
Master Thesis

A Systematic Comparison of HE-based
Private Function Evaluation Protocols

Marco Holz
November 11, 2019

Engineering Cryptographic Protocols
Department of Computer Science
Technische Universität Darmstadt

Supervisors: M.Sc. Ágnes Kiss
Prof. Dr.-Ing. Thomas Schneider

Erklärung zur Abschlussarbeit
gemäß §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Marco Holz, die vorliegende Master Thesis ohne Hilfe Dritter und
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die
Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in
gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Täuschungsversuch vorliegt,
der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht
wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung überein.

Thesis Statement
pursuant to §23 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I, Marco Holz, have written the submitted Master Thesis
independently. I did not use any outside support except for the quoted literature and other
sources mentioned in the paper. I clearly marked and separately listed all of the literature
and all of the other sources which I employed when producing this academic work, either
literally or in content. This thesis has not been handed in or published before in the same or
similar form.

I am aware, that in case of an attempt at deception based on plagiarism (§38 Abs. 2 APB),
the thesis would be graded with 5,0 and counted as one failed examination attempt. The
thesis may only be repeated once.

In the submitted thesis the written copies and the electronic version for archiving are identical
in content.

Darmstadt, November 11, 2019

Marco Holz

Abstract

Secure function evaluation (SFE) allows two parties to jointly compute a known function on
their private data. Private Function Evaluation (PFE) is a technique to obliviously evaluate a
private function on private inputs. In the PFE setting, party P1 inputs a private function f and
party P2 inputs private data x , and at the end of the protocol, P2 only learns the function’s
output y = f (x) while P1 learns nothing. PFE has several applications such as privacy-
preserving credit checking or user-specific insurance tariffs. In the last years, PFE protocols
based on Universal Circuits (UCs), that have an inevitable superlinear overhead, have been
investigated thoroughly. Specialized public key-based protocols with linear complexity were
believed to be less inefficient than these UC-based approaches.

In this thesis, we take another look at the linear-complexity protocol by Katz and Malka (ASIA-
CRYPT’11) and propose three efficient instantiations of the protocol using the Damgaard
Jurik Nielsen (DJN) cryptosystem, elliptic curve ElGamal encryption and the Brakerski/Fan-
Vercauteren (BFV) homomorphic encryption scheme. We show that HE-based PFE is practical
with the latest improvements in the field of ECC and RLWE-based homomorphic encryption.
The BFV implementation outperforms recent UC-based PFE schemes starting from circuits
of size ca. 100 000 gates on. When instantiated with elliptic curve ElGamal encryption, our
implementation outperforms UC-based schemes for all circuit sizes in communication.

Acknowledgments

First, I wish to express my sincere gratitude to my supervisors Thomas Schneider and Ágnes
Kiss for their great support during the process of writing this thesis. Thanks for the excellent
guidance, for pointing out new directions but also for giving me the flexibility to work on
my thesis in a very self-determined way and the freedom to experiment and try out new
ideas. Their continuous, valuable feedback and comments turned out to be a very inspiring
contribution to this thesis.

I would like to thank Deevashwer Rathee from Indian Institute of Technology (BHU) for
his valuable ideas and for sharing his knowledge and experiences about RLWE-based ho-
momorphic encryption. My thanks also goes to the whole team of the Cryptography and
Privacy Engineering Group at the Department of Computer Science at Technische Universität
Darmstadt for their helpful feedback during my intermediate presentation and the welcoming
atmosphere in their group. It has been a pleasure and a great honor to work in such an
inspiring and supportive environment at ENCRYPTO.

I also place on record, my sense of gratitude to my friends, including the great people I met
during my studies, for the stimulating discussions and the wonderful times we had together.
Without this ongoing backing and support, this thesis would not have been possible.

Finally, I would like to express my very profound gratitude to my whole family for the
unceasing encouragement, backing and support throughout my years of study and the time I
spent writing this thesis.

Contents

1 Introduction 1
1.1 Applications of Private Function Evaluation . 2
1.2 Contributions . 3
1.3 Outline . 3

2 Preliminaries 4
2.1 Secure Multi-Party Computation . 4

2.1.1 Circuits . 5
2.1.2 Circuit-based Secure Multi-Party Computation 6

2.2 Private Function Evaluation . 6
2.3 Building Blocks . 7

2.3.1 Homomorphic Encryption . 7
2.3.2 Oblivious Transfer . 10
2.3.3 Universal Circuits . 11
2.3.4 Yao’s Garbled Circuit Protocol . 11

2.4 Challenges of Private Function Evaluation . 14
2.4.1 Circuit Topology Hiding (CTH) . 14
2.4.2 Private Gate Evaluation (PGE) . 15

3 RelatedWork 16
3.1 Private Function Evaluation based on Universal Circuits 16
3.2 Private Function Evaluation with Linear Complexity 17

4 Homomorphic Encryption-based Private Function Evaluation 19
4.1 The [KM11] Protocol . 19
4.2 Improved Version of the KM11 Protocol . 23
4.3 Further Optimizations of [KM11] . 25

4.3.1 Precomputation of the Encrypted Wire Keys 25
4.3.2 GC Pipelining . 26

4.4 Instantiating [KM11] with EC ElGamal . 26
4.5 Instantiating [KM11] with BFV . 27

4.5.1 Encoding of the Wire Keys . 28
4.5.2 Efficient Packing of the Ciphertexts . 29
4.5.3 Wire Key Generation using Seed Expansion 31

I

Contents

5 Implementation 32
5.1 The ABY Framework . 32
5.2 Implementation of KM11-PFE . 32

5.2.1 Damgaard Jurik Nielsen Cryptosystem . 36
5.2.2 Elliptic Curve ElGamal . 36
5.2.3 Brakerski/Fan-Vercauteren Cryptosystem 37

6 Performance Analysis 39
6.1 Comparison of PFE Implementations . 39
6.2 Performance Split by the Different Protocol Phases 42
6.3 Concrete Performance Measures of our Implementation 44

7 Conclusion and Future Work 45
7.1 Conclusion . 45
7.2 Future Work . 46

7.2.1 Implementation of Variants of the Protocol 46
7.2.2 Parallelization . 46

List of Figures 47

List of Tables 48

List of Abbreviations 49

Bibliography 50

II

1 Introduction

Secure multi-party computation (SMPC) is a major enabling technology in the area of privacy-
preserving protocols. While computations on a local machine can be secured against malicious
eavesdropping by providing physical protection and securing the system against intrusions
from a remote location, computations that are performed collaboratively over a communi-
cation network on two or more devices typically rely on the trustworthiness of at least one
system. This poses privacy-sensitive data supplied by participants at risk. Privacy-preserving
protocols aim to mitigate these risks by protecting the data using cryptography approaches in
a way that there is no need for a trusted party any more.

Secure function evaluation (SFE) protocols allow two parties to jointly compute a known
function on their private data without learning the other party’s input to the function. Private
function evaluation (PFE) extends on this setting by also hiding the evaluated function and
constitutes a very flexible approach to many challenges in the field of privacy-preserving
protocols. PFE thereby provides a generic solution to evaluate any kind of private operations
on private data and is a special case of multi-party computation (MPC). One party inputs a
function f , often represented by a circuit C f , and the other party inputs their private data
on which the function f is evaluated. As in the standard MPC setting, the input data of all
participants remains private. In PFE, the function f is only known to one party and will also
be kept private.

Past attempts to create efficient private function evaluation protocols were mostly based on
so-called universal circuits (UCs) [Val76] and considerable effort has been undertaken to
improve on previous results using this technique. Practical PFE based on universal circuits
with a logarithmic increase in the size of the circuit C f has been implemented in [KS16;
GKS17; AGKS19] providing the most efficient UC implementation so far. While these generic
schemes already have touched their theoretical lower bound [ZYZL19], alternative approaches
still leave room for further improvements.

In the last decade, other private function evaluation protocols were proposed that do not
depend on UCs. These specialized protocols are less generic but might achieve better perfor-
mance in practice. Katz and Malka proposed a PFE scheme based on Yao’s garbled circuit
protocol in [KM11]. Their protocol utilizes additively homomorphic encryption and achieves
linear complexity in the circuit size.

In the last years, tremendous research effort has been put into improving homomorphic
encryption schemes. As a result, extensive improvements were made in this field. In particular,
schemes based on elliptic curve cryptography [Elg85; Kob87; Mil86] and schemes based on

1

1 Introduction

the learning with errors problem over polynomial rings (Ring-LWE, or RLWE) [Reg05; LPR10;
Bra12; FV12] are promising candidates for efficient instantiations of the [KM11] protocol.

This thesis takes another look at the linear-complexity PFE protocol by Katz and Malka
presented in [KM11] and focuses on investigating the practicality of their construction. By
implementing their scheme with state-of-the-art optimizations for the building blocks and
efficiently instantiating it with modern homomorphic encryption schemes, this thesis shows
that linear-complexity private function evaluation is practical and an eligible alternative to
UC-based approaches.

1.1 Applications of Private Function Evaluation

PFE has many diverse applications such as privacy-preserving intrusion detection [NSMS14],
blinded policy evaluation protocols with hidden policies and hidden credentials [FAL06;
FLA06], user-specific insurance tariff calculation [GKSS19], and privacy-preserving credit
checking [FAZ05]. All of these protocols rely on two main challenges: keeping the inputs of
the participants private and hiding the operations applied to these inputs. Next, we describe
some concrete example use-cases in detail.

One can think of PFE as the evaluation of a function f on private data as if the data was
provided in plain, while the data is in fact not revealed to the party that evaluates the
function.

An application of PFE is privacy-preserving intrusion detection [NSMS14]. In this scenario, an
intrusion detection system (IDS) server holds a set of sensitive signatures of zero-day attacks
and is able to check whether sensitive data (e.g., log files or sensitive documents) uploaded
to the IDS matches those signatures. Using PFE, the IDS server will learn nothing about the
sensitive data and the IDS client learns nothing about the signatures.

By making use of a private function evaluation scheme, attribute-based access control can
be enhanced to protect both sensitive credentials and sensitive policies [FAL06]. For such
an access control system, it is desirable to not only protect the requester’s credentials (such
as age, employment or credit status), but also the policy in order to make it harder for an
adversary to undermine the security of the system.

Another application of private function evaluation is privacy-preserving checking for credit
worthiness [FAZ05]. Traditional credit worthiness checking systems operate on highly sensitive
customer data. PFE provides the opportunity to privately check the credit worthiness of a
customer without disclosing any of its private financial data to the service operator. The
original scheme is able to evaluate simple policies. With the high flexibility of PFE, arbitrary
credit checking policies can be applied.

Privacy-preserving car insurance rate calculation can also be implemented using private function
evaluation [GKSS19]. Here, the data collected by the various sensors is a massive threat for
the privacy of users. Still, the data may be of special interest for car insurance companies. By

2

1 Introduction

making use of a PFE protocol, the privacy-critical sensor data, as well as the tariff calculation
details can remain private.

1.2 Contributions

This thesis shows that using the latest improvements in the field of elliptic curve crypto-
graphy (ECC) and RLWE-based homomorphic encryption and several optimizations, linear-
complexity PFE is practical. A practical implementation, an extensive performance evaluation
and the introduced optimizations were the main focus of this thesis. The implemented
protocol is based on the linear-complexity PFE protocol by Katz and Malka [KM11]. We
introduce two further improvements to the protocol, propose two efficient instantiation using
elliptic curve ElGamal encryption (short: EC ElGamal) and the Brakerski/Fan-Vercauteren
(BFV) homomorphic encryption scheme [FV12] and compare these implementations with an
instantiation using Paillier-based homomorphic encryption and UC-based PFE protocols. We
implement several of our protocols using the ABY framework [DSZ15] and thereby provide
this first implementation of a linear-complexity PFE scheme. Our experiments show that HE-
based PFE is practical when instantiated with modern homomorphic encryption schemes. Our
BFV-based implementation outperforms today’s most efficient UC-based PFE [AGKS19] on the
same platform starting from circuits of size about n= 100000 gates on. When instantiated
with elliptic curve ElGamal encryption, our implementation outperforms UC-based schemes
for all circuit sizes in communication while providing respectable runtime. Our ECC-based
instantiation achieves the lowest communication of all PFE protocols known to date.

1.3 Outline

The rest of the thesis is organized as follows: In Chapter 2, we give an introduction to the
fields of Secure Multi-Party Computation (SMPC) and Private Function Evaluation (PFE), and
the building blocks required to build such schemes. The protocol by Katz and Malka [KM11]
is described in Chapter 4, along with our improvements and details on efficient instantiation
using EC ElGamal and the BFV scheme. In Chapter 3, we summarize related work. Finally,
we present our implementation results in Chapter 6, and discuss directions for future work.

3

2 Preliminaries

In this chapter we given an introduction into the fields of SMPC in Section 2.1 and PFE in
Section 2.2, introduce the building blocks required to construct a PFE scheme in Section 2.3
and describe the two main additional challenges of PFE in contrast to SMPC in Section 2.4.

2.1 Secure Multi-Party Computation

Secure multi-party computation (SMPC), also known as multi-party computation (MPC), secure
function evaluation (SFE), or secure computation, is a field of research that deals with the
evaluation of functions by two or more mutually distrusting parties on their private inputs
without revealing anything but the function’s output. The function itself is public in the SMPC
setting. This reveals the length of the inputs (but not the inputs themselves). More formally,
each party Pi (1 ≤ i ≤ N) knows the function f and has a private input x i of length l and
they jointly compute the output y = f (x1, ..., xN) while keeping their own input and all the
intermediate results private. We distinguish between two-party protocols with exactly two
participants and multi-party protocols which are able to evaluate functions with n private
inputs from n different parties. We focus on secure two-party computation (2PC), i.e., MPC
with N = 2 parties.

A well known example for secure multi-party computation is Yao’s millionaires’ problem
[Yao82] where two millionaires want to determine which of them is richer without revealing
their actual wealth. Their goal is to evaluate the function f (x1, x2) = (x1 ≥ x2) where x1
and x2 are the private inputs of the two millionaires and they should learn nothing more
than the function output.

A SMPC protocol should fulfill two main security properties: correctness and privacy. Cor-
rectness states that the correct value f (x1, ..., xN) is computed. The privacy property ensures
that each party Pi only learns f (x1, ..., xN) and nothing else - in particular, Pi should learn
nothing about x j where j ̸= i.

This thesis focuses on security against semi-honest (passive) adversaries where all parties are
assumed to follow the protocol. This allows highly efficient protocols and is a starting point for
constructing protocols with stronger security guarantees. Also, in many application scenarios
parties can be assumed to behave semi-honestly, e.g., due to regulations or attestation.

4

2 Preliminaries

G1

G2

G3

G4

ow0 iw0

ow1 iw1
ow2 iw2

ow3 iw3

iw4

iw5
iw6

iw7

ow5

ow6

ow4

ow7

ow8

iw ow
iw0 ow0
iw1 ow1
iw2 ow2
iw3 ow3
iw4 ow5
iw5 ow6
iw6 ow6
iw7 ow4

(a) (b)

Figure 2.1: (a) An example Boolean circuit C f with g = 4 gates G1, ..., G4, u = 5 input wires
ow0, ..., ow4, o = 2 output wires ow7, ow8, g + u = 9 outgoing wires ow0, ..., ow8,
and 2g = 8 incoming wires iw0, ..., iw7. (b) Mapping π representing the wiring
of the circuit C f .

2.1.1 Circuits

A circuit can be defined by the number and type of its gates, the number of input and output
wires of the circuit, and the wiring between the gates. We denote the total number of gates in
the circuit by g, the number of input wires to the circuit by u and the number of output wires
of the circuit by o. The example circuit given in Figure 2.1 consists of g = 4 gates, u = 5
input wires and o = 2 output wires. The input wires of the circuit correspond to the input x ,
and the output wires to the output of the function y = f (x).

