph in the supergraph) using the input and output vectors just set. For
example, for the block edge-embedding of subgraph with nodes contained in file name lq.t x t,
we call the function in Listing 4.5 with the subgraph file (lq.t x t) and the input and output
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vectors just set for the Γ1 graph matching this subgraph. Our scalable file generation makes
this particularly convenient and very intuitive. We do this recursively until the recursion base
case of the Γ1 graph (of the supergraph) is reached.

We iterate that the edge-embedding is made easy due to our scalable file generation. Each Γ1
graph of the supergraph has a corresponding subgraph file and hence it is easy to find the
right blocks to do both recursive and block edge-embeddings.
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In this chapter, we evaluate the performance of our per-block 4-way UC generation and
also compare our results to that of [GKS17]’s UC generation. We begin by discussing our
evaluation criteria in Section 6.1. Thereafter, we elaborate our process for obtaining the
measurements and also explain the results of our experiments in Section 6.2. We show the
improvements we made in memory usage and the price we paid in runtime and disk space
usage, which are both acceptable since they are only linear in n.

6.1 Evaluation Criteria

In this section we discuss the metrics we use for our evaluation, more specifically, memory
consumption in Section 6.1.1, necessary disk space in Section 6.1.2 and runtime of the
algorithm in Section 6.1.3.

Environment: We run our experiments on an Ubuntu 16.04 server with 4 x 8 GB of usable
DDR3 memory clocked at a maximum frequency of 2400 MHz and 1TB of SSD storage. The
processor is an Intel Core i7-4790 at 3.6 GHz.

6.1.1 Memory Consumption

Memory consumption is a common metric used to test the performance of programs as this
signifies the efficiency of the program, that is, its usage of resources. For high performance
computing, this is particularly crucial as inefficiency in memory usage means a program may
overwhelm its allocated memory and also can affect the program’s runtime and output. We
are particularly interested in memory consumption because the memory usage of previous
implementations was very huge. For instance, we compare the memory consumption of our
per-block UC generation to Günther et al.’s in Section 6.2.2.

We use the server machine’s proc file system to obtain information on the program’s memory
usage. The proc file system is a file system on Unix machines that contains information about
the system. Information about a running program or process that we can obtain include the
process ID, the user running the program, the command with which the program was run,
the CPU usage, the memory usage amongst others.
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Resident Set Size (RSS) and Virtual memory size are two examples of memory information
of the process (running program) that can be obtained. Virtual memory is all the memory to
which the running program can have access. RSS is the real memory size allocated to the
program which is currently existent in Random Access Memory (RAM). We are particularly
interested in RSS as this includes heap and stack memory and excludes memory that is
swapped out, that is data moved from real memory and stored on disk (virtual memory
includes swapped memory) for later access.

6.1.2 Disk Space

In addition to memory consumption of the program, we check the program’s usage of the file
system for storage. As discussed before in Chapters 4 and 5, our UC generation relies on the
file system for storage. We use more disk space to avoid memory overflow. This amounts to
many files used but then most of them are deleted except the outer skeleton and subgraph
files. In addition, for every subgraph, there remains 3 associated tag files as mentioned in
Section 5.1.3. We are therefore concerned with how much of the file system storage our
program uses.

6.1.3 Runtime

As mentioned before, we generate a lot of files in our implementation and this yields to
a lot of opening, closing, reading and writing of files. We are therefore concerned about
the runtime and how worse the algorithm becomes due to many IO operations. This is
very important to measure as too high runtimes may contribute to time being a bottle-
neck.

6.2 Experiments and Results

In this section we discuss our evaluation results. We compare our benchmarks with the
4-way UC construction of [GKS17] because it is more scalable than Valiant’s 2-way split
construction [Val76]. Also, it has better UC sizes as shown in the results [GKS17]. They
show that from n = 212 on, the 4-way split construction is almost always better than the
2-way split construction. Our implementation is based on Günther et al.’s 4-way construction
because it is more modular and therefore easier to make scalable.

Our implementation uses only tail blocks with 4 poles as shown in Figure 4.1e and therefore
we run the experiments for only certain numbers. With some more engineering effort, the
remaining tail blocks with 1, 2 and 3 poles can be implemented [GKS17, Figure 4.1] as seen
in Section 4.1.
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In the remainder of this section we explain our results. We begin by discussing our process of
obtaining our measurements for evaluation in Section 6.2.1. We then discuss the results of
our experiments in Sections 6.2.2, 6.2.3 and 6.2.4 for memory consumption, runtime and
disk space usage respectively. Finally we discuss the size of our UC and tabulate some of our
results in Section 6.2.5.