In order to define the wiring of the gates Gi , i ∈ {1, ..., g}, previous work has established
the terms incoming wires and outgoing wires [BMR90; KM11; MS13]. In contrast to the
terms input/output wires, which describe the inputs and outputs of the entire circuit, the
terms incoming/outgoing wires are used to describe the inputs and outputs of the individual
gates. In our example circuit, there are eight incoming wires, two for each gate. Since the
fan-in for all gates in our circuit is two, the number of incoming wires is 2g. In our example
circuit, there are eight incoming wires, two for each gate. The outgoing wires include the
output wires of the g gates and the u input wires of the circuit. One can imagine an invisible,
non-existent dummy input gate before each input wire of the circuit. Their u output wires
account for the additional u outgoing wires. Since all gates have exactly one output wire and
there are u input wires to the circuit, we have a total of g + u outgoing wires.

The wiring of the gates can now be represented by a mapping from the incoming wires to
the outgoing wires of the gates. Note that each incoming wire must be connected to exactly
one outgoing wire, but an outgoing wire may be connected to one or more incoming wires,
which enables arbitrary fan-out of the gates. Also note that it is sufficient to define a mapping
from each gate, represented by its outgoing wire, to the incoming wires connected to the
two incoming wires of the gate. The mapping that represents the wiring of our example

5

2 Preliminaries

circuit is given in Figure 2.1 (b). We assume that the gates and the wires of our circuit are in
topological order so that for two gates Gi and G j with the outgoing wire of gate Gi connected
to some incoming wire of gate G j we have i < j.

2.1.2 Circuit-based Secure Multi-Party Computation

In the past, several MPC protocols have been proposed that rely on a circuit representation
of the function f , e.g., Yao’s garbled circuit protocol [Yao82; Yao86; LP09] and the GMW
protocol by Goldreich, Micali and Wigderson [GMW87].

The first and most widely used approach to MPC is Yao’s Garbled Circuit (GC) protocol
[Yao86] which uses a Boolean circuit representation of the function f and has a constant
number of communication rounds. Here, the two parties P1 and P2 act as circuit garbler and
circuit evaluator respectively, where the garbler prepares the circuit for evaluation ("garbling"),
and the evaluator does the evaluation of the garbled circuit. Yao’s Garbled Circuit protocol is
described in detail in Section 2.3.4.

The GMW protocol requires a round of interaction for evaluating a layer of AND gates and
therefore its round complexity depends on the depth of the circuit. While the evaluation
of XOR gates does not require any interaction between the parties, interactive oblivious
transfers (OTs) are performed during the evaluation of AND gates. The GMW protocol can
be adapted to be used in the multi-party setting.

Besides the secure evaluation of a given circuit, generating a circuit C f for a function f from
a specification in a high level programming language is orthogonal and there are several
tools for this [MNPS04; SHS+15; DDK+15; HFKV12; BHWK16; BDK+18]. Efficient circuit
generation that tries to optimize in the type and the number of gates or the complexity of the
wiring of the circuit is outside the focus of this thesis.

2.2 Private Function Evaluation

Private function evaluation (PFE), also called secure evaluation of private functions (PF-SFE),
is a special form of Multi-Party Computation (MPC) that in addition to fulfilling all the
requirements of MPC, also ensures the privacy of the function f (publicly known in the MPC
setting) so that it is only known to exactly one party. Private function evaluation thereby
introduces a significant additional degree of complexity compared to standard multi-party
computation. In the circuit-based PFE setting, party P1 holds a circuit C f , representing a
function f , and each party Pi (2≤ i ≤ N) holds an input value x i .

1

The goal of the protocol is for the parties Pi (2 ≤ i ≤ N) to learn f (x1, ..., xN) without
revealing any information about their inputs and for party P1 to keep the function f private.

1This can be extended to the case were party P1 also holds an input value in addition to the circuit C f . Our
2-party PFE implementation actually supports input values for P1 and P2.

6

2 Preliminaries

In practice, private function evaluation reveal the number of gates of C f , the number of
input wires for each party and the number of output wires is publicly known to all parties. If
needed, the actual number of gates and wires can be hidden by adding dummy gates and
dummy input/output wires to the circuit.

One notable characteristic of PFE protocols is that P1 typically must not be able to learn the
output of the function f . The reason why this is the case is that a malicious party P1 could
reveal the inputs of any other party Pi by defining f as the identity function mapping the
other party’s input as the output of f , i.e., f (x1, ..., xn) = x i . Fortunately, many protocols can
be easily modified to only reveal the output of f to (a subset of) the parties Pi (2≤ i ≤ n). We
describe how this can be achieved in the protocol by Katz and Malka [KM11] in Section 4.1.

In order to hide the function f represented by the circuit C f , the type of the individual gates
and the wiring of the circuit has to be kept secret from all parties except P1. We keep up
with the terminology introduced in [MS13] and refer to these two challenges as Private Gate
Evaluation (PGE) and Circuit Topology Hiding (CTH) and go into detail in Sections 2.4.2
and 2.4.1.

The most common approach by prior work is to reduce the problem of PFE to classical secure
computation by making use of universal circuits (UC, see Section 2.3.3). The concept of using
universal circuits to build a PFE scheme is explained in Section 3.1. An alternative approach
based on Yao’s garbled circuits and homomorphic encryption has been presented by Katz and
Malka in [KM11] (see Section 4.1).

2.3 Building Blocks

In this section, an overview over the building blocks of private function evaluation protocols is
given. Homomorphic encryption schemes are described in Section 2.3.1. Section 2.3.2 gives
an introduction into oblivious transfers (OTs), a technique to obliviously receive exactly one
out of n elements from another participant in the protocol without revealing which element
has been requested. Universal circuits, an intensively well-researched primitive that can be
used to build efficient PFE schemes, are described in Section 2.3.3. The technique of Yao’s
garbled circuits, on which the [KM11] protocol bases upon, is explained in Section 2.3.4.

2.3.1 Homomorphic Encryption

Homomorphic encryption (HE) is a class of encryption schemes where computations on
encrypted data are possible. The operations performed on the ciphertexts are reflected in
the output of decryption, i.e., underlying plaintexts, as if they were applied directly on the
plaintexts.

In the last years, some approaches to secure multi-party computation have been proposed
that are based on homomorphic encryption. Damgard et al. [DPSZ12] proposed a multiparty

7

2 Preliminaries

computation protocol secure against active adversaries based on somewhat homomorphic
encryption (SHE), a class of homomorphic encryption schemes supporting only a limited
number of operations on encrypted data. Gentry proposed the very first fully homomorphic
encryption (FHE) scheme, which is able to compute arbitrary operations on encrypted data
[Gen09]. Private function evaluation based on fully homomorphic encryption (FHE) became
possible when Gentry proposed the very first FHE encryption scheme, which is able to compute
arbitrary operations on encrypted data [Gen09].

Partially Homomorphic Encryption. Due to the high computation cost of fully homomor-
phic encryption, Katz and Malka proposed a PFE scheme based on partially homomorphic
encryption i.e. a homomorphic encryption scheme that supports only one type of homomor-
phic operation [KM11]. Their HE scheme is required to provide additively homomorphic
properties in order to be used in their PFE scheme. The additive property allows us to add a
two values under encryption by applying operations to their ciphertexts only. In particular, a
party is able to add the plaintext of two encrypted values without having access to the secret
key required for decryption.

Katz and Malka suggest to make use of the following two homomorphic properties of Paillier’s
probabilistic public-key system [Pai99]:

Dec(Enc(m1) · Enc(m2)mod n2) = m1 +m2 mod n (2.1)

Dec(Enc(m1)
m2 mod n2) = m1 ·m2 mod n (2.2)

The additive property (Equation (2.1)) allows us to add a two values under encryption
by multiplying their ciphertexts. In particular, a party is able to add the plaintext of two
encrypted values without having access to the secret key required for decryption. The scalar-
multiplicative property (Equation (2.2)) allows a party to multiply two values, whereof one
value is encrypted, by raising the encrypted value to the power of the unencrypted value.
Note that this property does not allow one to multiply two values under encryption when
both values are encrypted (a property provided by some other homomorphic encryption
schemes).

Today, more recent HE schemes are available that satisfy the additive homomorphic property,
out of which Elliptic Curve Cryptography (ECC)-based and Ring-LWE (RLWE)-based schemes
are the most efficient. In our implementation, we use EC ElGamal encryption (see Section 4.4)
and the BFV cryptosystem (see Section 4.5) to achieve better performance than by using
the Damgaard Jurik Nielsen cryptosystem (DJN) [DJN10], a generalization of [Pai99], and
compare the three schemes in Section 6.1.

Homomorphic EncryptionbasedonElliptic CurveCryptography. EC ElGamal encryption
offers exceptionally small ciphertexts while still offering practicable computation and fulfills
the homomorphic requirements of the [KM11] protocol. The use of elliptic curves over finite
fields as a basis for a cryptosystem was suggested independently from each other by both

8

2 Preliminaries

Koblitz [Kob87] and Miller [Mil86]. An elliptic curve Ep(a, b) over the Galois field GF(p)
consists of the elements P = (x , y) that satisfy the equation

y2 = x3 + ax + b (mod p) (2.3)

where x , y, a, b ∈ GF p = {1, ..., p − 1} together with the extra point O called the point at
infinity. An elliptic curve cryptosystem defines the ECC arithmetic over the Galois field. It
assures that any operation performed on two points on the elliptic curve results in a third
element that is also a point on the curve. The addition of two elements on the elliptic
curve is the counterpart to a modular multiplication in the arithmetic of classical public-
key cryptosystems and the scalar multiplication of an integer and a point on the elliptic
curve corresponds to modular exponentiation. Elliptic curve cryptosystems typically do
not introduce novel cryptographic algorithms but define the arithmetic to apply existing
algorithms, such as ElGamal [Elg85], on elliptic curves and thereby base their security on a
different underlying problem. In elliptic curve arithmetic, inverting a scalar multiplication, i.e.
finding the discrete logarithm of a given point on the elliptic curve with respect to a publicly
known generator point, is hard. This problem is known as the elliptic curve discrete logarithm
problem (ECDLP) and corresponds to the problem of inverting an exponentiation in traditional
public-key cryptosystem arithmetic, known as the discrete logarithm problem (DLP).

Homomorphic Encryption based on the Ring-Learning with Errors problem. Next to
ECC-based encryption, we specifically focus on a Ring-LWE-based scheme called the
Brakerski/Fan-Vercauteren (BFV) scheme [FV12; Lai17] in our work. We choose BFV
simply because it has the most efficient publicly available implementation, the Microsoft SEAL
library [Sea19], and note that our discussion also applies to other popular Ring-LWE-based
HE schemes such as BGV [BGV12]. Here, we present a high level overview of the BFV scheme
restricted to only a part of BFV’s functionality which is relevant for our application. For
additional details, see [Lai17].

The BFV scheme operates on polynomial rings of the form R = Z[x]/(xn + 1), where the
polynomial modulus degree n is a power of 2. For a plaintext modulus t, the plaintext space
is defined as Rt = R/tR = Zt[x]/(xn + 1), which consists of polynomials of degree n− 1
with coefficients in Zt . Similarly, the ciphertext space is defined as (Rq)2, where q is called
the coefficient modulus and Rq = R/qR. The encryption function Enc is a probabilistic func-
tion that takes a public key pk and a message m ∈ Rt as inputs, and outputs a ciphertext
c ∈ (Rq)2. The ciphertexts output by Enc have a noise component associated with them
which is necessary for maintaining security. The decryption function Dec takes the secret
key sk and a ciphertext c ∈ (Rq)2 as inputs, and outputs a message m ∈ Rt . Decryption works,
i.e., m= Dec(sk,Enc(pk, m)) if the ciphertext noise is below a certain threshold defined by
the scheme parameters. For ease of exposition, we omit the keys from the invocation of
the encryption and decryption function, and assume a single key-pair throughout the paper,
which makes the functions compatible.

Enc is a homomorphic map from (Rt ,+) to ((Rq)2,+), which provides the scheme with its
additive homomorphic properties. This means that, given ciphertexts c1 = Enc(m1) and

9

2 Preliminaries

c2 = Enc(m2), we have Dec(c1 + c2) = Dec(c1) + Dec(c2). The noise component grows as
we perform homomorphic operations on the ciphertext until it reaches a threshold, beyond
which decryption is not possible and the ciphertext is rendered useless. This is not a problem
since addition does not grow the noise by much. The scheme described so far only provides
IND-CPA security against parties other than the key owner. In order to hide the operations
applied to ciphertext from the key owner, which may include some private inputs from other
parties, and only reveal the result of decryption, the ciphertext needs to be flooded with extra
noise (cf. [Lai17], Section 9.4). This requires taking larger parameters to accommodate the
extra noise, and has been taken into account in our parameter selection.

2.3.2 Oblivious Transfer

Oblivious Transfer (OT) is a basic building block for many privacy preserving protocols and
allows a party Pr , called receiver, to obliviously reveal k elements out of a set of n elements
(where k < n) held by a party Ps, called sender. The oblivious transfer protocol is designed in
a way that Pr does not learn anything about the n− k other elements from Ps. However, the
receiver Pr is allowed to freely choose which k elements is wants to reveal. After the protocol
run, the sender Ps has learned nothing about the choice of Pr , i.e. it has no knowledge which
k out of the n elements were chosen by Pr .

In the special case of a so-called 1 out of two oblivious transfer, the sender inputs two l-bit
strings (m0, m1) and the receiver inputs a selection bit b ∈ {0,1} and obliviously learns mb
but learns nothing about m1−b and the sender learns nothing about b (see Figure 2.2).

OT

m0, m1 b

mb

Figure 2.2: A simple 1-out-of-2 oblivious transfer

Oblivious transfer protocols have been well-researched in the last years. While a single 1-out-
of-2 oblivious transfer is a relatively expensive operation relying on public-key cryptography,
it is possible to perform a larger number of OTs more efficiently using OT extensions [IKNP03;
ALSZ13]. This technique allows to extend some base OTs to obtain many oblivious transfers
based on cheap symmetric cryptographic operations.

In the private function evaluation protocol by Katz and Malka [KM11], oblivious transfer is
used to obliviously send the correct value of the input wires to the circuit as in Yao’s garbled
circuit protocol (see Section 2.3.4).

10

2 Preliminaries

2.3.3 Universal Circuits

A Universal Circuit (UC) is a special circuit that is able to simulate any Boolean circuit up to
size n. The UC can be programmed to evaluate a specific Boolean circuit C f by specifying so-
called programming bits (or control-bits). These programming bits represent the functionality
of C f . The evaluation of the Boolean circuit described by the programming bits p with input x
will then be equivalent to the evaluation of the universal circuit UC(p, x).

By evaluating a UC in a MPC protocol where party P1 inputs the programming bits p and P2
inputs x , the two parties can perform a private function evaluation of the function f repre-
sented by p. Since the MPC protocol ensures that the inputs p and x are kept secret, this
reduces PFE to standard MPC (see Section 3.1).

In recent years, a lot of research was put into optimizing and implementing UC-based
PFE. These efforts have now touched lower bounds, so no more significant performance
improvements are expected: Valiant [Val76] proposed two recursive UC constructions with
2 and 4 substructures (so-called 2-way and 4-way UCs), and asymptotic sizes ∼ 5n log2 n
and ∼ 4.75n log2 n respectively, which are close to the asymptotic lower bound of Ω(n log n)
on the size of a UC. The most recent work of Zhao et al. [ZYZL19] showed that their 4-way
split building block achieves the smallest concrete complexity of ∼ 4.5n log2 n. Also, for Yao’s
protocol Zahur et al. showed a lower bound of 256 bits of communication per AND gate
using their half gates optimization [ZRE15]. Lipmaa et al. [LMS16] generalized Valiant’s
constructions to any k-way UC. A hybrid UC construction combining 2-way and 4-way UCs
and optimizations from [KS16; GKS17; ZYZL19] and an implementation providing the most
efficient UC implementation with size ∼ 4.5n log2 n was given in [AGKS19].

Alhassan et al. [AGKS19] suggested various applications for size-optimized universal circuits,
such as private function evaluation (see Section 3.1), efficient verifiable computation on
encrypted data [FGP14; GGPR13], multi-hop homomorphic encryption [GHV10], Attribute-
Based Encryption (ABE) [GGHZ14; Att14] and secure two-party computation in the batch
execution setting [LMS16; HKK+14; LR15; MR17].

2.3.4 Yao’s Garbled Circuit Protocol

The garbled circuit protocol [Yao86] is a circuit-based two-party secure computation protocol
that enables two parties P1 and P2 to obliviously evaluate a public function f over their
private inputs x ∈ {0,1}u1 and x ′ ∈ {0,1}u2 . The parties learn the output y = f (x , x ′) but
will learn nothing about the input of the other party. The protocol operates on a Boolean
circuit representation C f of the function f .

The idea behind the garbled circuit protocol was first introduced by Yao in an oral presentation
of his paper “How to generate and exchange secrets” in 1986 [Yao86], as mentioned in [Gol03].
However, Yao did not publish any paper describing his idea. The first written description
of the protocol was given by Goldreich, Micali, and Wigderson in [GMW87]. The term

11

2 Preliminaries

“garbled circuit” was introduced by Beaver, Micali, and Rogaway in [BMR90]. A PRF-based
instantiation of the garbled circuit protocol is given by Naor, Pinkas, and Sumner [NPS99] as
an alternative to the primitive based on symmetric double encryption by Yao. Lindell and
Pinkas provide the first proof of Yao’s protocol [LP09]. A novel formalization of garbling
schemes that recaps previous approaches and respects optimizations like PRF-based garbling
[NPS99], point-and-permute [BMR90], garbled row reduction [NPS99; PSSW09] and free-XOR
[KS08b] is given by Bellare, Hoang and Rogaway in [BHR12]. More recent optimizations to
the well-studied garbled circuit protocol include fixed-key AES garbling [BHKR13] and half
gates [ZRE15].

In the garbled circuit protocol described by Yao, each wire of the circuit is represented by
a pair of so-called wire keys. These labels represent the potential values 0 and 1 of the
corresponding wire. Each wire key is a random bit-string of length σ, where σ is our security
parameter. We denote the wire key of wire wi representing the value 0 by s0

i and the wire
key representing the value 1 by s1

i .

As a first step, party P1 randomly samples and assigns the wire keys to the wires of the circuit.
P1 is now able to create the garbled gates, i.e., garbled representations of the individual gates,
using the wire key pairs for the input wires and the output wire of each gate. We assume,
that gate Gi has two input wires, w j and wk, and one output wire wi. We remember from
Section 2.1.1 that each input wire of a gate is identical (“connected”) to one outgoing wire
of the circuit. Our example gate Gi is depicted in Figure 2.3. Creation of a garbled gate is
depicted in Figure 2.4.

Gi

wi
w j

wk

Gi

s0
i , s1

i
s0

j , s1
j

s0
k , s1

k

Figure 2.3: Example XOR gate Gi connected to the input wires w j and wk and its assigned
wire keys

Each garbled gate GGi is represented by a garbled computation table (GCT), also called garbled
table (GT), that is constructed from the gate’s truth table as follows: First, the values in the
truth table of gate Gi are replaced by the corresponding wire keys representing the potential
values of the wires. Next, the output values of the truth table are encrypted using the wire
keys of the input wires for any combination of the input wire keys. Encryption is done using
a symmetrical encryption scheme and the wire keys are used as encryption keys. This hides
the output wire keys of gate Gi . Party P2 will later only be able to decrypt one of the output
wire keys, either s0

i or s1
i . Which wire key will be retrieved depends on the input wire keys

known to party P2. If, for example, P2 knows the wire keys s1
j and s0

k , it can use the ciphertext

12

2 Preliminaries

Encs1
j
(Encs0

k
(s1

i)) to learn s1
i . However, P2 is not able to learn s0

i from the four ciphertexts of

the encrypted truth table and the wire keys s1
j and s0

k .

w j wk w j ⊕wk

0 0 0

0 1 1

1 0 1

1 1 0

→

s j sk si

s0
j s0

k s0
i

s0
j s1

k s1
i

s1
j s0

k s1
i

s1
j s1

k s0
i

→

enc. truth table

Encs0
j
(Encs0

k
(s0

i))

Encs0
j
(Encs1

k
(s1

i))

Encs1
j
(Encs0

k
(s1

i))

Encs1
j
(Encs1

k
(s0

i))

→

GARBLED TABLE

Encs0
j
(Encs1

k
(s1

i))

Encs1
j
(Encs1

k
(s0

i))

Encs0
j
(Encs0

k
(s0

i))

Encs1
j
(Encs0

k
(s1

i))

Figure 2.4: Creation of a garbled XOR gate

The entries of the encrypted truth table are permuted in random order to hide which of its
entries corresponds to which entry of the unencrypted table. The permuted truth table is
called garbled table and encodes the garbled gate. This procedure is therefore also called
garbling of a gate. Since P1 performs this operation for all gates of the circuit, it is also
referenced as the circuit garbler.

Note that even if creation of a garbled gate is not limited to any specific gate logic it is
conventional to use only XOR and AND gates in Yao’s garbled circuit protocol. This is due to
the free-XOR optimization of [KS08b], which allows XOR gates to be evaluated locally, i.e.,
essentially “for free”.

The garbled gates of the circuit together form the garbled circuit (GC) representing the
function f . The GC is transferred to party P2, who acts as the circuit evaluator. Besides the
GC, P2 needs to learn its share of the input values x and x ′. For each bit of the input values,
there is one input wire of the circuit C f that represents its bit value. These input wires have
been used as encryption keys during GC generation. For P1’s input value x = x1|| . . . ||xu1

of length u1, P1 simply sends the wire keys sx1
1 , . . . , s

xu1
u1

. Note, that since the wire keys
representing the values 0 and 1 are uniform and random, P2 does not learn anything about
the value of x .

P1 also generated the wire key pairs corresponding to P2’s input x ′. In order to retrieve the
wire keys representing x ′, P1 and P2 evaluate a series of 1-out-of-2 oblivious transfers, one
for each bit of x ′. During each oblivious transfer, P1 acts as the sender, holding the two wire
keys s0

u1+i and s1
u1+i where i ∈ [1, u2]. These wire keys represent the potential bit values for

P2’s input value x ′i . P2 acts as the receiver, holding the actual bit value of its input x ′i . After
the oblivious transfers, P2 holds either s0

u1+i or s1
u1+i and P1 learns nothing about P2’s input

value x ′i .

P2 now knows the wire keys representing the input values of P1 and P2 and is able to evaluate
the garbled circuit. As described in Section 2.1.1, the gates are ordered in topological order,
i.e. for the gates G j and Gk connected to the inputs of gate Gi it holds that j < i and k < i.

13

2 Preliminaries

Therefore, the evaluation of the circuit can be done gate by gate. For each garbled gate, P2
knows two wire keys s j and sk, one for each of its incoming wires, and tries to decrypt the
four entries in the garbled table. For exactly one of the entries, decryption succeeds and P2
learns the outgoing wire of the gate. We denote this as si = decYao(s j , sk, GGi). P2 is now
able to use this outgoing wire in the evaluation of one (or more) of the following gates. When
P2 completely evaluated the garbled circuit, it holds the wire keys of the output wires of the
circuit that represent the output of the function f .

In the first step of the protocol, party P1 created two wire keys for each output wire of the
circuit, one of them representing the value 0 and one of them representing the value 1. P1
can now send the wire key pairs corresponding to the output wires of the circuit to P2 and P2
is then able to compare these wire keys to those retrieved during circuit evaluation. Thereby,
P2 learns the output y = f (x , x ′). Alternatively, P2 could send its retrieved output wire keys
to P1 and P1 could do the comparison. This way, P1 learns the output of the function f .

2.4 Challenges of Private Function Evaluation

Private function evaluation introduces a significant additional degree of complexity compared
to standard multi-party computation. In addition to hiding the inputs to a circuit C f , the
circuit itself is only known to one of the parties in the PFE setting. In order to hide the
function f represented by the circuit C f , the type of the individual gates and the wiring of
the circuit has to be kept secret from all parties except P1.

Mohassel and Sadeghian [MS13] introduce a framework for designing circuit-based PFE
protocols. They identify two main challenges facing private function evaluation. First, the
topology of the circuit has to be hidden from all parties except party P1 holding the circuit as
its input to the protocol. Since the topology of the circuit can be represented as a mapping πC
from the incoming wires to the outgoing wires of the gates (see Section 2.1.1), this challenge
can be reduced to the problem of hiding πC from Pi,1<i≤n while still enabling the evaluation
of the circuit. We adopt to the term introduced in [MS13] and refer to this task as Circuit
Topology Hiding (CTH).

Second, hiding the functionality of the individual gates is another challenge of PFE not present
in the classical MPC setting. In order to reveal no information about the circuit C f , it is of
vital importance that no gate is distinguishable from any other gate in the circuit during
evaluation. Each gate has to be evaluated blindly without leaking any information about its
internal functionality to a party Pi,1<i≤n. Again, we maintain the terminology introduced in
[MS13] and refer to this task as Private Gate Evaluation (PGE).

2.4.1 Circuit Topology Hiding (CTH)

Hiding the topology of a circuit C f is of vital importance in order to hide the function f . In
the PFE setting, it is usually accepted that the size of the circuit, the number of input bits

14

2 Preliminaries

for each party and the number of output bits is commonly known by all parties. However,
the mapping πC that encodes the wiring of the gates leaks some information about the
functionality of the whole circuit and must therefore be hidden from all parties except P1.

There are multiple approaches to hide the wiring of the circuit, represented by the mappingπC .
Katz and Malka propose a hiding technique based on homomorphic encryption [KM11].
Intuitively, they assign labels to each wire of the circuit (wire keys) and let party P1 blind
the codomain of the mapping πC under homomorphic encryption so that P1 does not learn
the wire keys and all other parties do not learn the mapping πC . A full description of their
protocol is given in Section 4.1.

Mohassel and Sadeghian propose another approach to CTH based on switching networks
[MS13]. In their approach, a switching network that corresponds to an extended permutation
is evaluated obliviously using their oblivious switching network (OSN) construction. The
oblivious witching network is then used to obliviously evaluate the mapping πC .

2.4.2 Private Gate Evaluation (PGE)

Besides hiding the wiring of the gates, it is important to hide the functionality of the individual
gates of the circuit in order to prevent any leakage functionality of the circuit C f . A simple
but effective solution is to only use one type of gates in the circuit, e.g. only NAND gates.
Thereby, hiding the functionality of the gates can be reduced to hiding the output of a singe
gate by applying Yao’s garbled table technique solely to NAND gates. As opposed to the
original protocol by Yao, the circuit garbler does not need to differentiate between the types
of the gates when creating the garbled tables for NAND gates only. Since there is no need to
have any knowledge about the functionality of the gate when ungarbling them in the garbled
circuit protocol, this makes the gates indistinguishable for the circuit evaluator in terms of
their functionality.

15

3 RelatedWork

Previous work on private function evaluation can be categorized in two main approaches: 1)
Evaluating a universal circuit (UC) with a Secure Function Evaluation (SFE) protocol like
Yao’s garbled circuit protocol [Yao82; Yao86; LP09] or the so-called GMW protocol [GMW87]
reduces the task of oblivious evaluation of a private function to standard secure function
evaluation SFE where the function is the publicly known UC. These protocols rely mostly
on symmetric cryptography but UCs have superlinear complexity in the size of the private
function. 2) The second category of PFE protocols are linear-complexity protocols based on
public-key cryptography, such as [KM11] and [MS13].

The protocols in this thesis provide security against semi-honest adversaries. There are
also first approaches to PFE focusing on malicious adversaries. Mohassel et al. extend the
framework from [MS13] to security against malicious adversaries with linear complexity
of O(g) based on linear zero-knowledge proofs [MSS14]. They provide the first actively
secure PFE protocol besides the generic approach of evaluating universal circuits using an
actively secure MPC protocol.

3.1 Private Function Evaluation based on Universal Circuits

Private evaluation of a function f can be reduced to the less complex problem of Secure
Function Evaluation by using universal circuits to evaluate the function f . In many SFE
protocols, the function f is represented as a Boolean circuit C f . Universal circuits can be
programmed to evaluate such a Boolean circuit by defining a representation p of the circuit C f
as the UC’s input (see Section 2.3.3). This representation p, also called programming bits of
the UC, can be used next to the input x of the function f to evaluate UC(p, x).

When using a secure computation protocol to evaluate UC(p, x), where the universal circuit
is the function to be evaluated, p is the input of party P1 and x is the input of party P2, the
input of the other party mutually remains oblivious and either one or both parties receive the
output y = UC(p, x) of the universal circuit. The construction of the UC and the correctness
assumption of the MPC protocol guarantee that the output of UC(p, x) is identical to the
output of f (x). Thereby, we have constructed a PFE protocol that relies on universal circuits
and a SFE protocol to privately evaluate the function f , specified by party P1, on the private
input x of party P2.

16

3 Related Work

In the PFE protocol based on a universal circuit, the UC is publicly known to both parties.
All functions f that can be represented by the UC can be evaluated in the PFE protocol. We
remember from Section 2.3.3 that a given UC is able to evaluate Boolean circuits up to size n.
Constructing size-optimized universal circuits that are able to evaluate large Boolean circuits
is an active field of research and strongly influences the performance of the PFE protocol.

UC-based PFE can be instantiated with any circuit-based MPC protocol and also benefits
from recent improvements to those protocols. A construction of PFE using universal circuits
was first proposed by Abadi and Feigenbaum in [AF90]. In the last years, considerable
effort has been undertaken to improve on previous results [SYY99; Pin02; AGKS19]. The
main challenge in improving on the performance of UC-based PFE protocols today relies in
optimizing the size of a universal circuit capable of evaluating a Boolean circuit of size n. The
first implementation of PFE based on universal circuits was provided in [KS08a; Sch08]. Past
efforts on constructing size-optimized universal circuits have been summarized, extended and
combined to lead to the most efficient UC-based PFE scheme known so far in [AGKS19].

3.2 Private Function Evaluation with Linear Complexity

Private function evaluation schemes based on universal circuits have inevitable logarithmic
overhead and already have touched their theoretical lower bound [ZYZL19]. In the last
years, other approaches have been introduced that do not rely on UCs. We specially focus
on showing the practicality of the scheme by Katz and Malka [KM11]. Their scheme bases
on partially homomorphic encryption and has linear complexity in the size of the circuit
C f representing the function f . Katz and Malka extend Yao’s garbled circuit protocol by
introducing so-called encrypted garbled gates (encGG) in order to hide the topology of the
circuit C f . By applying a homomorphic blinding technique to the wire keys encrypted in these
encrypted garbled gates, the topology of the circuit becomes oblivious to the circuit garbler.
We give a full description of the scheme in Section 4.

Biçer at al. introduce the first reusable private function evaluation scheme with linear
complexity [BBKL18a]. Their scheme achieves significant cost reduction when the same
private function f is evaluated multiple times between the same two parties or between the
party holding the function f and another varying party. The reusability feature is achieved
by deriving the wire keys from a set of generators in a cyclic group G of large prime order
instead of choosing random values for the wire keys.

Mohassel and Sadeghian introduce another approach based on the oblivious evaluation
of a switching network of size Θ(n log n) [MS13]. In their scheme, the topology of the
circuit, described by the mapping πC , is represented by a switching network of an extended
permutation (see Figure 3.1). Their novel technique to obliviously evaluate such a switching
network uses oblivious transfer to evaluate the individual switches in the network. As shown
in [AGKS19], the communication of both [MS13] and [BBKL18a] is worse than their UC-based
private function evaluation protocol.

17

3 Related Work

Permutation

network

1-SW
1-SW

1-SW

Permutation

network

Dummy Placement Replication Permutation

Figure 3.1: A switching network implementing an extended permutation

Bingöl at al. adapt the half gates optimization by Zahur et al. [ZRE15] to the PFE setting
[BBKL18b]. Their work bases on the OT-based approach by Mohassel and Sadeghian and
significantly reduces the number of oblivious transfers during the evaluation of the switching
network. Similar to the optimized variant of the [KM11] protocol, Bingöl at al. introduce
a global random shift r, randomly choose only one wire key s0 and set the other wire key
as s1 = s0 ⊕ r. This significantly reduces the size of the switching network and leads to a
considerable decrease in communication compared to [MS13]. Their scheme also reduces
the size of the garbled tables for output gates by half and for non-output gates from four to
only three ciphertexts.