6.2.1 Process of Obtaining Measurements

As mentioned before, we obtain our program’s memory usage from the proc file system. We
do this using the ps command which shows the status of processes. We gather this information
using a bash script running as a background process. The bash script inspects the output of
the ps command with our program passed as an argument. For each output returned by ps,
we get the command with which we run the program to obtain the value of n. We then write
the captured information of the program into a file named after the value of n. Captured
information are the process ID, the percentage of RSS memory and the actual amount of RSS
used by our program. This bash script runs the aforementioned steps in a while loop until it
is explicitly killed. We then run a python script to compute the sizes of the generated UC and
subgraph files after program execution is done for a given n.

6.2.2 MaximumMemory Consumption

Figure 6.1 shows a memory benchmark graph of our per-block UC generation compared
to [GKS17]’s generation. The figure shows a graph of maximum RSS memory used in MB
with varying number of nodes n, of the original DAG for which the UC is created. It is evident
that our per-block UC generation has a linear outline and for 2 446 676 nodes, the program
consumes less than 2 GB of memory. This constitutes a maximum of only 4.7% of the 32 GB
available memory on our benchmarking environment. We can therefore generate UCs with
millions of nodes on devices with limited amount of usable memory, for instance 2 GB or 8 GB.
It is also possible to run multiple UC generations in parallel on big machines, and even
more importantly, we can now generate UCs of billions of nodes. From n= 8, our per-block
generation grows slowly and steadily throughout until the last tested value for n = 2 446 676
is reached. [GKS17]’s generation rapidly rises from n = 8 and continues at this pace until
n= 1 135 956. This represents 28 GB of memory used. From here, it rises again in memory
consumption but at a lesser pace than before until the maximum available 32 GB of memory
is used. From here, it uses up all the 32 GB of memory and then takes longer since it uses
swapped memory to overcome the memory limitation which still works for n = 1 398 100 but
not for n= 2 446 676. [GKS17]’s generation failed to complete run for n= 2 446 676 due to
a bad_alloc fault (from using up all of the allocated memory) which is evident from the lack
of coordinates for n= 2 446 676 from Figure 6.1.

[GKS17]’s implementation generates all nodes for the Γ2 EUG and stores them in memory,
hence is heavily dependent on memory. In contrast, our per-block approach generates nodes
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on a per-block basis (and deallocates memory after each block) as discussed in Chapters 4
and 5 and therefore requires memory that is only linear in the size of the input circuit n.
More precisely, it is linear in the number of subgraphs which is, on the other hand, linear in
n. This linearity can be estimated as 2 ·

∑log4n
i=0 4i = 2 · (4n−1)

3 .

This is justified by the graph that is linear in n, for our per-block UC generation (O(n)) and
with a logarithmic (O(n log n)) factor larger for [GKS17]. We therefore conclude that our
per-block UC generation runs efficiently using far less memory than the implementation
of [GKS17] and can run on memory-restricted devices with for instance 2 GB of memory for
Boolean circuits with over 2 million nodes. For high performance computing using powerful
servers, we can run multiple instances of our per-block UC generation for Boolean circuits
with millions of nodes.

6.2.3 UC Generation Runtime

Figure 6.2 shows a graph of runtime in milliseconds with growing input graph sizes n of our
per-block UC generation compared to the UC generation of [GKS17]. [GKS17] runtimes rise
steadily until about 400 000 poles (n = 349 524). There is then a small spike in the rate
of increase until about 1 200 000 poles (n = 1 135 956). Hereafter, there is a slight surge
in increment until n = 1 398 100 is reached at which point almost all 32 GB of memory is
used but runs successfully due to the use of swap memory. Our per-block UC generation
increases gradually with intermittent rises between n values at n = 349 524, n = 611 668,
n = 87 380, n = 1 135 956 and n = 1 398 100. The difference in runtime between our
per-block generation and [GKS17] increases with n, but it can be observed that it is only
a constant factor slower. The runtimes were always around an average factor of about 3.0
larger than that of [GKS17] (about 3.5 for n = 21 844 and 2.4 for n = 1 398 100) with a
deviation of at most 0.47 between the factors. For n = 1 398 100 [GKS17] runs in 1300
seconds as opposed to 3160 seconds for our per-block generation.