18

4 Homomorphic Encryption-based Private Function
Evaluation

In this section, we recapitulate the protocol of Katz and Malka [KM11] and its improved
version in Sections 4.1 and 4.2, introduce two further improvements to the protocol in
Sections 4.3.1 and 4.5.3 and propose an efficient instantiation of the protocol using the BFV
homomorphic encryption scheme in Section 4.5.

4.1 The [KM11] Protocol

Katz and Malka [KM11] proposed a Private Function Evaluation protocol which combines
homomorphic encryption with Yao’s Garbled Circuit protocol to hide the topology of the
circuit in addition to the parties’ inputs.

The protocol, summarized in Figure 4.2, can be divided into three parts: (i) hiding the
topology of the circuit by homomorphically blinding the wire keys used to create the garbled
tables from the original Yao’s Garbled Circuit protocol, (ii) creation and evaluation of the
garbled tables, and (iii) output decryption. The main contribution of [KM11] lies in the
first phase where the encrypted wire keys are blinded using homomorphic encryption and
combined into so-called encrypted garbled gates in order to hide the topology of the circuit.
These encrypted garbled gates contain the wire keys to create the garbled tables as in the
original protocol by Yao. Determining the output of the circuit is done very similar to Yao’s
original garbled circuit protocol but respects the blinding of the wire keys when deriving the
keys to decrypt the garbled tables.

In the protocol by Katz and Malka, party P2 holds the input value x = x1|| . . . ||xu2
of length u2

and acts as the circuit garbler. P1 holds the circuit C f of g gates and (optionally) another
input value x ′ = x ′1|| . . . ||x ′u1

of length u1 and acts as the circuit evaluator1. Since P1 holds
the circuit C f and P2 is unaware of the circuit wiring, P2 cannot directly garble the gates.
Instead, P1 creates an encrypted garbled gate for each gate in the circuit and P2 decrypts
theses encrypted garbled gates to learn the keys required to create the garbled tables. By
creating the encrypted garbled gates, P1 obliviously connects two outgoing wires to each
gate of the circuit (the wire keys for the outgoing wires are provided by P2 beforehand).
We denote the encrypted garbled gate corresponding to gate i as encGGi. Creation of the

1Note, that the roles of P1 and P2 are defined in the reversed way in [KM11].

19

4 Homomorphic Encryption-based Private Function Evaluation

encrypted garbled gates is done under homomorphic encryption in order to hide this mapping
from P2.

We remember the two main challenges of PFE from Section 2.4: Circuit Topology Hiding (CTH)
and Private Gate Evaluation (PGE). In order to hide the functionality of the individual gates,
only NAND gates are used in the Boolean circuit. This reduces the PGE problem to creating
garbled tables for NAND gates only. This is not a restriction because arbitrary gates can be
replaced by a few NAND gates and there are even established hardware synthesis tools that
optimize for a small number of NAND gates. Since all gates have the same logical functionality,
they are indistinguishable from each other and no further effort is needed to accomplish the
challenge of PFE. CTH is realized using homomorphic encryption by creating and evaluating
the encrypted garbled gates in phase (i) of the protocol.

Gi

s0
u+i , s1

u+i
s0

j , s1
j

s0
k , s1

k

Figure 4.1: A single gate with two incoming wires and one outgoing wire

In phase (i) of the protocol, P2 creates two wire keys for each of the N = g+u = g+(u1+u2)
outgoing wires - one of them representing the bit value 0 and one representing the bit value 1.
The wire keys of all g +u outgoing wires except the o output wires of the circuit are essential
to define the mapping representing the topology of the circuit. We denote the wire key
corresponding to the bit value b ∈ {0, 1} on outgoing wire i ∈ {1, . . . , N} by sb

i . The security
of the protocol depends on the indistinguishability of the two keys. Therefore, the wire keys
are chosen at random. P2 initiates the protocol by sending those wire keys under encryption
using a homomorphic encryption scheme to P1:

[Enc(s0
1),Enc(s

1
1)], . . . , [Enc(s0

g+u−o),Enc(s
1
g+u−o)]. (4.1)

Using the homomorphic property of the encryption scheme, party P1 is now able to create the
encrypted garbled gates. In order to hide the wiring of the circuit from P2, each wire key has
to be blinded. Creation of the encrypted garbled gates is then done as follows: P1 randomly
samples the blinding values ai , bi , a′i , b′i for each gate Gi . Say the outgoing wires j and k are
connected to the incoming wires of gate Gi (as depicted in Figure 4.1), then P1 constructs
the encrypted garbled gate encGGi as

encGGi =

�

[Enc(ai ∗ s0
j + bi), Enc(ai ∗ s1

j + bi)]

[Enc(a′i ∗ s0
k + b′i), Enc(a

′
i ∗ s1

k + b′i)]

�

(4.2)

by making use of the homomorphic properties of the homomorphic encryption scheme. After
the creation of the encrypted garbled gates, P1 sends encGG1, . . . ,encGGg+u to P2.

20

4 Homomorphic Encryption-based Private Function Evaluation

P1 (holds C f) P2 (holds input x ∈ {0,1}l)

ai , bi , a′i , b′i ←$ {0, 1}σ (pk, sk)←$KGen(1n)

(s0
i , s1

i)←$ {0, 1}σ ∀i ∈ {1, ..., N}
where σ = 128 is our symmetric

security parameter

pk,∀i : {Enc(s0
i),Enc(s

1
i)}

∀i ∈ {1, ..., g} :

create encrypted garbled

gate encGG i

Enc(ai ∗ s0
j + bi), Enc(ai ∗ s1

j + bi)

Enc(a′i ∗ s0
k + b′i), Enc(a

′
i ∗ s1

k + b′i)

compute garbled table GG i

L0
i = Dec(Enc(ai ∗ s0

j + bi)

L1
i = Dec(Enc(ai ∗ s1

j + bi)

R0
i = Dec(Enc(a′i ∗ s0

k + b′i)

R1
i = Dec(Enc(a′i ∗ s1

k + b′i)

GARBLED TABLE GG i

(entries in random order)
sEncL0

i
(sEncR0

i
(s1

u+i))
sEncL0

i
(sEncR1

i
(s1

u+i))
sEncL1

i
(sEncR0

i
(s1

u+i))
sEncL1

i
(sEncR1

i
(s0

u+i))

GG i , sx1
1 , . . . , sx1

l

Li = ai ∗ s j + bi

Ri = a′i ∗ sk + b′i
su+i = decYao(Li , Ri , GGi)

once all output wires have

been determined:
sN−o+1, . . . , sN

compare sN−o+1, . . . , sN to

[s0
N−o+1, s1

N−o+1], . . . , [s0
N , s1

N]
to receive the output bits

Figure 4.2: The [KM11] protocol (original, non-improved version)

21

4 Homomorphic Encryption-based Private Function Evaluation

Note that the values of the keys s0
u+i and s1

u+i assigned to the outgoing wire of gate Gi do not
need to be included in encGGi since P2 already knows the plaintext values of these keys.

P2 is now able to create the garbled tables in phase (ii) of the protocol and thereby acts as
the circuit garbler. For each gate Gi, P2 decrypts the corresponding encrypted garbled gate
and retrieves one blinded key for the left and one for the right incoming wire of the gate
without learning the blinding values:

[L0
i , L1

i] = [Dec(Enc(ai ∗ s0
j + bi)), Dec(Enc(ai ∗ s1

j + bi))] (4.3)

for the left incoming wire and

[R0
i , R1

i] = [Dec(Enc(a
′
i ∗ s0

k + b′i)), Dec(Enc(a
′
i ∗ s1

k + b′i))] (4.4)

for the right incoming wire. These keys are used to encrypt the garbled table GGi for gate Gi .
Note that the blinded wire keys L0

i , L1
i and R0

i , R1
i are random and independent of the keys

assigned to the outgoing wires of the gates G j and Gk. This hides the topology of the circuit
to P2 while still enabling P2 to create the garbled tables using these blinded wire keys and
the outgoing wires s0

u+i and s1
u+i of gate Gi . As in the original Yao’s garbled circuit protocol,

the values of the gate’s truth table are first replaced by the corresponding wire keys. Next,
the keys of the outgoing wire of gate Gi are encrypted according to the truth table using
the symmetric encryption sEnc and the keys L0

i , L1
i , R0

i and R1
i as the symmetric encryption

keys. We use AES 128-bit symmetric encryption in our implementation. The four resulting
ciphertexts are permuted in a random order to obtain the garbled table for gate Gi, also
known as the garbled gate GGi (see Figure 4.3). Note that P2 does not learn anything about
the functionality of the individual gates, since the circuit consists solely of NAND gates.

j k j ∧ k

0 0 1

0 1 1

1 0 1

1 1 0

→

L j
i Rk

i s j∧k
u+i

L0
i R0

i s1
u+i

L0
i R1

i s1
u+i

L1
i R0

i s1
u+i

L1
i R1

i s0
u+i

→

encrypted truth table

sEncL0
i
(sEncR0

i
(s1

u+i))

sEncL0
i
(sEncR1

i
(s1

u+i))

sEncL1
i
(sEncR0

i
(s1

u+i))

sEncL1
i
(sEncR1

i
(s0

u+i))

→

GARBLED TABLE GGi

sEncL0
i
(sEncR1

i
(s1

u+i))

sEncL1
i
(sEncR1

i
(s0

u+i))

sEncL0
i
(sEncR0

i
(s1

u+i))

sEncL1
i
(sEncR0

i
(s1

u+i))

Figure 4.3: Creation of a garbled table in [KM11]

After creating the garbled gates GG1, . . . ,GGg , P2 sends them to P1 alongside the wire keys

s
xu1+1

1 , . . . , s
xu1+u2
l of the circuit input wires corresponding to P2’s input bits x1, . . . , xu2

. Note,
that since the wire keys representing the values 0 and 1 are uniform and random, P1 does
not learn anything about the value of x . If party P1 also holds an input value x ′, oblivious

transfer is used to retrieve only the wire keys s
x ′1
1 , . . . , s

x ′u1
l corresponding to the input bits

of x ′. This way P1 only learns the wire keys necessary to evaluate the circuit with one input
value x ′ and P2 learns nothing about x ′.

22

4 Homomorphic Encryption-based Private Function Evaluation

P1 is now able to evaluate the garbled tables and determine the wire keys of the output wires
of the circuit representing the output bits of the function f encoded by the circuit C f . As
noted in Section 2.1.2, we assume the gates of the circuit to be in topological order. This
guarantees that the outgoing wire keys of two gates G j and Gk connected to the two incoming
wires of a gate Gi will be evaluated before the evaluation of gate Gi. Therefore, we can
assume their availability during the evaluation of gate Gi. For the first gates which input
wires are not connected to another gate but an input wire of the circuit, these wire keys are
also available since they have been send in the last step by party P2.

In order to evaluate gate Gi, P1 has to reconstruct the keys used to encrypt one entry
of the garbled table. Starting with the first gate in topological order, P1 uses the keys
s j ∈ {s0

j , s1
j } and sk ∈ {s0

k , s1
k} and the blinding values ai , bi , a′i , b′i for gate Gi to calculate

Li = ai ∗ s j + bi and Ri = a′i ∗ sk + b′i . P1 is now able to decrypt the garbled gate GGi to learn
su+i = decYao(Li , Ri ,GGi) (the wire key of the outgoing wire of gate Gi) and continue with
the next gate in topological order. Once all gates have been evaluated, P1 has obtained the
wire keys sN−o+1, . . . , sN of the output wires.

Phase (iii) of the protocol, output determination, can now be done in the same way as in
Yao’s garbled circuit protocol. Since P1 holds the private function that is being evaluated, P1
could however just define f as f (x , x ′) = x and potentially learns P2’s input value x which
violates the security assumptions of the PFE protocol. Therefore, the output of the circuit
should be determined by party P2 which has no influence on the choice of f . Hence, P1 sends
the wire keys of the output wires to P2. When comparing the individual output wire keys to
the wire key pairs for these wires generated in the first step of the protocol, P2 learns the
output bits of the circuit C f and thereby the output of the function f .

4.2 Improved Version of the KM11 Protocol

Katz and Malka describe a more efficient variant of their protocol in their paper that is inspired
by the Free XOR technique of Kolesnikov and Schneider [KS08b]. We summarize the more
efficient variant in Figure 4.4.

Instead of the g + u wire key pairs, P2 only chooses g + u single wire keys s0
1, ..., s0

g+u and,
similar to the free XOR technique [KS08b], defines a global random shift r of the same size as
the wire keys. P2 then sets s1

i = s0
i + r for i ∈ {1, . . . , g + u} and sends those wire keys under

encryption using a homomorphic encryption scheme to P1:

Enc(s0
1), . . . , Enc(s0

g+u−o). (4.5)

Creation of the encrypted garbled gates is then done as follows: P1 creates two random
blinding values, bi and b′i , for each gate Gi . Say the outgoing wires j and k are connected to

23

4 Homomorphic Encryption-based Private Function Evaluation

P1 (holds C f) P2 (holds input x ∈ {0, 1}l)

bi , b′i ←$ {0, 1}σ (pk, sk)←$KGen(1n)

(s0
i)←$ {0,1}σ ∀i ∈ {1, ..., N}

where σ = 128 is our symmetric

security parameter

r ←$ {0,1}σ

pk,∀i : Enc(s0
i)

∀i ∈ {1, ..., g} :

create encrypted garbled

gate encGG i

Enc(s0
j + bi), Enc(s0

k + b′i)

compute garbled table GG i

L0
i = Dec(Enc(s0

j + bi)

L1
i = L0

i + r

R0
i = Dec(Enc(s0

k + b′i)

R1
i = R0

i + r

GARBLED TABLE GG i

(entries in random order)
sEncL0

i
(sEncR0

i
(s1

u+i))
sEncL0

i
(sEncR1

i
(s1

u+i))
sEncL1

i
(sEncR0

i
(s1

u+i))
sEncL1

i
(sEncR1

i
(s0

u+i))

GG i , sx1
1 , . . . , sx1

l

Li = s j + bi

Ri = sk + b′i
su+i = decYao(Li , Ri , GGi)

once all output wires have

been determined:
sN−o+1, . . . , sN

compare sN−o+1, . . . , sN to

[s0
N−o+1, s1

N−o+1], . . . , [s0
N , s1

N]
to receive the output bits

Figure 4.4: The [KM11] protocol (improved version)

24

4 Homomorphic Encryption-based Private Function Evaluation

the incoming wires of gate Gi (as depicted in Figure 4.1), then P1 constructs the encrypted
garbled gate encGGi as

encGGi =

�

Enc(s0
j + bi)

Enc(s0
k + b′i)

�

(4.6)

by making use of the additively homomorphic property of the homomorphic encryption
scheme. After the creation of the encrypted garbled gates, P1 sends encGG1, . . . ,encGGg+u
to P2.

P2 is now able to decrypt the encrypted garbled gates and receives L0
i = s0

j +bi and R0
i = s0

k+b′i
without learning bi and b′i . Particularly, P2 cannot distinguish the L0

i and R0
i from a random

bit string and therefore does not learn anything about the wiring of the circuit. P2 obtains the
blinded versions of the wire keys s1

j and s1
k by defining L1

i = L0
i + r and R1

i = R0
i + r. It can

now create the garbled gate GGi using the blinded wire keys L0
i , L1

i , R0
i , R1

i and the outgoing
wires s0

u+i and s1
u+i of gate Gi .

The protocol continues as in the standard version. After receiving the garbled gates, P1
uses the wire keys s j ∈ {s0

j , s1
j } and sk ∈ {s0

k , s1
k} and the blinding values bi , b′i for gate Gi to

calculate Li = s j + bi and Ri = sk + b′i . P1 can now decrypt the garbled gate GGi to learn
su+i = decYao(Li , Ri ,GGi).

The authors of [KM11] theoretically analyze that this improved version of the protocol is
roughly twice as efficient as the original protocol. Our practical performance evaluation in
Section 6.1 substantiates this claim.

4.3 Further Optimizations of [KM11]

In this section, we introduce two further optimizations to the [KM11] protocol, one that shifts
computational effort from the online phase to an offline phase (Section 4.3.1) and one that
describes the application of pipelining techniques to the [KM11] protocol. Together with the
BFV-specific improvements introduced in section 4.5, we thereby achieve the best practical
computational performance for a PFE protocol starting from ca. 100 000 gates.

4.3.1 Precomputation of the EncryptedWire Keys

We observe that the creation of the encrypted wire keys Enc(s0
i), where 1 ≤ i ≤ N , by party

P2 can be done in an offline phase before the start of the protocol. The protocol has no
special requirement for the construction of the wire keys except that they should be sampled
randomly. In particular, no wire key depends on the inputs x to the PFE protocol nor on
the circuit C f that is being evaluated. Since encryption is a relatively expensive operation,
this drastically reduces the protocol runtime (see Section 6.1). Also, the encryption of the

25

4 Homomorphic Encryption-based Private Function Evaluation

wire keys is done only by the party generating the public/private key pair and therefore no
communication needs to take place before precomputation of the encrypted wire keys.

Also, the blinding values bi , b′i , where 1 ≤ i ≤ g, generated by party P1 can be prepared
before the actual protocol run begins. Since the blinding values for the encrypted garbled
gates need to be encrypted before they can be applied to the wire keys, these encrypted
values can also be precomputed beforehand. Here, it is necessary to exchange the public key
of the underlying homomorphic encryption scheme first. As with the wire keys, the blinding
values do not depend on the inputs x nor the circuit C f used in the PFE protocol. We argue
that the exchange of a public key prior to the protocol run is a feasible practice and divide
the protocol in an offline phase where the wire keys and the blinding values are encrypted
and an online phase where the encrypted wire keys are sent to P1 and the other steps of the
protocol are executed.

4.3.2 GC Pipelining

While in UC-based PFE the universal circuit is known to both parties before the start of the
protocol and can therefore be garbled in an offline phase, in [KM11] the garbling depends on
the private circuit C f only known by P1. Thus, pipelining in the online phase gives benefits
here: Decryption of the encrypted garbled gates is the most expensive operation in the online
phase of the protocol. Since they are created and evaluated in the same (topological) order,
P1 can send each encrypted garbled gate directly when it has been created and P2 can start
decryption for this gate without delay. After receiving the encrypted garbled gate for gate i,
P2 has all the information it needs to create the garbled table for gate i. In our experiments,
we saw that pipelining reduces the runtime in the online phase by about 25%.

4.4 Instantiating [KM11] with EC ElGamal

Katz and Malka suggest to use standard ElGamal encryption to instantiate their protocol.
We implemented the protocol using elliptic curve ElGamal instead for performance reasons.
Since the only requirement for the choice of the wire keys in the [KM11] protocol is indistin-
guishability, we can choose random points equally distributed on the elliptic curve as plaintext
values and do not need to define a mapping from arbitrary-formed values (i.e arbitrary bit
strings) to elements on the elliptic curve and vice versa. In our implementation, this is done
by multiplying a randomly chosen scalar value k with the base point P on the elliptic curve.
Since P1 needs to apply the blinding value to the plaintext wire keys when determining the
symmetric encryption keys of the garbled tables, we also choose the blinding value as a point
on the elliptic curve and perform the addition of a wire key and the blinding value using the
ECC arithmetic over the Galois field.

In the following, we denote integers by lowercase letters and points on the elliptic curve
by capital letters. The equivalent of choosing a random element of the residue field as the

26

4 Homomorphic Encryption-based Private Function Evaluation

private key in standard ElGamal encryption is choosing a random integer a from the Galois
field GF(p) as the private key in the elliptic curve version. The public key A is then computed
as A= a ∗ P where P is the base point of the elliptic curve.

Analogous to standard ElGamal, we define encryption of a message M , where M is a point
on the elliptic curve, as follows:

Enc(M) = (K , C) = (k ∗ P, k ∗ A+M). (4.7)

Decryption of the ciphertext (C0, C1) can now be done as follows:

Dec(K , C) = C − a ∗ K

= k ∗ A+M − a ∗ k ∗ P

= k ∗ a ∗ P +M − a ∗ k ∗ P

= M .

(4.8)

Our elliptic curve variant of the ElGamal algorithm needs to provide the additively homomor-
phic property. Therefore we need to define a way to homomorphically add two ciphertexts
and verify that the decryption of the resulting ciphertext indeed represents the addition of
the underlying plaintexts. More formally, the cryptosystem is homomorphic if the encryption
and decryption functions and a binary operation ⊕ satisfy the equation:

Dec(Enc(M1)⊕ Enc(M2)) = M1 +M2. (4.9)

Since we only use points on the elliptic curve as our plaintext, addition of the two plaintexts M1
and M2 can simply be performed in the ECC arithmetic. We define the homomorphic addition
of two ciphertexts as

Enc(M1)⊕ Enc(M2) = (K1, C1)⊕ (K2, C2) = (K1 + K2, C1 + C2) (4.10)

and show that this satisfies Equation (4.9):

Dec(Enc(M1)⊕ Enc(M2)) = Dec((k1 ∗ P, k1 ∗ A+M1)⊕ (k2 ∗ P, k2 ∗ A+M2))

= Dec((k1 ∗ P + k2 ∗ P, k1 ∗ A+M1 + k2 ∗ A+M2))

= Dec((k1 + k2) ∗ P, (k1 + k2) ∗ A+M1 +M2))

= (k1 + k2) ∗ A+M1 +M2 − a ∗ (k1 + k2) ∗ P

= M1 +M2.

(4.11)

4.5 Instantiating [KM11] with BFV

In 2011, Katz and Malka [KM11] proposed a PFE scheme based on additively homomorphic
encryption, and suggested an instantiation based on the ElGamal cryptosystem [Elg85] or

27

4 Homomorphic Encryption-based Private Function Evaluation

the Paillier cryptosystem [Pai99], which were the most efficient HE schemes available then.
Since then, significant improvements have been made in the area of Ring-LWE (RLWE) based
homomorphic encryption, which substantially improved over Paillier and ElGamal for many
applications. Thus, we revise the protocol from [KM11] with an HE instantiation based on
these efficient Ring-LWE HE schemes. We specifically use the Brakerski/Fan-Vercauteren
scheme (cf. Section 2.3.1) as implemented in Microsoft’s SEAL library [Sea19] to instantiate
the [KM11] protocol.

In 2012, Fan and Vercauteren introduced this homomorphic encryption scheme [FV12], a
variant of Brakerski’s scale-invariant scheme [Bra12]. We will refer to the scheme as the
BFV scheme. While Brakerski’s scheme is based on the Learning With Errors (LWE) problem
[Reg05], Fan and Vercauteren ported the approach to the Ring-Learning With Errors (RLWE)
setting [LPR10].

In the BFV encryption scheme, the plaintext space is the polynomial quotient ring Rt =
Zt[x]/(xn + 1) of polynomials of degree less than n with coefficients reduced modulo t (see
Section 2.3.1). Plaintexts are encoded as polynomials of that ring. Ciphertexts are vectors of
at least two polynomials in Rq. Following the terminology of [Sea19], we refer to n as the
polynomial modulus degree, to t as the plaintext modulus and to q as the coefficient modulus.

We take the plaintext modulus as t = 2, which results in the smallest possible polynomial
modulus degree, and consequently ciphertext size in our scenario. The coefficient modulus q
is chosen as a product of primes q1 = 12289 and q2 = 1099510054913. q1 is the smallest
prime that is large enough to allow homomorphic blinding of the key values and satisfies
q1 ≡ 1 mod 2n. For function privacy, which is necessary to prevent P2 from learning the
permutation of the keys employed by P1, we flood the ciphertext with noise (cf. [Lai17],
Section 9.4) that is 40-bits larger than the noise of the output ciphertext, ensuring a statistical
security of 40-bits against P2. Thus, we require an additional 40-bits (in the form of q2) in
the coefficient modulus to contain the extra noise. Consequently, we choose n = 2048 as the
polynomial modulus degree, which is the smallest n that maintains a security of 128-bits for
a q of 54-bits (cf. [Lai17], Table 3).

4.5.1 Encoding of the Wire Keys

In our instantiation of the BFV scheme, each bit of the plaintext value is then encoded as one
coefficient of the polynomial. Our encoding is as follows: Say, we have a wire key v with a
binary representation of v = v127||v126|| . . . ||v0. We then define our plaintext polynomial as
v127 x127 + . . .+ v1 x + v0.

Our encoding is similar to the integer encoder provided by SEAL with integer base B = 2.
However, our implementation directly encodes plaintexts from a buffer instead of using
SEAL’s BigUInt class for performance reasons. Since we use a plaintext modulus of t = 2
and homomorphic addition is done coefficient-wise in the BFV scheme, addition becomes
equivalent to a homomorphic XOR operation.

28

4 Homomorphic Encryption-based Private Function Evaluation

Due to the special requirement that each wire key has to be utilized separately when creating
the encrypted garbled gates, CRT batching, as provided by SEAL, becomes inefficient for our
use case. Using batching, one can pack n integers modulo t into one plaintext polynomial
and apply SIMD (Single Instruction, Multiple Data) operations on those values. However this
would require us to select a much larger value for t. A multiplication operation (by a one-hot
encoded vector), that is needed to extract one wire key from the ciphertext containing n wire
keys, is less efficient than encrypting and decrypting a smaller ciphertext on its own. We
therefore decided against CRT batching.

4.5.2 Efficient Packing of the Ciphertexts

The encoding of the wire keys described in Section 4.5.1 uses exactly 128 coefficients of the
BFV ciphertext. Since the degree of the polynomial modulus (poly_modulus_degree) is set
to 2048, we only use 1

16 of the coefficients of each ciphertext. Even though we decided not to
use CRT batching, utilising the unused coefficients for packing additional 15 wire keys in a
ciphertext seems desirable in order to reduce the communication of the protocol by a factor
of 16.

There are two types of BFV ciphertexts transferred during one protocol run: First, the
encrypted wire keys are sent from P2 to P1, and second, the encrypted garbled gates are sent
back from P1 to P2 after blinding of the wire keys (see Figure 4.2). Both types have different
requirements to enable packing multiple wire keys into one ciphertext and in fact, packing is
only possible for the second type of ciphertexts. The two main challenges for packing are
(i) the combination of multiple wire keys into one ciphertext and (ii) the extraction of a single
wire key from the packed ciphertext containing multiple wire keys.

In the first case, where the wire keys are encrypted by P2 and sent to P1, party P1 need to
utilize the wire keys independently from another when creating the encrypted garbled gates.
Therefore, P1 needs to be able to split the wire keys, which are packed into one ciphertext,
upon receiving them. However, since P1 has no access to the secret key of the encryption
scheme, it cannot simply decrypt the ciphertexts to tell the wire keys apart. Unfortunately, it
is not possible for P1 to homomorphically (without access to the secret key) extract a subset
of coefficients of the underlying plaintext, and thus a wire key. To the best of our knowledge,
it is not possible to apply any operation other than decryption to a ciphertext in order to
extract only one of the wire keys from the ciphertext. Therefore, multiple wire keys can only
be packed in a response to P2 holding the secret key.

In the second case, we need to combine multiple encrypted wire keys into one ciphertext and
party P2, that has access to the secret key, needs to tell the wire keys apart. Traditionally, each
of the encrypted garbled gates consists of two ciphertexts, holding the blinded wire keys for
the two incoming wires of that gate. First, we describe a way to combine the encrypted wire
keys, Enc(s j) and Enc(sk), into one ciphertext Enc(s j||sk). All of the required operations to
do so have to be performed under homomorphic encryption. Since in the plaintexts, the wire
keys of length 128 bits are followed by 15× 128 coefficients set to zero, we can use these

29

4 Homomorphic Encryption-based Private Function Evaluation

coefficients to encode further wire keys. This can be achieved by applying a “homomorphic
(right) bit shift” of 128 bits (respectively coefficients) to one of the wire keys (by multiplying
a ciphertext by 2128) and adding both wire keys afterwards. Addition of two ciphertexts
is natively provided by the BFV scheme. The homomorphic bit shift can be achieved by
homomorphically multiplying a ciphertext by 2128.

In Figure 4.5, we illustrate packing with two wire keys of length 4 bits (for simplicity). All
operations are applied to plaintext values here. By homomorphically applying the same
operations to their equivalent ciphertexts, two wire keys are packed into a single ciphertext.

s j plain = 1011 0000 0000 0000 . . .

sk plain× 24 = 0000 0111 0000 0000 . . .

——————————–————————————

s j plain+ sk plain× 24 = 1011 0111 0000 0000 . . .

Figure 4.5: Packing of two wire keys into one ciphertext

We now have combined two wire keys for incoming wires s j , sk of gate Gi into one ciphertext.
These wire keys still have to be blinded to form the encrypted garbled gate encGGi. Since
both wire keys reside in one ciphertext, this can now be achieved by only one homomorphic
addition. Therefore, we concatenate the blinding values b j and bk and homomorphically add
them to Enc(s j||sk) to receive the encrypted garbled gate encGGi = Enc(s j||sk) + (b j||bk).

Since P2 is in charge of telling the wire keys apart, extraction of a single wire key can be
solved simply by decrypting the ciphertext and assign the first 128 bits to the first and the
next 128 bits to the second wire key.

Analogously, we can pack additional encrypted garbled gates into the same ciphertext and
thereby use all 2048 coefficients to pack 8 encrypted garbled gates. This can be done efficiently
using Horner’s method as described in [KSS13]. When packing the ith of the 8 garbled gates
into the ciphertext, we multiply (the ciphertexts of) the left and right incoming wire key by
2(2×i)×128 and 2(2×i+1)×128 and add them to the same ciphertext. Blinding of the wire keys
can now be applied for 16 wire keys in a single step by concatenating the 16 blinding values
and add them to the ciphertext in a single homomorphic addition.

Compared to not using this packing technique, we require the same number of homomorphic
additions (15 additions to pack the 16 wire keys + 1 addition for the combined blinding value
instead of one addition of a blinding value per wire key) and 15 multiplications by 2256, but
we also eliminated 15 decryptions since P2 only receives one ciphertext instead of 16. Since
for our instantiation of the BFV protocol, decryption is more expensive than homomorphic
scalar multiplication, this also improves computation.

30

4 Homomorphic Encryption-based Private Function Evaluation

4.5.3 Wire Key Generation using Seed Expansion

Since the wire keys are encrypted by the key owner P2, they could be symmetrically encrypted
using the secret key to have smaller noise from encryption. Additionally, symmetric encryption
also allows some savings in ciphertext size. In symmetric encryption, the second element
of the ciphertext is a uniformly random element from Rq. Using a pseudo-random function,
one could sample this element by expanding seed, which is sent to P1 in place of the second
element. This optimization halves the ciphertext size of the encrypted wire keys, which is
very significant given that communication in this step of the protocol is the major bottleneck
of the scheme.

While the BFV scheme supports encryption using the secret key, this is not implemented in
SEAL. We therefore give theoretical numbers of this optimization in Figure 6.1 and defer the
implementation to future work.

31

5 Implementation

We have implemented the optimized [KM11] protocol described in Section 4.1, instantiated
with different homomorphic encryption schemes using the ABY secure computation framework
[DSZ15]. We thereby not only extend the framework to the PFE setting but also provide, to
the best of our knowledge, the first implementation of a linear-complexity PFE scheme. Using
the ABY framework gives us direct comparability with the results from the efficient UC-based
PFE implementation from [AGKS19] that uses ABY to evaluate today’s most efficient universal
circuits for PFE with complexity Θ(n log n).

We give an introduction into the ABY framework in Section 5.1, explain insides about our
implementation in Section 5.2 and go into details of the implemented cryptosystems in
Sections 5.2.1 (DJN), Section 5.2.2 (EC ElGamal) and Section 5.2.3 (BFV).