In Chapter 5, we describe our approach which uses disk space for storing information
that has been stored earlier in memory: this implies a lot of file opening and closing, and
writing and reading which takes more time and that is the reason for the constant factor
slowdown.

6.2.4 MaximumDisk Space Usage

Figure 6.3 shows a histogram of maximum disk space used by the generated UC. In addition,
it shows the extra disk space required for our per-block generation. In Section 5.1.3 we
discuss our scalable way of generating files for UC generation which also involves deletion
of unused files after every block generation. The disk space used by our generated UC files
(outer skeleton and subgraphs) is the same as that for [GKS17] and therefore we denote this
as UC disk space (green color). We mention that for every subgraph there is a maximum of 3
so-called tag files that store necessary information for generating subgraph nodes in the next
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Figure 6.1: Comparison of the maximum Resident Set Size (RSS) memory used between our
per-block and [GKS17]’s UC generation. [GKS17]’s implementation runs out of
32 GB of memory for n> 1 398 100 nodes.
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Figure 6.2: Comparison of the runtime of our per-block and [GKS17]’s UC generations for
up to about n= 2 446 000 nodes.
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2 per-block generations. The disk space used by the last three tag files is shown in the graph
as extra disk space (pink color). The reason for this is that the largest disk space is used by
the UC files, on top of which we only store the last tag files on disk before deleting them in
the last step.

From the graph, the disk space occupied by our generation increases steadily and grows by
a logarithmic factor larger (O(n log n)) with the size of the UC. It is evident that the extra
disk space required increases slowly and grows linearly in n. For a given n= 2 446 676, we
require 7.3 GB for the UC files and only 145 MB of extra disk space for the tag files which
is a relatively small storage space. The tag files can be larger in intermediate steps of the
algorithm but never exceed the maximum disk space necessary when the UC files are also
created. The UC files are the output of the algorithm and are designed to be as compact as
possible by [GKS17]. Therefore, we indicate an at most 145 MB (for n = 2 446 676) of extra
necessary disk space on top of the UC files for our implementation.

6.2.5 UC Size

For a k-way split UC construction with body (modular) block Bk, the asymptotic UC size
can be calculated from size(U (k)n (Γ2))=2·size(U (k)n (Γ1))≈ 2· size(Bk)

k n logk n = 2· size(Bk)
k log2(k)

n log2 n
[LMS16]. [GKS17] recapitulate the size as 4.75·n log n for 4-way split UCs.

For the calculation of the concrete size of the UC, we use the recursive formula from [GKS17]
which calculates the size of the UC using only the AND gates which is rather of more interest
in private function evaluation because of free XOR gates optimization [KS08b]. We document
the sizes of the generated UCs in Table 6.1. The UC size grows by a logarithmic factor larger
(O(n log n)) with n [KS16].

Table 6.1 gives a summary of the results of our experiments. For some selected n numbers
(big numbers from our experiments), we compare the memory consumption and the UC
generation runtime between [GKS17] and our per-block generation. We also state the UC size
and the total disk space used. We emphasize the more efficient version of a given benchmark
between the two with bold text.

6.2.6 Summary

In summary, our per-block UC generation is far superior when it comes to memory con-
sumption than the generation of [GKS17] with only about 1 537 MB of memory used for
n= 2 446 676, whereas [GKS17]’s heavy dependence on memory resulted in a bad_alloc
fault from using up all of the allocated memory. This improvement makes it more suitable for
computation on devices with limited amount of memory, for instance mobile devices. Also, it
can be used in high performance computing of Boolean circuits with millions of nodes. Our
per-block UC generation, is, however, slower than the generation of [GKS17] by a constant
factor of about 3.0 (cf. Section 6.1.3), which is acceptable. UC generation, however, is a
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Figure 6.3: Disk space usage of our per-block implementation and extra disk space required
(for the last 3 tag files) with up to almost 1 400 000 poles. The disk space used for
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generation are the same.