5.1 The ABY Framework

To implement the PFE scheme described in Section 4 and conduct our performance measure-
ments, we use the ABY framework [DSZ15]. ABY combines secure computation schemes
based on Arithmetic sharing, Boolean sharing, and Yao sharing. The framework abstracts
from the underlying secure computation protocol and allows to efficiently convert between
the three types of sharings. ABY provides many important primitives, such as Yao’s garbled
circuit technique and oblivious transfer, required to implement the protocol by Katz and
Malka [KM11].

ABY is also able to evaluate universal circuits which gives us great comparability of the
performance measurements from Section 6 to highly optimized UC-based PFE approaches.

5.2 Implementation of KM11-PFE

Our implementation of the [KM11] protocol bases on the Yao sharing implementation in ABY
[DSZ15]. The framework defines two classes that implement Yao’s garbled circuit protocol
for the two participating parties, a server and a client. In ABY, the server acts as the circuit
garbler and the client acts as the circuit evaluator. In the [KM11] protocol, party P1 evaluates
the garbled tables and party P2 garbles the gates (see Figure 4.4). When adding the [KM11]-
specific hiding of the circuit topology before the creation and evaluation of the garbled tables

32

5 Implementation

as in Yao’s original protocol, it follows that party P1 holding the circuit C f becomes the client
that is able to evaluate the garbled tables by making use of the information about the circuit’s
topology it holds. Party P2 becomes the server that holds the private input x , creates the
random wire keys and garbles the circuit.

Throughout the implementation, we instantiate all primitives with 128 bit security, i.e. all
wire keys (and the blinding values) are of length σ = 128 bit and we use AES-128 in Cipher
Block Chaining (CBC) mode and choose the instantiation of the homomorphic encryption
algorithms accordingly (see below).

In order to meet the requirements for the additional overhead of the [KM11] protocol
compared to standard secure computation, several new methods have been introduced in the
implementation of the Yao sharing. The server and client part of the protocol reside in the
YaoServerSharing and YaoClientSharing classes located in src/abycore/sharing/.

In Listing 5.1, the added methods to the YaoServerSharing class are given. The creation
and encryption of the wire keys by P2 is done in the CreateEncryptedWireKeys method.
This can be done during an offline phase prior to the protocol run. A helper function
AddGlobalRandomShift is used by the DJN instantiation to add the global random shift r to
a wire key (e.g., required to calculate L1

i = L0
i + r) where the wire key is given as a pointer

to a block of memory. This method is not used by the BFV and ElGamal instantiation since
for BFV, the addition is equivalent to a simple XOR operation and for ElGamal encryption, the
operation is performed on point objects in the semantics of the elliptic curve. The last method,
added to the YaoServerSharing class is the EvaluateKM11Gate method which decrypts the
encrypted garbled gates and creates the garbled table for each gate (formalized by the encYao
method in Section 4).

The methods added to the YaoClientSharing class are given in Listing 5.2 and implement
the functionality of party P1. First, the blinding values are created using the CreateBlinding-
Values method. Precomputation (encryption) of the blinding values is done in the Pre-
computeBlindingValues method. In contrast to the YaoServerSharing class, were the
wire keys are created and encrypted in one method, there are two seperate methods in
the YaoClientSharing class since precomputation of the blinding values depends on the
availability of the public key of the chosen homomorphic cryptosystem. The creation of the
encrypted garbled gates based on the encrypted wire keys is done in method CreateEnc-
GarbledGates. The decryption of the garbled tables (formalized by the decYao method in
Section 4) using the blinded versions of the received respectively already decrypted wire keys
is handled by the EvaluateKM11Gate method.

Next to the methods added to the YaoClientSharing and YaoServerSharing implemen-
tation, the individual steps that form the whole protocol are put together in the Prepare-
SetupPhase and PerformSetupPhase methods of the client and server implementation. The
decryption of the garbled gates in the BFV instantiation, where one ciphertext contains sev-
eral encrypted garbled gates at once, is coordinated in the CreateAndSendGarbledCircuit

method and the transmission of the input wire keys of the client using oblivious transfer (OT)

33

5 Implementation

is done in the FinishCircuitLayer (server) and AssignClientInputKeys (client) meth-
ods.

Listing 5.1: New methods in the YaoServerSharing class

1 /**
2 Create the encrypted wire keys for each wire that will be
3 sent to the client (KM11)
4 **/
5 void CreateEncryptedWireKeys();
6 /**
7 Add global random shift r to a wire key buffer (KM11, only
8 used for DJN homomorphic encryption)
9 \param keyout buffer to which the shifted wire key will

10 be written
11 \param keyin buffer holding the wire key to be shifted
12 **/
13 void AddGlobalRandomShift(BYTE* keyout, BYTE* keyin);
14 /**
15 Method for evaluating a KM11 gate (all gate types) for the
16 given gateid. Decrypts the received encrypted garbled gate
17 and creates the garbled table for the gate to be sent to
18 the client.
19 \param gateid Gate Identifier
20 \param setup ABYSetup Object
21 **/
22 void EvaluateKM11Gate(uint32_t gateid, ABYSetup* setup);

Listing 5.2: New methods in the YaoClientSharing class

1 /**
2 Method for creating the blinding values used to blind the
3 encrypted wire keys when forming the encrypted garbled
4 gates (KM11)
5 **/
6 void CreateBlindingValues();
7 /**
8 Method for encrypting the blinding values to speedup the
9 creation of the encrypted garbled gates in the online

10 phase (KM11)
11 **/
12 void PrecomputeBlindingValues();
13 /**
14 Method for evaluating a KM11 gate for the given gateid.
15 This method decrypts the garbled table for the given gate
16 and assigns the resulting wirekey to the gates outkey
17 ("decYao" from KM11 paper).
18 \param gateid Gate Identifier
19 **/
20 void EvaluateKM11Gate(uint32_t gateid);

34

5 Implementation

21 /**
22 Method for creating all encrypted garbled gates that will
23 be sent to the server using homomorphic encryption (KM11)
24 \param setup ABYSetup Object
25 **/
26 void CreateEncGarbledGates(ABYSetup* setup);

Private function evaluation can be enabled and configured by uncommenting the according
C preprocessor macros in src/abycore/sharing/yaosharing.h, as shown in Listing 5.3.
When the KM11_GARBLING macro is defined, the [KM11] protocol is used to evaluate the circuit
defined in the usual way. One can select the instantiation of the homomorphic cryptosystem
used to encrypt the wire keys and build the encrypted garbled gates by setting one of the
three available values for the KM11_CRYPTOSYSTEM macro. For DJN (Paillier) encryption, it
is possible to choose between the original, non-improved variant of the [KM11] protocol or
the more efficient variant that creates only one wire key per outgoing wire and derives the
second wire key using the global random shift r. The latter is used when the KM11_IMPROVED

macro is enabled. This macro only has an effect when DJN encryption is used. For BFV and
EC ElGamal, only the more efficient variant is implemented. The same holds true for the
KM11_PRECOMPUTEB option. To improve the performance in the online phase, the encrypted
versions of the blinding values b and b′ are precomputed in the offline phase by party P1. This
can be disabled by uncommenting the definition of the KM11_PRECOMPUTEB macro for DJN
encryption only. Pipelining the sending of the encrypted garbled gates and the creation of
the garbled tables, as described in Section 4.3.2, can be enabled using the KM11_PIPELINING

macro.

Listing 5.3: YaoClientSharing class

1 // enable KM11 garbling (private function evaluation. Please
2 // note: In ABY, the client holds the circuit and the server
3 // acts as the garbler)
4 #define KM11_GARBLING
5

6 // choose between DJN/Paillier, RLWE-based (BFV) or ECC-based
7 // (EC ElGamal) encryption
8 #define KM11_CRYPTOSYSTEM_DJN 1
9 #define KM11_CRYPTOSYSTEM_BFV 2

10 #define KM11_CRYPTOSYSTEM_ECC 3
11 #define KM11_CRYPTOSYSTEM KM11_CRYPTOSYSTEM_DJN
12

13 // enable improved variant of KM11
14 // (see section 3.2 "A More Efficient Variant" in KM11 paper)
15 // With this optimization turned on, the wire key representing
16 // the value ’1’ is derived from the wire key representing ’0’
17 // using the global random shift r.
18 // BFV and ECC cryptosystems only implement the improved variant
19 // of KM11.
20 #define KM11_IMPROVED

35

5 Implementation

21

22 // enable precomputation (encryption) of blinding value b (this
23 // cannot be disabled for BFV and ECC cryptosystems)
24 #define KM11_PRECOMPUTEB
25

26 // enable pipelined sending of the encrypted garbled gates
27 #define KM11_PIPELINING

Debug information, such as intermediate values, can be shown by enabling the DEBUGYAO-
CLIENT and DEBUGYAOSERVER macros in yaoclientsharing.h and yaoserversharing.h

respectively.

5.2.1 Damgaard Jurik Nielsen Cryptosystem

In their paper Katz and Malka [KM11] suggest to use Paillier encryption [Pai99] to instantiate
their protocol. The first instantiation of the protocol therefore bases on a generalization
of the Paillier cryptosystem, the Damgaard Jurik Nielsen cryptosystem [DJN10]. The DJN
cryptosystem offers a fixed base encryption that improves performance over Paillier’s scheme
by a factor of 4.

5.2.2 Elliptic Curve ElGamal

For the Elliptic Curve-based instantiation of the [KM11] protocol, we make use of the Koblitz-
283 curve from the FIPS 186-2 standard [NIST00] already implemented in ABY. As we will
show later in Section 6.1, the elliptic curve ElGamal instantiation offers the lowest communi-
cation and improves in communication over the most efficient UC-based PFE implementation
[AGKS19] by a factor of ∼ 8. The elliptic curve arithmetic is implemented using the MIRACL
cryptographic library for elliptic curve cryptography. 1 The instantiation of the curve is shown
in Listing 5.4.

Listing 5.4: Initialization of the Koblitz-283 curve

1 // initialize MIRACL with Koblitz curve from FIPS 186-2 standard
2 fparams->m = 283;
3 fparams->a = 12;
4 fparams->b = 7;
5 fparams->c = 5;
6 *fparams->BA = 0;
7 *fparams->BB = 1;
8 ecurve2_init(fparams->m, fparams->a, fparams->b, fparams->c,
9 fparams->BA->getbig(), fparams->BB->getbig(), false, MR_BEST);

1https://github.com/miracl/MIRACL/

36

https://github.com/miracl/MIRACL/

5 Implementation

5.2.3 Brakerski/Fan-Vercauteren Cryptosystem

We instantiate the [KM11] protocol using the SEAL library [Sea19] with the parameters given
in Section 4.5, as shown in Listing 5.5.

Listing 5.5: Initialization of the context and key generation for the BFV scheme

1 const size_t m_nBFVpolyModulusDegree = 2048;
2 seal::SmallModulus m_nBFVplainModulus = seal::SmallModulus(2);
3 std::vector<seal::SmallModulus> m_nBFVCoeffModulus = {seal::SmallModulus(12289),

seal::SmallModulus(1099511590913)};
4

5 seal::EncryptionParameters parms(seal::scheme_type::BFV);
6 parms.set_poly_modulus_degree(m_nBFVpolyModulusDegree);
7 parms.set_plain_modulus(m_nBFVplainModulus);
8 parms.set_coeff_modulus(m_nBFVCoeffModulus);
9 m_nWirekeySEALcontext = seal::SEALContext::Create(parms);

10

11 seal::KeyGenerator keygen(m_nWirekeySEALcontext);
12 m_nWirekeySEALpublicKey = keygen.public_key();
13 m_nWirekeySEALsecretKey = keygen.secret_key();
14 m_nSEALdecryptor = new seal::Decryptor(m_nWirekeySEALcontext,

m_nWirekeySEALsecretKey);

One special feature of the BFV encryption scheme is that the public key is not needed for
the homomorphic addition of a cleartext value to an encrypted value. We therefore do not
transfer it in the first step of the protocol.

Since SEAL comes with a non-optimized binary encoding of the ciphertexts. We implemented
our own encoding and thereby reduce the size of the BFV ciphertexts by 75%. When looking
at the hex dump of a ciphertext produced by the SEAL library in Listing 5.6, one can see
a quite inefficient encoding of the elements from the ciphertext space for the specific BFV
parameters we chose.

Listing 5.6: Hex dump of a BFV ciphertext as produced by SEAL

1 35 05 00 00 00 00 00 00 dc 1e 00 00 00 00 00 00
2 f8 26 00 00 00 00 00 00 e6 1d 00 00 00 00 00 00
3 fd 0e 00 00 00 00 00 00 12 1c 00 00 00 00 00 00
4 67 24 00 00 00 00 00 00 7b 2a 00 00 00 00 00 00
5 c2 11 00 00 00 00 00 00 43 09 00 00 00 00 00 00
6 40 01 00 00 00 00 00 00 d3 1b 00 00 00 00 00 00
7 ff 2c 00 00 00 00 00 00 bb 1a 00 00 00 00 00 00
8 bd 1f 00 00 00 00 00 00 6b 13 00 00 00 00 00 00
9 ...

SEAL encodes each coefficient of the ciphertext polynomials as a 64bit value regardless of
the chosen coefficient modulus q. Since the coefficients are always values modulo q, a large

37

5 Implementation

portion of the allocated 64bit remain unused. We therefore implemented a more efficient
encoding that used only two byte per coefficient and thereby saves a lot of communication
overhead, as shown in Listing 5.7.

Listing 5.7: Hex dump of a BFV ciphertext as produced by our more efficient encoder

1 35 05 dc 1e f8 26 e6 1d fd 0e 12 1c 67 24 7b 2a
2 c2 11 43 09 40 01 d3 1b ff 2c bb 1a bd 1f 6b 13
3 ...

38

6 Performance Analysis

In this section, we compare our measurements for the different instantiations of the [KM11]
protocol and point out bottlenecks and advantages of the different instantiations. We also
compare the best previous UC-based PFE implementation of [AGKS19]. The results of our
performance tests show that linear-complexity PFE based on homomorphic encryption is on a
par with UC-based approaches, is able to outperform those protocols in either computation or
communication with acceptable impairment of performance in the other. Because UC-based
PFE approaches have touched lower bounds, linear-complexity PFE is a viable alternative
that has the potential to entirely supersede these schemes in the future.

We used two identical machines with a physical connection of 10 Gbit/s bandwidth and a
round-trip time of 1ms. We refer to this setting as the LAN setting and also did performance
tests in a simulated WAN setting with 100 Mbit/s bandwidth and a round-trip time of 100ms.
Each machine is equipped with an Intel Core i9-7960X CPU with 2.8 GHz and 128 GB RAM.
All measurements are averaged over 10 executions.

In the next section, we compare the homomorphic encryption-based instantiations to recent
UC-based PFE protocols. In Section 6.2, we give the total runtime and communication split
up by the different phases of the protocol. In Section 6.3, we give concrete numbers for our
measurements.

6.1 Comparison of PFE Implementations

In Figure 6.1, we depict the communication of the protocols measured during our practical
performance evaluation. In Figure 6.2 and Figure 6.3, we depict the runtime of our imple-
mentation compared to the most recent PFE implementation based on UCs from [AGKS19].
Alhassan et al. [AGKS19] evaluated their universal circuit constructions using the same
implementation of Yao’s garbled circuit protocol as we do. We denote the total runtime by
“total” and our total runtime excluding the generation of the wire keys (which can be out-
sourced to a local offline phase which requires no interaction, see Section 4.3.1) by “online”.
For completeness, we give concrete numbers for our measurements in Section 6.3. If not
stated otherwise, we give relative numbers comparing the different settings for n = 1 000 000
gates.

39

6 Performance Analysis

Communication. Our measurement results for communication of the different PFE proto-
cols are depicted in Figure 6.1. The elliptic curve ElGamal instantiation clearly outperformes
all other implementations, including the well-researched UC-based approaches and thereby
offers the best PFE scheme in terms of communication complexity known so far. Its commu-
nicational overhead is lower than UC-based PFE by a factor of ∼ 8.8×. EC ElGamal-based
PFE becomes a valid choice when communicational efficiency is of greater importance than
runtime (which is behind UC-based PFE by a factor of ∼ 2.3× in the WAN setting).

10
2

10
3

10
4

10
5

10
6

10−3

10−2

10−1

100

101

102

103

104

Input circuit size n

C
om

m
un

ic
at

io
n

(M
B

)

UC [AGKS19]
DJN
EC ElGamal
BFV
BFV Symmetric (not implemented)

Figure 6.1: Total communication of private function evaluation protocols in megabytes.

We observe that DJN-based PFE communication complexity is on a par with UC-based ap-
proaches. Due to its large ciphertext size, BFV-based encryption has worst communication of
our instantiations but its communication still is only higher than PFE with universal circuits
by a factor of about 2.5×. Its communication could be improved to rank behind UC-based
PFE by only a factor of about 1.4× when making use of symmetric encryption, as described in
Section 4.5.3. We estimate the expected communication when using symmetric encryption in
combination with our PRF optimization. These numbers are estimated based on our practical
measurements and are depicted by a dashed line.

LAN runtimes. The practical performance analysis in the LAN setting in Figure 6.2 shows
BFV-based private function evaluation leads to outstanding runtime measurements and offers
better practical performance than state-of-the-art UC-based PFE starting from n= 100000
gates. Elliptic curve ElGamal encryption also offers promising runtime even if through is
less efficient than BFV-instantiated PFE by a factor of ∼ 12.8× (online runtime) respectively

40

6 Performance Analysis

∼ 3.9× (total runtime) for n = 1000000 gates. With about 70 minutes of runtime for
n= 100000 gates, DJN-instantiated PFE has impracticable computational overhead.

10
2

10
3

10
4

10
5

10
6

10−2

10−1

100

101

102

103

104

Input circuit size n

To
ta

lr
un

ti
m

e
(s

)

UC [AGKS19]
DJN total
DJN online
EC ElGamal total
EC ElGamal online
BFV total
BFV online

Figure 6.2: Total runtime in seconds of PFE protocols in the LAN setting.

WAN runtimes. In the WAN setting, depicted in Figure 6.3, DJN-based private function
evaluation has a very similar runtime and therefore is not practical either (the runtime of
DJN-based PFE differs by less than 1% between the LAN and WAN setting). The fact that
runtimes are on a very similar level as in the LAN setting shows that the performance of the
DJN instantiation is primarily dominated by computation rather than communication. This
is also the case for the ECC-based implementation where runtime only differs by about 1%
compared to the LAN setting, too. However, elliptic curve ElGamal encryption still offers
feasible computational performance and thereby nearly outperforms BFV-based PFE. Its
runtime is longer than that of UC-based approaches only by a factor of ∼ 2.3×, which is
noticeable due to its lowest communication.

The BFV-based instantiation is faster than the ECC approach by about 6% only in the WAN
setting. This is remarkable considering its faster runtime by a factor of ∼ 12.8× in the LAN
setting compared to the EC ElGamal instantiation. These findings show that communication
complexity becomes an important factor in this setting. Here, the computational advances of
BFV cannot compensate its larger ciphertext sizes any more.

Even in this more realistic setting for real-world applications, both the BFV-based instantiation
and the one using elliptic curve ElGamal, nearly achieve the performance of UC-based PFE

41

6 Performance Analysis

10
2

10
3

10
4

10
5

10
6

100

101

102

103

104

Input circuit size n

To
ta

lr
un

ti
m

e
(s

)

UC [AGKS19]
DJN total
DJN online
EC ElGamal total
EC ElGamal online
BFV total
BFV online

Figure 6.3: Total runtime in seconds of PFE protocols in the WAN setting.

(performance of HE-based PFE is worse than recent UC-based approaches by about a factor
of 2 only). While PFE based on homomorphic encryption was believed to be way less efficient
than UC-based approaches, we show that this is no longer the case.

Summary. To summarize, we notice that while providing better communication than recent
UC-based approaches, DJN-based homomorphic encryption has very high runtime due to its
high computation overhead. When precomputation of the encrypted wire keys is shifted to
an offline phase, a BFV-based instantiation of the [KM11] protocol outperforms UC-based
approaches for circuits of size about n≥ 100000 gates and has acceptable communication.
EC ElGamal-based PFE has extremely small communication overhead and a decent compu-
tation overhead. The results of our evaluation also support the claim that homomorphic
encryption-based PFE leads to linear-complexity in terms of computation and communication
in practice.

6.2 Performance Split by the Different Protocol Phases

In Figure 6.4, we depict the total runtime in the LAN setting split up by the different phases
of the protocol and the total communication split up by the different types of data transferred
during one protocol run for the EC ElGamal, DJN, and BFV scheme. Since DJN-based PFE has

42

6 Performance Analysis

EC
El

Gam
al

DJN
*

BFV
0

50

100

150

To
ta

lr
un

ti
m

e
(s

)

precomputation
create encGG
decrypt encGG & create GT
other

EC
El

-

Gam
al DJN BFV BFV

Sy
mmetr

ic
0

200

400

600

800

C
om

m
un

ic
at

io
n

(M
B

)

encrypted wire keys
encGG
garbled circuit
other

Figure 6.4: Runtime in the LAN setting split up by the different phases of the protocol and
total communication split up by the different types of data transferred during
one protocol run for the EC ElGamal, DJN, and BFV scheme for n = 100000
gates each - with the exception that runtime for the DJN-based instantiation is
given for n= 1000 gates only due to its infeasible runtime

extremely high runtime, we depict it for n= 1000 gates only. Runtimes for the DJN-based
instantiation therefore cannot be compared to other schemes in this graph. Here, the protocol
is executed without pipelining to tell the computation of the creation of the encrypted garbled
gates by party P1 and their decryption by party P2 apart.

One can see that both for computation and communication, the first step of encrypting the
encrypted garbled gates, that can be shifted to an offline phase, makes up the most costly part
of the protocol, except for the EC ElGamal-based instantiation where the decryption of the
encrypted garbled gates (decryption operation of the cryptosystem) plays a more important
role. The inefficiency of the decryption operation in the EC ElGamal cryptosystem is the main
drawback of this scheme and is the main reason for its unfavorable runtime. In contrast to
other cryptosystems, the size of the encrypted wire keys is less than the size of the encrypted
garbled gates and the garbled tables for EC ElGamal encryption.

In the BFV setting, one could improve the most expensive operation of creating and sending
the encrypted wire keys by using the secret key encryption described in Section 4.5.3.

43

6 Performance Analysis

6.3 Concrete Performance Measures of our Implementation

In Table 6.1 we provide the concrete performance measures (averaged over 10 executions)
used for depicting the runtime and communication in Figure 6.2, Figure 6.3 and Figure 6.1.

Input circuit size n 100 1 000 10 000 100 000 1 000 000

UC LAN [AGKS19] (s) 0.01 0.08 0.48 6.63 78.73

UC WAN [AGKS19] (s) 0.32 0.75 2.81 29.49 354.32
KM11-DJN [KM11] LAN total (s) 7.65 46.11 430.18 4305.31 -
KM11-DJN [KM11] LAN online (s) 4.70 30.73 297.90 2939.66 -
KM11-DJN [KM11] WAN total (s) 8.47 48.42 431.14 4222.15 -
KM11-DJN [KM11] WAN online (s) 5.48 33.59 298.66 2933.36 -

KM11-ECC (this work) LAN total (s) 0.56 2.16 16.90 186.84 1630.44
KM11-ECC (this work) LAN online (s) 0.42 1.32 8.96 85.80 787.45
KM11-ECC (this work) WAN total (s) 0.94 2.66 17.46 163.67 1614.78
KM11-ECC (this work) WAN online (s) 0.74 1.82 9.56 85.45 832.13

KM11-BFV (this work) LAN total (s) 0.10 0.50 4.29 41.77 416.23
KM11-BFV (this work) LAN online (s) 0.03 0.10 0.74 6.69 65.57
KM11-BFV (this work) WAN total (s) 1.28 2.66 13.16 116.98 1136.99
KM11-BFV (this work) WAN online (s) 1.17 2.21 9.54 81.80 786.41

UC comm. [AGKS19] (MB) 0.09 1.51 21.79 287.51 3562.21
KM11-DJN [KM11] comm. (MB) 0.50 2.63 24.06 238.52 -
KM11-ECC (this work) comm. (MB) 0.06 0.43 4.05 40.35 403.42
KM11-BFV (this work) comm. (MB) 1.72 9.76 90.44 897.89 8973.81
KM11-BFV Sym. (this work) comm. (MB) 0.97 5.51 51.07 507.02 5067.32

Table 6.1: Runtime and communication of PFE with UC and HE

44

7 Conclusion and Future Work

7.1 Conclusion

By introducing several improvements both on the protocol level and the concrete instantiation
of the [KM11] protocol, we achieve highly efficient linear-complexity private function evalua-
tion that can compete with the most efficient PFE protocols which are based on universal
circuits. In the last years, a lot of effort has been put into researching RLWE-based encryption
schemes and enormous progress has been made in this field. Our practical performance
measurements show that HE-based PFE is practical with the latest improvements in the field
of ECC and RLWE-based homomorphic encryption. Our BFV instantiation outperforms recent
UC-based PFE schemes in runtime. When instantiated with elliptic curve ElGamal encryption,
our implementation outperforms UC-based schemes in communication.

Linear-complexity private function evaluation based on homomorphic encryption is heavily
dependent on the performance of the chosen cryptosystem and its implementation. The
performance of the decryption and homomorphic addition operation is of key importance
for the online runtime of the protocol since encryption can be shifted to an offline phase
and therefore is not as much performance-critical as the other operations are. Also, the size
of the ciphertexts of the homomorphic encryption scheme is a key factor when it comes to
practical applicability of the protocol instantiation, especially in environments where the
network bandwidth is limited.

When precomputation and pipelining techniques are applied, the BFV instantiation outper-
forms recent UC-based PFE schemes starting from circuits of size ca. n = 100000 gates
on.

In contrast to BFV encryption, elliptic curve ElGamal encryption offers extremely small cipher-
text sizes. When instantiated with elliptic curve ElGamal encryption, our implementation
outperforms UC-based schemes for all circuit sizes in communication and thereby achieves the
lowest communication of all PFE protocols known to date. At the same time, computational
complexity stays on an acceptable level and competes with latest UC-based approaches.

The results of our evaluation also support the claim that homomorphic encryption-based PFE
leads to linear-complexity in terms of computation and communication not only in theory,
but also in practice. The assumption that PFE based on homomorphic encryption is way less
efficient than UC-based approaches clearly does not hold true any more.

45

7 Conclusion and Future Work

7.2 Future Work

This thesis has shown that HE-based PFE is practical when instantiated with modern homo-
morphic encryption schemes. The findings of this thesis motivate for further research in the
field of HE-based private function evaluation.

7.2.1 Implementation of Variants of the Protocol

Due to time constraints, we left the implementation of further variants of the protocol for
future work. Implementing the symmetric encryption of the BFV scheme (see Section 4.5.3) to
reduce the communication in the BFV instantiation of the protocol and instantiating the PFE
protocol with the homomorphic DGK encryption scheme [DGK07; DGK08] and other ECC-
based schemes could outperform UC-based PFE not only in either runtime or communication
but in both.

7.2.2 Parallelization

The [KM11] protocol is very suitable for parallelization techniques, e.g., the creation of the
encrypted wire keys (by P2) in the first step of the protocol could be perfectly optimized
by massive parallelization. Also, the creation of the encrypted garbled gates (by P1) is
perfectly parallelizable since there are no dependencies between the encrypted garbled
gates. Additionally, the decryption of the encrypted garbled gates and the creation of the
garbled tables (by P2) could also be parallelized. Only the evaluation of the garbled tables
depends on the wire keys retrieved from previous garbled tables and therefore is not fully
suitable for parallelization. Implementing these parallelization techniques to speed up the
implementation of the protocol was out of scope of this work and would be an interesting
direction for further research. Parallelization could lead to lower runtime than UC-based
PFE for BFV-based and EC ElGamal-based instantiations of our protocol even in the WAN
setting. Especially for the EC ElGamal-based instantiation, parallelization could lead to a
huge performance increase. We remember from Section 6.1 that for EC ElGamal-based PFE
computation is much more performance-critical than its (small) communication overhead.

46

List of Figures

2.1 (a) An example Boolean circuit C f with g = 4 gates G1, ..., G4, u = 5 in-
put wires ow0, ..., ow4, o = 2 output wires ow7, ow8, g + u = 9 outgoing
wires ow0, ..., ow8, and 2g = 8 incoming wires iw0, ..., iw7. (b) Mapping π
representing the wiring of the circuit C f . 5

2.2 A simple 1-out-of-2 oblivious transfer . 10
2.3 Example XOR gate Gi connected to the input wires w j and wk and its assigned

wire keys . 12
2.4 Creation of a garbled XOR gate . 13

3.1 A switching network implementing an extended permutation 18

4.1 A single gate with two incoming wires and one outgoing wire 20
4.2 The [KM11] protocol (original, non-improved version) 21
4.3 Creation of a garbled table in [KM11] . 22
4.4 The [KM11] protocol (improved version) . 24
4.5 Packing of two wire keys into one ciphertext 30

6.1 Total communication of private function evaluation protocols in megabytes. 40
6.2 Total runtime in seconds of PFE protocols in the LAN setting. 41
6.3 Total runtime in seconds of PFE protocols in the WAN setting. 42
6.4 Runtime in the LAN setting split up by the different phases of the protocol and

total communication split up by the different types of data transferred during
one protocol run for the EC ElGamal, DJN, and BFV scheme for n = 100 000
gates each - with the exception that runtime for the DJN-based instantiation
is given for n= 1000 gates only due to its infeasible runtime 43

47

List of Tables

6.1 Runtime and communication of PFE with UC and HE 44

48

List of Abbreviations

SMPC Secure Multi-Party Computation

MPC Multi-Party Computation

SFE Secure Function Evaluation

PFE Private Function Evaluation

CTH Circuit Topology Hiding

PGE Private Gate Evaluation

PF-SFE Private Function Secure Function Evaluation

UC Universal Circuit

LWE Learning With Errors

RLWE Ring-Learning With Errors

HE Homomorphic Encryption

BFV Brakerski/Fan-Vercauteren Homomorphic Encryption

ECC Elliptic Curve Cryptography

ECDLP Elliptic Curve Discrete Logarithm Problem

DLP Discrete Logarithm Problem

ABY Arithmetic, Boolean, and Yao sharing framework

DJN Damgaard Jurik Nielsen cryptosystem

OT Oblivious Transfer

49

Bibliography

[AF90] M. ABADI, J. FEIGENBAUM. “Secure Circuit Evaluation”. In: J. Cryptology 2.1
(1990), pp. 1–12.

[AGKS19] M. Y. ALHASSAN, D. GÜNTHER, Á. KISS, T. SCHNEIDER. “Efficient and Scalable
Universal Circuits.” In: IACR Cryptology ePrint Archive 2019/348 (2019).

[ALSZ13] G. ASHAROV, Y. LINDELL, T. SCHNEIDER, M. ZOHNER. “More Efficient Oblivious
Transfer and Extensions for Faster Secure Computation”. In: 20. ACM Con-
ference on Computer and Communications Security (CCS’13). Full version: https:
//ia.cr/2013/552. Code: https://encrypto.de/code/OTExtension. ACM,
2013, pp. 535–548.

[Att14] N. ATTRAPADUNG. “Fully Secure and Succinct Attribute Based Encryption
for Circuits from Multi-linear Maps”. Cryptology ePrint Archive, Report
2014/772. 2014.

[BBKL18a] O. BIÇER, M. A. BINGÖL, M. S. KIRAZ, A. LEVI. “Highly Efficient and Reusable
Private Function Evaluation with Linear Complexity”. Cryptology ePrint
Archive, Report 2018/515. https://eprint.iacr.org/2018/515. 2018.