62



6 Evaluation

n Size (#
AND

gates)

Memory Used (MB) UC Generation (ms) Total Disk
Space
(MB)

[GKS17] Per-Block [GKS17] Per-Block
13 652 6.8 · 105 222.7 12.7 2 875 10.8 ·103 21 798

152 916 10.9 · 106 3258.7 99.2 51 334 17.4 ·104 375 816
349 524 26.3 · 106 7763.8 221.3 133 023 42.6 ·104 951 282
611 668 49.4 · 106 14717.1 385.9 371 076 10 · 105 1 788 402

1 135 956 94.7 · 106 27905.2 715.7 845 750 2.1 · 106 3 646 839
1 398 100 118.4 ·106 31989.9 880.2 1 296 210 3.2 · 106 4 626 046
2 446 676 220.7 ·106 bad_alloc

error
1 536.8 bad_alloc

error
5.4 · 106 7 484 849

Table 6.1: Comparison of the memory consumption and generation of the UCs (per-block
and [GKS17]) for some selected circuit sizes. Bold numbers denote which of the
two implementations is efficient. The UC size is the same for both implementations.

precomputation step in most applications and therefore, a constant factor of runtime increase
is not going to become a bottleneck. We iterate that multiple instances of our per-block UC
generation can be run in parallel on big machines and even for memory-restricted devices, a
UC for a circuit with about 1 million nodes can be generated.
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In this chapter we conclude our work and propose some future improvements in Sections 7.1
and 7.2 respectively.

7.1 Conclusion

Recent implementations of Valiant’s 2-way and 4-way split UC constructions have an upper
bound due to much dependency on memory [KS16; GKS17]. For the realization of real-world
Private Function Evaluation applications, such as home automation or smart devices and
remote diagnosis of smart cars, UCs have to be constructed for circuits with potentially
millions of nodes. We introduce a per-block UC generation that makes this possible. Our
scalable file generation makes it particularly intuitive to do edge-embedding of the generated
UC. Günther et al.’s modular 4-way split UC generation imposes an upper bound on the size
of the UC that can be generated due to memory at about 1 398 100. If the edge-embedding is
done in addition, the upper bound due to the additionally stored supergraph as described
in [GKS17]. With our per-block UC generation, we can generate UCs for Boolean circuits
with millions of nodes.

Our generation is very efficient and uses very little memory as shown in Section 6.2. In
addition, the extra disk space used for the generated UC is not much compared to [GKS17]
as shown in Section 6.2. However, our per-block UC generation is slow compared to Günther
et al.’s by an average runtime factor of 3.0 but in applications of PFE (which we are most
concerned about), the UC generation is done offline (precomputed) and therefore we only
account for offline computation costs.

PFE in large-scale real-world applications like home automation, remote diagnostics of smart
cars, automobile insurance checking and remote patient monitoring are now a possibility with
our per-block UC generation. Clients of applications can now be certain that their sensitive
data cannot be read by the owners of the applications.

7.2 Future Work

In this thesis, we have explored the scalability of Valiant’s Universal Circuits construction using
a per-block approach which relies on very little use of memory and the file system with the pur-
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pose of achieving scalability in order to generate very large UCs. Our scalable UC generation
is particularly useful for generating large UCs for scalable private function evaluation. Smart
car applications and diagnosis of automobiles for insurance protection and remote patient
monitoring are a few motivational examples for large-scale PFE.

Besides improving the scalability of the UC generation, we designed our solution in such
a manner that makes it extremely intuitive to perform the next step, the programming of
the Universal Circuit, that is, edge-embedding into the universal graph. This can be done
by recursively edge-embedding using the generated subgraph files and the outer skeleton
(block edge-embedding) file for each corresponding graph of the Γ2 graph (supergraph
construction [KS16]). We iterate that this is made easy by our scalable file generation where
each subgraph of the universal graph has its own file and can be easily identified (by its
position and name) and associated to a corresponding Γ1 graph from the Γ2 graph (supergraph)
as discussed in Section 4.3.2 and depicted in Listings 4.5 and 4.6. As a future work, the
edge-embedding of the graph can be implemented. We give an idea of how this can be done
in Section 4.3.

An algorithmic optimization would be to write all node descriptions of the outer skeleton and
subgraph nodes (without actually creating the nodes) into their respective outer skeleton
and subgraph files for each subgraph layer (cf. Section 5.1.2) without also assigning the
topological numbers and additional wires. This would improve the runtime of the UC
generation to numbers close to [GKS17] or even better but would require a lot of additional
effort from the training of a sophisticated Deep Neural Network (DNN) (machine learning
model).

A given UC generation is deterministic and therefore one can leverage data parallelism (in
cases of high performance computing) where each cluster is responsible for generating a
set of subgraph files. This approach can be coupled with the neural network approach and
could lead to very good runtime improvements. This might lead to a slight increase in the
usage of resources so there could be a limit set on the use of resources such as memory by
clusters.
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