[BBKL18b] M. A. BINGÖL, O. BIÇER, M. S. KIRAZ, A. LEVI. “An Efficient 2-Party Private
Function Evaluation Protocol Based on Half Gates”. In: The Computer Jour-
nal 62.4 (2018), pp. 598–613.

[BDK+18] N. BÜSCHER, D. DEMMLER, S. KATZENBEISSER, D. KRETZMER, T. SCHNEIDER.
“HyCC: Compilation of Hybrid Protocols for Practical Secure Computa-
tion”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. CCS’18. ACM, 2018, pp. 847–861.

[BGV12] Z. BRAKERSKI, C. GENTRY, V. VAIKUNTANATHAN. “(Leveled) fully homomorphic
encryption without bootstrapping”. In: Proceedings of the 3rd Innovations in
Theoretical Computer ScienceConference. 2012.

[BHKR13] M. BELLARE, V. T. HOANG, S. KEELVEEDHI, P. ROGAWAY. “Efficient Garbling from
a Fixed-Key Blockcipher”. In: 2013 IEEE Symposium on Security and Privacy.
2013, pp. 478–492.

[BHR12] M. BELLARE, V. T. HOANG, P. ROGAWAY. “Foundations of Garbled Circuits”.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security. CCS’12. ACM, 2012, pp. 784–796.

50

https://ia.cr/2013/552
https://ia.cr/2013/552
https://encrypto.de/code/OTExtension
https://eprint.iacr.org/2018/515

Bibliography

[BHWK16] N. BÜSCHER, A. HOLZER, A. WEBER, S. KATZENBEISSER. “Compiling Low Depth
Circuits for Practical Secure Computation”. In: Computer Security – ESORICS
2016. 2016, pp. 80–98.

[BMR90] D. BEAVER, S. MICALI, P. ROGAWAY. “The Round Complexity of Secure Proto-
cols”. In: Proceedings of the Twenty-second Annual ACM Symposium on Theory
of Computing. STOC’90. ACM, 1990, pp. 503–513.

[Bra12] Z. BRAKERSKI. “Fully Homomorphic Encryption without Modulus Switching
from Classical GapSVP”. In: Advances in Cryptology – CRYPTO 2012. 2012,
pp. 868–886.

[DDK+15] D. DEMMLER, G. DESSOUKY, F. KOUSHANFAR, A.-R. SADEGHI, T. SCHNEIDER,
S. ZEITOUNI. “Automated Synthesis of Optimized Circuits for Secure Com-
putation”. In: Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security. CCS’15. ACM, 2015, pp. 1504–1517.

[DGK07] I. DAMGÅRD, M. GEISLER, M. KRØIGAARD. “Efficient and Secure Comparison
for On-Line Auctions”. In: Information Security and Privacy. 2007, pp. 416–
430.

[DGK08] I. DAMGÅRD, M. GEISLER, M. KRØIGAARD. “A correction to “Efficient and Se-
cure Comparison for On-Line Auctions””. Cryptology ePrint Archive, Report
2008/321. 2008.

[DJN10] I. DAMGÅRD, M. JURIK, J. B. NIELSEN. “A generalization of Paillier’s public-
key system with applications to electronic voting”. In: International Journal
of Information Security 9.6 (2010), pp. 371–385.

[DPSZ12] I. DAMGÅRD, V. PASTRO, N. SMART, S. ZAKARIAS. “Multiparty Computation
from Somewhat Homomorphic Encryption”. In: Advances in Cryptology –
CRYPTO 2012. 2012, pp. 643–662.

[DSZ15] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “ABY – A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation”. In: NDSS’15. Code: https:
//encrypto.de/code/ABY. The Internet Society, 2015.

[Elg85] T. ELGAMAL. “A public key cryptosystem and a signature scheme based on
discrete logarithms”. In: IEEE Transactions on Information Theory 31.4 (1985),
pp. 469–472.

[FAL06] K. B. FRIKKEN, M. J. ATALLAH, J. LI. “Attribute-Based Access Control with
Hidden Policies and Hidden Credentials”. In: IEEE Transactions on Computers
55.10 (2006), pp. 1259–1270.

[FAZ05] K. B. FRIKKEN, M. J. ATALLAH, C. ZHANG. “Privacy-preserving credit checking”.
In: Electronic Commerce (EC’05). 2005, pp. 147–154.

[FGP14] D. FIORE, R. GENNARO, V. PASTRO. “Efficiently Verifiable Computation on
Encrypted Data”. In: CCS’15. 2014, pp. 844–855.

51

https://encrypto.de/code/ABY
https://encrypto.de/code/ABY

Bibliography

[FLA06] K. B. FRIKKEN, J. LI, M. J. ATALLAH. “Trust Negotiation with Hidden Creden-
tials, Hidden Policies, and Policy Cycles”. In: NDSS’06. The Internet Society,
2006, pp. 157–172.

[FV12] J. FAN, F. VERCAUTEREN. “Somewhat Practical Fully Homomorphic Encryp-
tion.” In: IACR Cryptology ePrint Archive 2012/144 (2012).

[Gen09] C. GENTRY. “A fully homomorphic encryption scheme”. PhD thesis. Stanford
University, 2009.

[GGHZ14] S. GARG, C. GENTRY, S. HALEVI, M. ZHANDRY. “Fully Secure Attribute Based
Encryption from Multilinear Maps”. Cryptology ePrint Archive, Report
2014/622. 2014.

[GGPR13] R. GENNARO, C. GENTRY, B. PARNO, M. RAYKOVA. “Quadratic Span Programs
and Succinct NIZKs without PCPs”. In: EUROCRYPT’13. Vol. 7881. 2013,
pp. 626–645.

[GHV10] C. GENTRY, S. HALEVI, V. VAIKUNTANATHAN. “i-Hop Homomorphic Encryption
and Rerandomizable Yao Circuits”. In: CRYPTO’10. Vol. 6223. 2010, pp. 155–
172.

[GKS17] D. GÜNTHER, Á. KISS, T. SCHNEIDER. “More Efficient Universal Circuit Con-
structions”. In: 23. Advances in Cryptology – ASIACRYPT 2017. Vol. 10625.
LNCS. 2017, pp. 443–470.

[GKSS19] D. GÜNTHER, Á. KISS, L. SCHEIDEL, T. SCHNEIDER. “Framework for Semi-
Private Function Evaluation with Application to Secure Insurance Rate Cal-
culation”. 26. ACM Conference on Computer and Communications Security
(CCS’19) Posters/Demos. 2019.

[GMW87] O. GOLDREICH, S. MICALI, A. WIGDERSON. “How to Play ANY Mental Game”.
In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing.
STOC’87. ACM, 1987, pp. 218–229.

[Gol03] O. GOLDREICH. “Cryptography and Cryptographic Protocols”. In: Distrib.
Comput. 16.2-3 (2003), pp. 177–199.

[HFKV12] A. HOLZER, M. FRANZ, S. KATZENBEISSER, H. VEITH. “Secure Two-party Com-
putations in ANSI C”. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security. CCS’12. ACM, 2012, pp. 772–783.

[HKK+14] Y. HUANG, J. KATZ, V. KOLESNIKOV, R. KUMARESAN, A. J. MALOZEMOFF. “Amor-
tizing Garbled Circuits”. In: CRYPTO’14. Vol. 8617. LNCS. 2014, pp. 458–
475.

[IKNP03] Y. ISHAI, J. KILIAN, K. NISSIM, E. PETRANK. “Extending Oblivious Transfers
Efficiently”. In: Advances in Cryptology (CRYPTO’03). Vol. 2729. LNCS. 2003,
pp. 145–161.

[KM11] J. KATZ, L. MALKA. “Constant-Round Private Function Evaluation with Linear
Complexity”. In: Advances in Cryptology–ASIACRYPT 2011. 2011.

52

Bibliography

[Kob87] N. KOBLITZ. “Elliptic curve cryptosystems”. In: Mathematics of computation
48.177 (1987), pp. 203–209.

[KS08a] V. KOLESNIKOV, T. SCHNEIDER. “A Practical Universal Circuit Construction
and Secure Evaluation of Private Functions”. In: 12. International Conference
on Financial Cryptography and Data Security (FC’08). Vol. 5143. LNCS. Code:
https://encrypto.de/code/FairplayPF. 2008, pp. 83–97.

[KS08b] V. KOLESNIKOV, T. SCHNEIDER. “Improved garbled circuit: Free XOR gates
and applications”. In: International Colloquium on Automata, Languages, and
Programming. 2008, pp. 486–498.

[KS16] Á. KISS, T. SCHNEIDER. “Valiant’s Universal Circuit is Practical”. In: 35.
Advances in Cryptology – EUROCRYPT 2016. Vol. 9665. LNCS. Full version:
https://ia.cr/2016/093. Code: https://encrypto.de/code/UC. 2016,
pp. 699–728.

[KSS13] V. KOLESNIKOV, A.-R. SADEGHI, T. SCHNEIDER. “A Systematic Approach to
Practically Efficient General Two-Party Secure Function Evaluation Proto-
cols and their Modular Design”. In: Journal of Computer Security (JCS) 21.2
(2013), pp. 283–315.

[Lai17] K. LAINE. “Simple Encrypted Arithmetic Library 2.3.1”. In: Microsoft Research
(2017).

[LMS16] H. LIPMAA, P. MOHASSEL, S. S. SADEGHIAN. “Valiant’s Universal Circuit: Im-
provements, Implementation, and Applications.” In: IACR Cryptology ePrint
Archive 2016/17 (2016).

[LP09] Y. LINDELL, B. PINKAS. “A Proof of Security of Yao’s Protocol for Two-Party
Computation”. In: Journal of Cryptology 22 (2009), pp. 161–188.

[LPR10] V. LYUBASHEVSKY, C. PEIKERT, O. REGEV. “On Ideal Lattices and Learning
with Errors over Rings”. In: Advances in Cryptology – EUROCRYPT 2010. 2010,
pp. 1–23.

[LR15] Y. LINDELL, B. RIVA. “Blazing Fast 2PC in the Offline/Online Setting with
Security for Malicious Adversaries”. In: CCS’15. ACM, 2015, pp. 579–590.

[Mil86] V. S. MILLER. “Use of Elliptic Curves in Cryptography”. In: Advances in
Cryptology — CRYPTO ’85 Proceedings. 1986, pp. 417–426.

[MNPS04] D. MALKHI, N. NISAN, B. PINKAS, Y. SELLA. “Fairplay – A secure Two-Party
Computation System”. In: USENIX Security’04. USENIX, 2004, pp. 287–302.

[MR17] P. MOHASSEL, M. ROSULEK. “Non-interactive Secure 2PC in the Offline/On-
line and Batch Settings”. In: EUROCRYPT’17. Vol. 10212. LNCS. 2017,
pp. 425–455.

[MS13] P. MOHASSEL, S. SADEGHIAN. “How to hide circuits in MPC an efficient frame-
work for private function evaluation”. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques. 2013, pp. 557–574.

53

https://encrypto.de/code/FairplayPF
https://ia.cr/2016/093
https://encrypto.de/code/UC

Bibliography

[MSS14] P. MOHASSEL, S. SADEGHIAN, N. P. SMART. “Actively Secure Private Function
Evaluation”. In: Advances in Cryptology – ASIACRYPT 2014. 2014, pp. 486–505.

[NIST00] NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST). “Recommended
Elliptic Curves for Federal Government Use”. In: Digital Signature Standard
(DSS) (2000).

[NPS99] M. NAOR, B. PINKAS, R. SUMNER. “Privacy Preserving Auctions and Mecha-
nism Design”. In: proceedings of the 1st ACM Conference on Electronic Commerce.
ACM. 1999, pp. 129–139.

[NSMS14] S. NIKSEFAT, B. SADEGHIYAN, P. MOHASSEL, S. SADEGHIAN. “ZIDS: A Privacy-
Preserving Intrusion Detection System Using Secure Two-Party Computa-
tion Protocols”. In: The Computer Journal 57.4 (2014), pp. 494–509.

[Pai99] P. PAILLIER. “Public-Key Cryptosystems Based on Composite Degree Resid-
uosity Classes”. In: Advances in Cryptology — EUROCRYPT’99. 1999, pp. 223–
238.

[Pin02] B. PINKAS. “Cryptographic Techniques for Privacy-Preserving Data Mining”.
In: SIGKDD Explorations 4.2 (2002), pp. 12–19.

[PSSW09] B. PINKAS, T. SCHNEIDER, N. P. SMART, S. C. WILLIAMS. “Secure two-party
computation is practical”. In: International Conference on the Theory and
Application of Cryptology and Information Security. 2009, pp. 250–267.

[Reg05] O. REGEV. “On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography”. In: Proceedings of the Thirty-seventh Annual ACM Symposium
on Theory of Computing. STOC’05. ACM, 2005, pp. 84–93.

[Sch08] T. SCHNEIDER. “Practical Secure Function Evaluation”. MA thesis. Friedrich-
Alexander University Erlangen-Nürnberg, Germany, 2008.

[Sea19] “Microsoft SEAL (release 3.3)”. https://github.com/Microsoft/SEAL.
2019.

[SHS+15] E. M. SONGHORI, S. U. HUSSAIN, A. SADEGHI, T. SCHNEIDER, F. KOUSHAN-
FAR. “TinyGarble: Highly Compressed and Scalable Sequential Garbled
Circuits”. In: 2015 IEEE Symposium on Security and Privacy. 2015, pp. 411–
428.

[SYY99] T. SANDER, A. L. YOUNG, M. YUNG. “Non-Interactive CryptoComputing For
NC1”. In: FOCS’99. 1999, pp. 554–567.

[Val76] L. G. VALIANT. “Universal Circuits (Preliminary Report)”. In: STOC’76. ACM,
1976, pp. 196–203.

[Yao82] A. C. YAO. “Protocols for secure computations (extended abstract)”. In:
FOCS’82. 1982, pp. 160–164.

[Yao86] A. C.-C. YAO. “How to Generate and Exchange Secrets”. In: Foundations of
Computer Science (FOCS’86). IEEE, 1986, pp. 162–167.

54

https://github.com/Microsoft/SEAL

Bibliography

[ZRE15] S. ZAHUR, M. ROSULEK, D. EVANS. “Two Halves Make a Whole - Reducing
Data Transfer in Garbled Circuits Using Half Gates”. In: EUROCRYPT’15.
Vol. 9057. LNCS. 2015, pp. 220–250.

[ZYZL19] S. ZHAO, Y. YU, J. ZHANG, H. LIU. “Valiant’s Universal Circuits Revisited: an
Overall Improvement and a Lower Bound”. ASIACRYPT’19. To appear. 2019.

55

	Introduction
	Applications of Private Function Evaluation
	Contributions
	Outline

	Preliminaries
	Secure Multi-Party Computation
	Circuits
	Circuit-based Secure Multi-Party Computation

	Private Function Evaluation
	Building Blocks
	Homomorphic Encryption
	Oblivious Transfer
	Universal Circuits
	Yao's Garbled Circuit Protocol

	Challenges of Private Function Evaluation
	Circuit Topology Hiding (CTH)
	Private Gate Evaluation (PGE)

	Related Work
	Private Function Evaluation based on Universal Circuits
	Private Function Evaluation with Linear Complexity

	Homomorphic Encryption-based Private Function Evaluation
	The KM11 Protocol
	Improved Version of the KM11 Protocol
	Further Optimizations of KM11
	Precomputation of the Encrypted Wire Keys
	GC Pipelining

	Instantiating KM11 with EC ElGamal
	Instantiating KM11 with BFV
	Encoding of the Wire Keys
	Efficient Packing of the Ciphertexts
	Wire Key Generation using Seed Expansion

	Implementation
	The ABY Framework
	Implementation of KM11-PFE
	Damgaard Jurik Nielsen Cryptosystem
	Elliptic Curve ElGamal
	Brakerski/Fan-Vercauteren Cryptosystem

	Performance Analysis
	Comparison of PFE Implementations
	Performance Split by the Different Protocol Phases
	Concrete Performance Measures of our Implementation

	Conclusion and Future Work
	Conclusion
	Future Work
	Implementation of Variants of the Protocol
	Parallelization

	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography

