
Master Thesis

PSI Meets Signal: Integrating a
Malicious-Secure Private Contact

Discovery Solution in an Open-Source
Instant Messaging Service

Matthias Senker
July 23, 2018

Technische Universität Darmstadt
Center for Research in Security and Privacy

Engineering Cryptographic Protocols

Supervisors: M.Sc. Christian Weinert
Prof. Dr.-Ing. Thomas Schneider

Erklärung zur Abschlussarbeit
gemäß §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Matthias Senker, die vorliegende Master Thesis ohne Hilfe Dritter und
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quel-
len entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher
oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Täuschungsversuch vorliegt,
der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht
wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung überein.

Thesis Statement
pursuant to §23 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I, Matthias Senker, have written the submitted Master Thesis
independently. I did not use any outside support except for the quoted literature and other
sources mentioned in the paper. I clearly marked and separately listed all of the literature
and all of the other sources which I employed when producing this academic work, either
literally or in content. This thesis has not been handed in or published before in the same or
similar form.

I am aware, that in case of an attempt at deception based on plagiarism (§38 Abs. 2 APB),
the thesis would be graded with 5,0 and counted as one failed examination attempt. The
thesis may only be repeated once.

In the submitted thesis the written copies and the electronic version for archiving are identical
in content.

Darmstadt, July 23, 2018

Matthias Senker

Abstract

Mobile messengers like WhatsApp have gained a lot of popularity in recent years. While their
security is improving, e.g., with WhatsApp incorporating end-to-end encryption, many of
them suffer from a lack of privacy. A prominent example for this is contact discovery. For
users to find out, which of their contacts also use the messenger, many apps upload the user’s
entire address book to their server, including information about people that do not use the
messenger.

Some messengers, like Signal, use private contact discovery, a use case of private set inter-
section (PSI). This allows users to find their friends while keeping any contacts, that do not
use the messenger, private. Unfortunately, Signal uses a naive and insecure hashing-based
PSI protocol that does not yield sufficient privacy protection. The results of a survey we
conducted on ‘secure’ messengers, show that all of them provide little to no privacy during
contact discovery.

We look at two precomputation based PSI protocols that have previously been identified
as candidates for efficient and private contact discovery. In both protocols, we reduce the
communication required to inform clients about changes to the server’s database by up to four
times. For one of the protocols, we nearly halve the online phase communication required
for each of the user’s contacts. We also make both protocols secure against malicious clients.
To demonstrate the practicality of our work, we integrate our implementation into the Signal
messenger for Android.

Contents

1 Introduction 1
1.1 Private Set Intersection . 2
1.2 Contribution . 3
1.3 Related Work . 4

2 Background 5
2.1 Oblivious Transfer . 5

2.1.1 OT Extension . 5
2.1.2 OT Extension Flavors . 7
2.1.3 OT Precomputation . 8
2.1.4 Malicious-Secure OT Extension . 9

2.2 Yao’s Garbled Circuits . 10
2.2.1 Basic Protocol . 10
2.2.2 Improvements . 11

2.3 Cuckoo Filters . 13

3 Motivational Survey 17
3.1 Performing the Survey . 17

3.1.1 Evaluating Privacy Policies . 17
3.1.2 Inspecting App Communication . 17

3.2 Found Contact Discovery Methods . 18
3.2.1 Uploading Hashed Contact Data . 18
3.2.2 Contact Discovery with Intel SGX . 19

3.3 Details on Surveyed Messengers . 19

4 Optimizing PSI Protocols for Unequal Set Sizes 25
4.1 Notation . 25
4.2 Common Structure . 25

4.2.1 Phases in different protocol runs . 27
4.2.2 Differences between the protocols . 28

4.3 NR-PSI . 28
4.3.1 The Original Protocol . 29
4.3.2 Precomputation Form . 29
4.3.3 Reduced Communication via C-OT . 30

4.4 GC-PSI . 31

I

Contents

4.5 Efficient Server Updates . 32
4.5.1 Updates for Cuckoo Filters . 32
4.5.2 Compression of Sparse Cuckoo Filters . 32

4.6 Smaller Cuckoo Filters for Efficient Private Contact Discovery 34
4.6.1 Adjusting false positive rate . 34
4.6.2 Splitting the Database into different regions 34

4.7 Security . 35
4.7.1 Security against Semi-Honest Adversaries 35
4.7.2 Malicious Client . 36
4.7.3 Malicious Server . 36

5 Implementation 39
5.1 Security Parameter Choices . 39
5.2 Malicious-Secure OT Extension from [KOS15] . 40
5.3 Cuckoo Filters . 41
5.4 NR-PSI . 41
5.5 GC-PSI . 42
5.6 Test Application . 43

5.6.1 Command-Line Application . 43
5.6.2 Port to Android . 43

5.7 Signal Integration . 44

6 Evaluation 47
6.1 Test Scenarios . 47
6.2 Evaluating OT extension . 48
6.3 Generating the Encrypted Database . 48
6.4 Evaluation of Setup and Update Phase . 49
6.5 Evaluation of Base and Online Phase . 50

7 Conclusion 53

Bibliography 55

II

1 Introduction

In recent years, mobile messengers like WhatsApp have gained a lot of popularity, pushing
back other forms of mobile text communication, like SMS or e-mail. In 2014, a study predicted
that by 2018, 75% of all mobile messaging traffic would come from messenger apps [Row14].
Today, WhatsApp and Viber, two of the most popular messengers, each claim to have over
one billion users.

For a more comfortable user experience, most messengers use some form of contact dis-
covery. With this feature, users can immediately see which of their contacts also use the
messenger and they can start communicating immediately. In most cases, contact discov-
ery is done by uploading all contacts in a device’s address book to the messenger’s server,
including contacts that do not use the service. This leads to a conflict between comfort and
privacy.

Users might be worried about how the server handles this contact information and if it is
shared with third parties. For example, in August 2016, WhatsApp changed its usage and
privacy policy to include the right to share user data (including contact data) with its parent
company Facebook, even if the user did not have a Facebook account. Users had to agree to
the new policy if they wanted to continue using the service.

As a consequence, the data protection officer of Hamburg (Germany) forbade Facebook
to collect and store the personal data of German WhatsApp users without consent that
meets the requirements of German data protection regulations. Facebook’s final complaint
against this order was dismissed by the Hamburg higher administrative court in March 2018.
[Ham18]

Also, in 2017, a German district court came to the conclusion that by using the WhatsApp
messenger, users continuously transmit data about their contacts to the WhatsApp company.
If this is done without a contact person’s permission, that person can issue a chargeable
warning to the WhatsApp user. [Dis17]

The solution for these issues is private contact discovery, which allows the user to learn, which
of their contacts are also registered with the service, without revealing any information about
their other contacts to the service provider.

1

1 Introduction

1.1 Private Set Intersection

Private contact discovery is a use case of private set intersection (PSI). In PSI, two par-
ties compute the intersection of their input sets without revealing to each other any in-
puts that are not part of that intersection. There are several practical uses for PSI proto-
cols.

On example is measuring ad conversion rates. An advertiser, such as Google or Facebook, and
a merchant may wish to find out how many of the users who saw an ad, also purchased the
corresponding product, to evaluate the efficiency of the advertisement. With PSI protocols,
this can be done without either party having to reveal their entire user base to the other.
[PSSZ15]

Private contact discovery falls into a special category of PSI applications, where one side,
typically a server, has a very large input set, while the input sets of the clients are rather small.
Another application from this category is malware detection, which is, for example, used as
motivation for the PSI protocol in [TLP+17]. In this application, an antivirus company holds
a large malware database. Users can check if their applications are contained in this database.
By using private set intersection, the users do not have to reveal any of their non-malware
applications and the company can keep their malware database a business secret. Similar to
private contact discovery, the size of the malware database is very large, while each users
only has a small set of applications.

Two of the currently most efficient PSI protocols are presented in [PSZ18] and [KKRT16].
Despite their high efficiency, they are not well suited for the case of unequal set sizes, because
their communication is always linear in the size of both input sets.

Kiss et al. have shown in [KLS+17], how unequal set sizes can be handled efficiently, by
transforming four existing PSI protocols into a precomputation form. In their work, the
expensive operations, that are linear in the size of the server set, are only performed once.
Future protocol executions then only require communication and computation linear in the
client’s set size. The presented protocols are secure against semi-honest adversaries, which try
to break privacy but follow the protocol specification. They are not secure against malicious
attackers, who may deviate from the protocol specification at an point, e.g., by sending
manipulated messages.

For private contact discovery, malicious security is especially important on the client side.
Everyone can download the messenger app and potentially manipulate it. Malicious clients
also have a higher incentive. If they can break the server’s privacy and obtain its user database,
they could try to sell it on the black market. The server, on the other hand, has little motivation
to act malicious, as it would risk loosing users.

2

1.2 Contribution

The goal of this work is to show that PSI protocols for unequal set sizes can be practical.
We motivate the need for such protocols through a survey conducted on secure messengers.
The results show that currently used private contact discovery protocols offer only minimal
privacy.

In this work, we focus on two of the protocols presented in [KLS+17], GC-PSI and NR-PSI. We
suggest several new methods to significantly reduce their communication costs.

By using cuckoo filters [FAKM14] instead of bloom filters, we reduce the amount of data, that
the server needs to transmit for every change to its database, by a factor of over 2 for GC-PSI
and over 4 for NR-PSI. We also introduce cuckoo filter compression, which can reduce the
size of sparse filters multiple times.

For NR-PSI we present a new combination of two oblivious transfer (OT) variants, namely OT
precomputation and C-OT. This cuts the online phase communication for each of the client’s
contacts nearly in half.

We implement the improved protocols on PC and Android. To increase performance, we
also add support for multithreading. Our implementations are secure against malicious
clients.

In addition to evaluating our implementation, we further demonstrate its practicality by
integrating it into Signal, a popular messenger with a strong focus on security and privacy.
We chose Signal, because it is open source and its cryptography is well documented1. Also, it
is often recommended as one of the most secure and yet easy to use messengers available
2,3,4.

This work is structured as follows: Chapter 2 introduces some necessary background in-
formation. Chapter 3 presents the results of our motivational survey. In Chapter 4, we
present the PSI protocols together with all our improvements. This chapter also discusses the
security of the protocols. In Chapter 5, we explain how we implemented the protocols and go
into detail about some of the critical components. We also describe how we integrated our
implementation into Signal. Our evaluation results are presented in Chapter 6. This work is
concluded in Chapter 7.

1https://signal.org/docs/
2https://www.wired.com/story/ditch-all-those-other-messaging-apps-heres-why-you-should-

use-signal/
3https://www.bestvpn.com/review/signal-private-messenger/
4https://mashable.com/2017/12/19/signal-app-privacy-download-use-it/

3

https://signal.org/docs/
https://www.wired.com/story/ditch-all-those-other-messaging-apps-heres-why-you-should-use-signal/
https://www.wired.com/story/ditch-all-those-other-messaging-apps-heres-why-you-should-use-signal/
https://www.bestvpn.com/review/signal-private-messenger/
https://mashable.com/2017/12/19/signal-app-privacy-download-use-it/

1 Introduction

1.3 RelatedWork

In the following, we give an overview of PSI protocols that focus specifically on unequal set
sizes. For an overview of further PSI protocols, we refer to the survey in [PSZ18] and the
references given there.

As was demonstrated in [TLP+17], trusted execution environments (TEEs), such as Intel
SGX5 and ARM TrustZone6, can be used for efficient private set intersection with unequal
set size. The privacy critical part is executed inside a protected enclave where it is isolated
from other processes and even the operating system. The enclave’s memory is encrypted,
making it unaccessible even for adversaries with hardware access. The TEE allows clients to
verify that they are communicating with the correct software and that it is actually running
inside a protected enclave. With this solutions, clients can simply upload their input set to
the server without having to fear that the server might use it for anything but private set
intersection. This work relies on the security of the trusted hardware. In 2017, an software-
base side-channel attack was presented, that allows a malicious enclave to read another
enclave’s memory [SWG+17]. A demonstration for an attack on SGX using the recent Spectre
bug [KGG+18] can be found at [Lar18].

A semi-honest secure PSI protocol for unequal set sizes was shown in [CLR17]. By using
homomorphic encryption, it achieves communication costs linear in the client’s set size
but logarithmic in the size of the server set. As the presented evaluation results show, the
performance of their protocol lies somewhere in the middle between the slow first run and
the fast later runs of the protocols we focus on in this work.

Resende and Aranha were probably the first to use cuckoo filters [FAKM14] in their PSI
protocol [RA18], which are also used in this work. Their protocol also uses a form of
precomputation, with later runs being far more efficient than the first one. However, their
protocol is only secure against semi-honest adversaries and they also do not apply compression
to their cuckoo filters, like we do in this work (see Section 4.5).

A very efficient PSI protocol, that also targets private contact discovery, is shown in [DRRT18].
It uses private information retrieval. It is not secure against malicious adversaries. Also, for its
strongest security, it requires two non colluding servers that share the same database.

5https://software.intel.com/en-us/sgx
6https://www.arm.com/products/security-on-arm/trustzone

4

https://software.intel.com/en-us/sgx
https://www.arm.com/products/security-on-arm/trustzone

2 Background

This chapter provides the necessary background information for the PSI protocols described
in Chapter 4.

2.1 Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic primitive introduced by Rabin in [Rab81]. In
its most common variant, 1-out-of-2 OT [EGL85], a sender S provides two messages and
a receiver R selects and receives one of them. R does not learn anything about the other
message and S does not learn which message was selected. More formally, S provides
messages (s0, s1) and R provides a choice bit b. In the end R will learn sb but not s1−b and S
will not learn b. For the remainder of this work, OT refers to 1-out-of-2 OT. Also performing
n OTs with messages of size m bits is denoted as OTn

m.

It was shown in [IR89] that OT always requires some form of public key cryptography. The
currently most efficient OT protocol [CO15] requires 3n+ 2 modular exponentiations for n
1-out-of-2 OTs and is secure against malicious adversaries.

2.1.1 OT Extension

Although OT cannot be realized without public key cryptography, [Bea96] proved that a small
number (e.g., 128) of ‘base OTs’ can be extended to a very large number of OTs using only
efficient symmetric cryptographic operations. The first OT extension protocol that is efficient
in practice was presented in [IKNP03]. Several improvements and alternative flavors were
described in [ALSZ13]. The more recent work of [ALSZ17] contains and further extends
the results of [ALSZ13]. It also provides a thorough overview on the state-of-the-art of
OT extension. An OT extension protocol for the more general 1-out-of-N OT variant was
presented in [KK13]. For very short messages (e.g., one bit) it can provide more efficient
1-out-of-2 OTs than [IKNP03].

In the following the improved version of the OT extension protocol from [IKNP03] is described,
beginning with some notations:

• n is the number of OTs
• m is the size of each message in bits

5

2 Background

• κ is a security parameter (e.g., κ= 128)
• PRG is a seedable pseudo random number generator
• H is a hash function that outputs m-bit strings

The input of S consists of n pairs (s0, j , s1, j) of m-bit strings, 1≤ j ≤ n.
The input of R is a vector of n choice bits b = (b1, ..., bn).

Initially S chooses a random κ-bit vector∆ and R chooses κ pairs of κ-bit vectors (ki
0, ki

1), 1≤
i ≤ κ. Now the parties compute OT k

k (e.g., using the protocol from [CO15]) with R as the
sender and S as the receiver. R inputs (ki

0, ki
1) and S inputs ∆i for 1≤ i ≤ κ. As a result, S

receives ki
∆i

.

Next, both parties expand these κ-bit vectors into n-bit vectors by using them as keys to PRG.
For R this means calculating:

t i
0 = PRG(ki

0) and t i
1 = PRG(ki

1), 1≤ i ≤ κ

S calculates t i
∆i
= PRG(ki

∆i
), but is not able to calculate t i

1−∆i
.

R then computes
ui = t i

0 ⊕ t i
1 ⊕ b, 1≤ i ≤ κ

and sends these values to S.

S calculates

qi =

¨

t i
0, i f∆i = 0

ui ⊕ t i
1, i f∆i = 1

, 1≤ i ≤ κ

Notice that in both cases qi = t i
0⊕∆i · b. Now consider a n×κ bit-matrix Q that is constructed

by using these qi as columns, i.e., Q = [q1|...|qκ]. Let q j, 1≤ j ≤ n be the rows of Q. In the
same way, let t j be the rows of the matrix T = [t1

0|...|t
κ
0]. Note that

q j = t j + b j ·∆, 1≤ j ≤ n

At this point, depending on b j , t j is either equal to q j or to q j⊕∆. Next, S calculates

v0, j = H(j||q j) and v1, j = H(j||(q j ⊕∆)), 1≤ j ≤ n

and R calculates
vb j , j = H(j||t j), 1≤ j ≤ n

For the j-th OT, S now has two basically random values (v0, j , v1, j) out of which only one
is known to R but S does not know which one. This corresponds to an OT with random
messages.

In the final step, S uses these random values to mask the real messages by calculating

a0, j = v0, j ⊕ s0, j and a1, j = v1, j ⊕ s1, j , 1≤ j ≤ n

6

The masked values are then sent to R, which unmasks the ones corresponding to its choice
bits to receive its output:

sb j , j = ab j , j ⊕ vb j , j , 1≤ j ≤ n

In addition to the computation and communication costs for the base OTs, this protocol
requires only 3n evaluations of H, as well as the generation of 3κn random bits with PRG.
The number of transmitted bits is κn+ 2mn.

As described in [ALSZ13], the protocol can be run again to compute more OTs without
computing new base OTs as long as PRG produces different random values for the new run.
This can be achieved by including a counter into PRG’s seeds that is incremented with each
run. In a similar way, the entire protocol, after base OT computation, can be broken into
smaller chunks which allows for an easy and efficient parallelization.

2.1.2 OT Extension Flavors

The following flavors for OT extension are described in [ALSZ17]:

Sender RandomOT (SR-OT) In this flavor, the sender does not input any messages. Instead,
for each OT, it obtains two random messages as output. The Receiver still obliviously receives
one of these two messages. To achieve this, the protocol ends after the hash function evalua-
tion. S then outputs (v0, j , v1, j) and R outputs vb j , j for 1≤ j ≤ n. Since no masked messages
are transmitted, the communication cost is reduced to κn bits.

Receiver Random OT (RR-OT) If R wishes to select the messages randomly, a small opti-
mization is possible. Instead of providing the n-bit choice vector b as input, it is calculated by
the protocol as b = t1

0 ⊕ t1
1. Note that only R can calculate this b because S does not know

both t1
0 and t1

1. While this choice for b is obviously random, it also guarantees that u1 is a
zero vector. Thus, u1 no longer needs to be transmitted, reducing the communication costs
to (κ− 1)n+ 2mn bits.

RandomOT (R-OT) SR-OT and RR-OT can be combined. In this case, neither party inputs
any values. For each OT S outputs two random messages and R outputs a random choice bit
together with the corresponding message. The communication cost for this flavor is (κ− 1)n
bits.

7

2 Background

Correlated OT (C-OT) This flavor is useful when S wants to transmit random but correlated
messages. For each OT (i.e., for 1≤ j ≤ n), S picks the first message randomly as s0, j = v0, j
just like in SR-OT. However, the second message is calculated as a function of the first
(i.e., s1, j = f j(s0, j)). f j can be different for each OT. s1, j is then masked with v1, j and
transmitted to R. Depending on its choice bit, R either knows v0, j (and thus s0, j) directly,
or it knows v1, j and can obtain s1, j by unmasking the received message. Since only one
masked message is transmitted for each OT, the communication cost for C-OT is κn+mn
bits.

2.1.3 OT Precomputation

OTs can be precomputed, as was shown in [Bea95]. Any OT protocol can be split into an
offline and an online phase, where all computationally expensive operations are performed
in the offline phase by executing the protocol with random inputs. In the online phase,
these random values are used to mask the actual inputs, requiring only inexpensive XOR
operations.

For a detailed description, let (v0, v1) be the random inputs of S for one individual OT and
let r be the random choice bit of R. These values could be obtained via the R-OT flavor,
described in Section 2.1.2. In the online phase, R uses r to mask its actual choice bit b. It
calculates b′ = b⊕ r and sends b′ to S.

Now if b′ = 0, then the random choice from the offline phase matches R’s actual choice and
S masks its actual messages (s0, s1) by calculating

s′0 = s0 ⊕ v0 and s′1 = s1 ⊕ v1

If b′ = 1, then the random choice differs from the actual choice. In this case, S must swap
the actual messages:

s′0 = s1 ⊕ v0 and s′1 = s0 ⊕ v1

S sends (s′0, s′1) to R, which obtains its output by calculating

sb = s′r ⊕ vr

The only communication overhead introduced by precomputation is in the masked choice
bits, i.e., 1 bit per OT.

OT precomputation is as secure as the OT protocol used in the offline phase. As long as a
corrupt R only learns one of (v0, v1) per OT in the offline phase, it can only unmask one
message in the online phase. And all that S learns in the online phase is if r = b which does
not reveal b.

8

2.1.4 Malicious-Secure OT Extension

The protocol described in Section 2.1.1 is only secure against semi-honest adversaries. A
malicious receiver can obtain the sender’s secret ∆, allowing them to unmask all of S ’s
messages. Such an attack was already described in [IKNP03] and is based on R violating the
protocol by not using the same choice vector b when calculating each of (u1, ..., uκ). In the
same work, Ishai et al. also provided a malicious-secure version of their protocol, however it
is very expensive and requires multiple runs of the semi-honest protocol. The currently most
efficient malicious-secure OT extension protocol was presented in [KOS15] and is described
below. The protocol in [ALSZ15] is less efficient but requires weaker assumptions for its
security proof. In [OOS17], malicious-secure 1-out-of-N OT extension was realized by adding
checksums to the protocol from [KK13].

A modified version of [IKNP03] was introduced in [KOS15]. It adds only a small overhead in
the form of a few checksums, to ensure R is not violating the protocol. To prevent a malicious
S from using these checksums to learn anything about R’s choice bits, a small and constant
number of additional OTs is also added. More specifically, κ+ s OTs are added, where s is a
security parameter. The authors of [KOS15] chose s = 64 in their own implementation. R
uses random choice bits for the additional OTs. The checksums are calculated using finite
field arithmetic (in F2κ) in the following way:

Let n′ = n+κ+ s be the new total number of OTs that need to be computed. At first, both S
and R agree on n′ random κ-bit vectors, (x1, ..., xn′), which will act as random weights. The
checksums must be calculated and checked before S sends the masked messages (a0, j , a1, j)
to R in the final phase of the protocol.

R calculates its checksums as

x =
n′
∑

j=1

b j · x j and t =
n′
∑

j=1

t j ∗ x j

where ∗ denotes multiplication in F2κ . x and t are then transmitted to S.

After obtaining Q, S calculates

q =
n′
∑

j=1

q j ∗ x j

Now S checks that t = q⊕ x ∗∆. If the check fails, S aborts. Otherwise the protocol continues
normally.

In [KOS15] it was proven that if this check passes, R only knows one of the random masks
(v0, j , v1, j) for each OT. It follows that R can only unmask one of the actual messages in the
final step. Since the check is done before the masking, it can also be applied to the SR-OT
and CR-OT flavors (see Section 2.1.2) which differ from the default protocol only in that
final masking step. RR-OT only differs in how b is chosen, which also does not interfere
with calculating the checksums. Thus, malicious security can be provided for all OT flavors

9

2 Background

listed in Section 2.1.2. Finally, malicious-secure OT precomputation (cf. Section 2.1.3) can
be achieved by executing malicious-secure R-OT in the offline phase.

2.2 Yao’s Garbled Circuits

Yao’s garbled circuits [Yao86] is a cryptographic protocol that allows two semi-honest parties
to evaluate a function over their private inputs without revealing them to each other. One
party, called the garbler, encrypts a boolean circuit, representing the function, and sends it to
the other party, the evaluator, who evaluates the circuit without actually knowing the bits on
each wire. In Section 2.2.1, the basic protocol is described, followed by its state-of-the-art
improvements in Section 2.2.2.

An alternative protocol for secure evaluation of boolean circuits is the Goldreich-Micali-
Wigderson protocol (GMW). It was introduced in [GMW87] and is based on secret-sharing the
bits on each wire. Improvements were given in [CHK+12], [SZ13] and [ALSZ13]. The GMW
protocol is not used in this work because it requires multiple communication rounds during
circuit evaluation. This would break the reasoning in Section 4.7.2 about malicious security. It
also makes the protocol inefficient in networks with high latency, such as the mobile networks
considered in this work. In low-latency networks, GMW can actually outperform Yao’s garbled
circuits, as shown in [SZ13].

2.2.1 Basic Protocol

Initially both parties construct the same boolean circuit, using only gates that take two input
bits and produce one output bit. Next, the garbler assigns two random keys (kw

0 , kw
1) to

each wire w in the circuit. This includes the circuit’s input and output wires as well as all
intermediate wires. The keys represent 0 and 1 on their wire and are normally 128 bits long.
From here on, when discussing individual gates, let a and b be the input wires to a single
gate and let c be its output wire. The keys on these wire will be called input and output
keys.

Typically the circuit consists only of XOR-gates and AND-gates. Every other two-input gate
can be constructed using at most one XOR-gate or one AND-gate and some inversions (e.g.,
a OR b = NOT ((NOT a) AND (NOT b))). An inversion can be implemented ‘for free’ by
swapping the keys on a wire.

In the next step, the garbler encrypts the circuit, one gate at a time. There are four combi-
nations of input keys per gate, each corresponding to one output key. For each input key
pair (ka, kb), the garbler encrypts the output key kc with the corresponding input keys as
Encka ,kb(kc), where Enc is some symmetric encryption function that uses two keys. After a
gate is encrypted, its ciphertexts are put into a random order and sent to the evaluator. Key

10

𝑘0
𝑎 𝑘1

𝑎

𝑘0
𝑏 𝑘1

𝑏
𝑘0
𝑐 𝑘1

𝑐

(a) assign keys to wires

X1 = Encka
0 ,kb

0
(kc

0)
X2 = Encka

0 ,kb
1
(kc

0)
X3 = Encka

1 ,kb
0
(kc

0)
X4 = Encka

1 ,kb
1
(kc

1)

(b) encrypt output keys

X1

X2

X3

X4

→

X3

X1

X4

X2

(c) reorder ciphertexts

Figure 2.1: Illustration of the steps performed by the garbler in Yao’s garbled circuits protocol
for a single AND gate.

assignment, encryption and reordering of ciphertexts for a single gate are illustrated in figure
2.1.

Before evaluation can begin, the evaluator must obtain one key for each of the circuit’s
input wires. The garbler sends the keys corresponding to their private input bits to the
evaluator. Because the keys are random, the evaluator does not learn the garbler’s input. For
the evaluator to obtain the keys for their own input bits, both parties perform an oblivious
transfer (see Section 2.1). For each input wire, the garbler sends both keys and the evaluator
obliviously receives one of them, depending on its input bit. In this basic protocol, it would
also be possible to let the OT protocol generate the keys in the first place, by using the SR-OT
flavor described in Section 2.1.2. However, this would need to be done before the garbler
encrypts the circuit, because the keys are required for encryption.

Next, the evaluator processes each gate, starting with the gates that directly consume two of
the circuit’s input keys. Using the gate’s input keys, the evaluator tries to decrypt each of the
four ciphertexts. Only one of these decryptions will be successful and return the gate’s output
key. Because the order of the ciphertexts is random, the evaluator has no way of knowing,
which bit the output key represents.

After processing all gates, the evaluator knows one key for each output wire of the circuit
but not the actual output bits. The garbler on the other hand, knows both keys, but not
which one belongs to the actual output. Depending on which party shall learn the output,
the garbler may send its key-to-bit mapping to the evaluator or the evaluator may send its
output keys to the garbler. Whoever reconstructs the output can then send it to the other
party, if they are both supposed to learn it.

2.2.2 Improvements

This section briefly describes the current state-of-the-art improvements for Yao’s garbled
circuits.

11

2 Background

Point-and-Permute In [BMR90] a technique named point-and-permute was described that
enables the evaluator to process a gate with only one decryption (instead of up to four).
When assigning keys to a wire w, the garbler picks a random selection bit s and sets the least
significant bit of the keys to kw

0 [0] = s and kw
1 [0] = 1− s.

Instead of garbling the ciphertexts for a gate, they are now sorted by the selection bits of
the input keys, which still appears as a random order to the evaluator. When processing a
gate, the selection bits of the input keys are used to identify the ciphertext that needs to be
decrypted.

With this technique, the encryption scheme no longer needs to tell if decryption was successful,
which may allow for smaller ciphertexts. A simple scheme can be implemented with a hash
function H as Encka ,kb(kc) = H(ka||kb)⊕ kc .

Another advantage of point-and-permute is in the output reconstruction step, where it is
sufficient to transmit the selection bits, instead of entire keys.

Free-XOR A way to fully eliminate the communication costs for XOR-gates was shown in
[KS08]. For each wire w, the keys are chosen so that kw

1 = kw
0⊕R where R is a global random bit-

string only known to the garbler. For XOR-gates, the output keys are calculated from the input
keys as kc

0 = ka
0⊕kb

0 (and again kc
1 = kc

0⊕R). Note that if R[0] = 1 this approach is compatible
with point-and-permute. To obtain the output key for an XOR-gate, the evaluator no longer
requires any ciphertexts. Instead they just calculate kc = ka ⊕ kb.

Since now only AND-gates require the transmission of ciphertexts, circuits should be designed
to have the lowest number of AND-gates possible. In [SHS+15] it was demonstrated that
logic synthesis techniques can be used to achieve this.

Because the keys for a wire are now correlated, when transmitting the keys for the evaluator’s
input via oblivious transfer, it is no longer possible to use the SR-OT flavor as described in
the previous section. Instead, the C-OT flavor (see Section 2.1.2) can be used and this is in
fact the main use-case for which [ALSZ13] introduced C-OT.

Garbled-Row Reduction In [NPS99] is was shown how to reduce the number of cipher-
texts per gate from four to three. The first ciphertext is not computed but instead de-
fined as a string of 0s, which means it does not need to be transmitted. The correspond-
ing output key is no longer randomly chosen, but instead computed by decrypting this
0-string.

Half-Gates A way for reducing the ciphertexts per AND-gate to two, that is compatible
with free-XOR, was presented in [ZRE15]. The full approach is too complex to be described
here, but the idea is to split AND-gates into two half-AND-gates, which are AND-gates for
which one party always knows one of the inputs. Each of these half-AND-gates requires the

12

transmission of one ciphertext and is processed with one decryption. Internally, this scheme
makes use of all the improvements listed so far.

Fixed-Key Blockcipher In [BHKR13] the authors showed a highly efficient construction
for the encryption function Enc. Let T be a unique identifier for each gate and let π be a
fixed-key block cipher (with the key known to both parties). Enc is defined in [BHKR13]
as

Encka ,kb(kc , T) = π(K)⊕ K ⊕ kc , where K = 2ka ⊕ 4kb ⊕ T.

The evaluator can decrypt a ciphertext by XOR-ing it with π(K)⊕ K . When π is instantiated
as AES encryption (without the key-expansion step), very fast implementations are possible.
On Intel platforms, AES-NI [Gue10] can be used for highly efficient hardware-based AES
encryption.

Pipelining The authors of [HEKM11] provided an efficient framework for garbled circuits
that uses pipelining to greatly improve performance and reduce memory consumption. In
this framework the evaluator first learns all the input keys. Then the garbler encrypts and
transmits the gates in an order that allows the evaluator to process each gate as soon as they
receive it. At no point does any party need to hold the entire encrypted circuit in memory. In
fact the memory requirements are very low and nearly constant. This improves performance
by using caches more efficiently. It also allows the framework to handle circuits of almost
arbitrary size.

2.3 Cuckoo Filters

Cuckoo filters [FAKM14] are data structures used to represent (large) data sets. They
are very space efficient and offer fast membership tests with a low false positive rate.
Due to their small size they are especially useful when transferring large sets over a net-
work.

Cuckoo filters are based on cuckoo hash tables ([PR04], [DW07]) which differ from traditional
hash tables by using two (sometimes more) hash functions. These tables consist of n fixed size
buckets, each with space for b key/value pairs. When a new pair is inserted, two candidate
buckets are calculated from its key, using the two hash functions (from here on h1 and h2). If
one of these buckets has free space, the pair is inserted there. If both buckets are full, the pair
randomly replaces another pair in one of these buckets. The replaced pair is then reinserted
into its alternate candidate bucket. This process of replacing and reinserting an entry is
called relocation. If the alternate candidate bucket for the relocated pair is also full, further
relocations are performed until either a non-full bucket is found or a maximum number of
iterations were performed, at which point the table is considered to be full. Due to these
relocations, Cuckoo hash tables can reach high space utilization (e.g., 95%) with very high
probability.

13

2 Background

Figure 2.2 shows an example insertion process with two relocations. For simplicity, only the
keys are shown. Since in each step, the relocated key is chosen randomly, other outcomes
would also be possible.

h1 h2

x 1 4

y 4 2

z 2 6

0 a

1 b c

2 z e

3

4 f y

5 h i

6 j

7 k l

x (1)
(2)

(3)

(a) step 1: x is inserted, replacing y
step 2: y is relocated, replacing z
step 3: z is relocated

0 a

1 b c

2 y e

3

4 f x

5 h i

6 j z

7 l

(b) the state after the insertion
of x and all subsequent re-
locations

Figure 2.2: Inserting a key into a cuckoo hash table with bucket size b = 2
(similar to figure 1 in [FAKM14]).

No matter how many relocations are performed, each inserted key will always be in one
of its candidate buckets. This makes lookup and deletion fast and straight forward: Given
a key, the two candidate buckets are determined and then searched for that key. For a
lookup, the corresponding value is returned and for a deletion the pair is removed from its
bucket.

A cuckoo filter differs from a cuckoo hash table in that it does not contain key/value pairs.
Instead, for each inserted item x , only a fingerprint fx is stored, which is a small bit-string
obtained by hashing x . To enable relocation for these fingerprints, it must be possible to
determine the alternate candidate bucket for a fingerprint without knowing the actual item.
Because of this, cuckoo filters define h1 and h2 as

h1 = h(x)

h2 = h1(x)⊕ h(fx)

where h is a hash function different from the one used to obtain fx . (In practice one might
hash x only once and then split the resulting bit-string to obtain h(x) and fx) Note that
with this definition, n must be a power of two or else, the XOR-operation might produce an
out-of-range bucket index.

Now for a fingerprint fx located in a bucket i, the other bucket j can always be calculated
as

j = i ⊕ h(fx)

14

Due to hash collisions, two items can have equal fingerprints. Because of this, lookups can
produce false positives. The false positive rate ε is mainly dependent on fingerprint size f and
also slightly on bucket size b, as larger buckets result in more possible collisions within each
bucket. Given b and ε, the minimum fingerprint size is calculated as

f ≥ ⌈log2(1/ε) + log2(2b)⌉ bits

The space efficiency of a cuckoo filter depends not only on f but also on the load factor α,
which is the ratio of inserted items to available item slots (n · b). The average space cost
per item is calculated as C = f /α. The maximum achievable value for α grows with b. This
means that larger buckets increase the maximum load factor but also increase the fingerprint
size. It was shown in [FAKM14] that for ε≤ 2 ∗ 10−3 optimal space efficiency is achieved by
setting the bucket size to b = 4. In this case, α can reach 95% with very high probability and
the optimum space cost per item is

C = ⌈log2(1/ε) + 3⌉/0.95 ≈ 1.05 ⌈log2(1/ε) + 3⌉

However, this value is not always achievable in practice. Since n is limited to powers of two,
the smallest possible filter for a given set of items might provide a load factor much smaller
than 95%.

Bloom Filters Introduced in [Blo70], bloom filters are an older alternative to cuckoo filters.
They are used in many current networking systems and protocols such as the PSI protocols
in [KLS+17]. Just like cuckoo filters, they offer high space efficiency and fast membership
tests with a small false positive rate. Bloom filters require 1.44 log2(1/ε) bits per item which
makes them larger than optimally filled cuckoo filters for most false positive rates (e.g.,
ε ≤ 10−3). However, the size of a bloom filter is not restricted as it is for cuckoo filters, so
for a specific number of items, a size-optimal bloom filter might actually be smaller than the
smallest possible cuckoo filter.

The main difference between the two is that bloom filters do not support dynamic item
deletion. To delete an item from a bloom filter (without introducing false negatives in future
lookups) the entire filter has to be rebuilt. Variants with support for deletion exist (e.g.,
counting bloom filters [FCAB00]), but they require significantly more space than standard
bloom filters.

15

3 Motivational Survey

This chapter presents the results of a survey performed on secure Android instant messengers.
The goal of this survey is to determine how contact discovery is performed in practice. The
surveyed messengers are secure in the sense that they offer end-to-end encryption. Evaluating
their actual security is not part of this work. Section 3.1 describes how the messengers were
surveyed. Section 3.2 describes the contact discovery methods found. Detailed results for
each messenger are given in Section 3.3.

3.1 Performing the Survey

This section explains the different methods that were used to analyze the messengers.

3.1.1 Evaluating Privacy Policies

Many messengers describe their contact discovery scheme in their privacy policy. All surveyed
messengers come with such a policy, which is also linked on their Google Play Store1 page.
Ideally, a privacy policy states which data an app transmits to its server and how the server
processes and stores that data. This includes contact data from the smartphone’s address
book. As of 25th May 2018, the General Data Protection Regulation [EC16] of the European
Union makes the provision of a privacy policy mandatory for all businesses that deal with
data of EU citizens.

While all messengers provide a privacy policy, they are not always precise enough to determine
the contact discovery method used. Furthermore, some policies only address privacy concerns
for the developer’s website without mentioning the actual app at all. Such policies are of no
use to this survey.

3.1.2 Inspecting App Communication

To determine the contact discovery method for messengers without a proper privacy policy,
the communication between app and server was inspected via special software tools acting
as a man-in-the-middle. For most messengers, the communication was analyzed using the

1https://play.google.com/store

17

https://play.google.com/store

3 Motivational Survey

android app Packet Capture2. It captures messages via a local VPN and requires no root
access on the device. For G DATA Secure Chat, Packet Capture would not recognize and
decrypt the TLS traffic, because that messenger communicates with its server over port
8080, which is not typical for TLS. For this messenger, mitmproxy3 was used to analyze the
traffic.

Disabling Certificate Pinning

To analyze TLS encrypted communication (as it was used by all analyzed messengers), man-
in-the-middle tools come with their own certificate authority (CA). This CA (more precisely,
its certificate) has to be installed on the device and must be trusted by the app. However,
most of the analyzed messengers employ certificate pinning to prevent man-in-the-middle
attacks. With this technique, an app expects a very specific certificate from its server and
ignores any installed CAs. Moreover, in recent versions of android, apps no longer trust
user-added CAs unless explicitly allowed by the developer.

These issues were circumvented by using the Xposed4 framework together with the Just-
TrustMe5 plugin. Xposed allows its plugins to modify the behavior of an app during its
execution, without modifying the app’s APK file. JustTrustMe is aware of the certificate
check routines in several commonly used security libraries. It can disable these checks
in any app that utilizes one of these libraries. This solution requires root access on the
device.

3.2 Found Contact Discovery Methods

In total, 14 messengers were surveyed for this work. Only seven of them support actual
private contact discovery. The other half consists of five messengers, that just upload
contact data directly to their servers and two that don’t provide any contact discovery at
all.

3.2.1 Uploading Hashed Contact Data

All of the seven messengers with private contact discovery use a hash based scheme. The
app generates a hash value for each contact in the address book. Usually only the phone
number or e-mail address is hashed. These hashes are then sent to the server, where they are
compared to hashes for all registered users. The server then informs the app about any found
matches. For the non-matching contacts, the server only learns their hash values, which (in

2https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture
3https://mitmproxy.org/
4http://repo.xposed.info/
5https://github.com/Fuzion24/JustTrustMe

18

https://play.google.com/store/apps/details?id=app.greyshirts.sslcapture
https://mitmproxy.org/
http://repo.xposed.info/
https://github.com/Fuzion24/JustTrustMe

theory) cannot be turned back into the actual contact data, thus preserving the privacy of
these contacts. However, even if the server cannot determine the actual contact data, it can
still tell if two users share a contact, because they would both upload the same hash value.
This can be prevented, by using random salt values, generated by the app and sent to the
server together with the hashes. In this case the server has to hash the contact information of
all its users, for every contact discovery execution. Only one messenger was found in this
survey that uses salt values.

While hash based contact discovery is fast, easy to implement and requires very low bandwidth,
it does not offer a high level of privacy. The set of possible inputs to the hash function is
usually relatively small, especially in the case of phone numbers. A server can hash all
possible phone numbers, allowing it to invert all received hashes. This is a well known
problem. The developers of Signal discussed it in their blog [Ope14b]. They also mentioned
alternatives with better privacy, but argued that those solutions are not practical due to
high bandwidth requirements. Reducing those requirements is one of the goals of this
work.

3.2.2 Contact Discovery with Intel SGX

Recently, the Signal developers have presented a new contact discovery implementation using
Intel SGX, similar to the work in [TLP+17]. It is currently only a proof of concept and not
actually used by the Signal messenger. But this may change in the near future, which is why
it is mentioned here. In this implementation, the app still transmits hashes to the server,
but the server runs the contact discovery inside an SGX enclave, allowing clients to verify,
that the correct code is executed and that the hashes are only used for contact discovery.
Different from [TLP+17], the Signal developers assume that even though a malicious server
cannot access the actual data inside the enclaves’ protected memory, it can still observe which
memory sections are read or written at any time. A lot of effort was put into making any
memory access completely oblivious, thus preventing attacks even from physical adversaries
eavesdropping on the servers memory bus. This solution, while tricky to implement, is
very efficient, since it requires no more bandwidth than the traditional hash-based contact
discovery. Its privacy, however, depends on the security of Intel SGX. Examples for attacks on
SGX are given in Section 1.3.

3.3 Details on Surveyed Messengers

This section provides a brief description for each surveyed messenger. This includes their
contact discovery scheme and how it was determined. This information is also summarized
in table 3.1.

The following three properties apply to all messengers, unless explicitly states otherwise:

19

3 Motivational Survey

• App and server are proprietary, i.e., not open source.
• The messenger does not support anonymous users - instead each account is bound to a

verified phone number or e-mail address.
• Contact discovery is mandatory, i.e., the service cannot be used without it.

Confide The goal of Confide6 is to prevent users from disclosing received messages to others.
For this purpose, messages are deleted immediately after reading them and techniques are
used that try to prevent taking screenshots of messages. Contact discovery is optional and
according to their privacy policy, they “store the Address Book Data in hashed/anonymized
form” [Con17].

Cyphr Cyhpr7 is developed by the swiss company Golden Frog and its servers are all located
in switzerland. It does not provide any contact discovery at all. When creating an account,
users must provide a valid e-mail address. To establish communication, the address of the
communication partner must be known and entered into the app. It is possible to grant
Cyphr access to the address book but this only allows users to select e-mail addresses more
conveniently instead of typing them manually. Analyzing Cyphr’s traffic showed no indication
of transmission of address book data at any point. Unfortunately, Golden Frog’s privacy policy
does not mention the Cyphr app at all.

Dust Dust8 deletes all messages 24 hours after they are sent or (optionally) immediately
after they are read. Dust’s privacy policy describes the contact discovery mechanism only
vaguely, telling the user that they “may also have access to your contact list(s)” [Rad16].
Traffic analysis showed that contact names (base64 encoded) and phone numbers are directly
uploaded to Dust’s servers. However, contact discovery is optional. Users can also be found
by searching for their user name.

Eleet The Eleet Private Messenger9 comes with an integrated bitcoin wallet, allowing users
to exchanges bitcoins inside of a chat. New Eleet accounts are created anonymously, i.e.,
without providing a valid e-mail address or phone number. Contacts can be added via their
user id or by scanning a QR-Code generated by that contact. Users can link their user ids
with a phone number. They can then be found via the optional contact discovery, on which
Eleet’s privacy policy states: “A copy of the phone numbers and names in your address book
(...) will be stored on our servers” [ELE].

6https://getconfide.com/
7https://www.goldenfrog.com/de/cyphr
8https://usedust.com/
9https://eleet.im/

20

https://getconfide.com/
https://www.goldenfrog.com/de/cyphr
https://usedust.com/
https://eleet.im/

GDATA Secure Chat The open source messenger G DATA Secure Chat10 does not come with
its own privacy policy. However, the repository [G D17] shows that this messenger is a fork
from the Signal messenger. Analyzing the traffic confirms that it also uses Signal’s hash based
contact discovery scheme.

Hoccer The German messenger Hoccer11, with all its servers located in Germany, puts a
great emphasis on anonymity. Users do not provide Hoccer with their phone number or any
other personal information. Contacts are added manually by sending them an SMS or e-mail
or by one user generating a QR-code which is scanned by the other user. A traditional contact
discovery scheme is not used and Hoccer’s privacy policy clearly states: “We also do not know
any phone numbers or E-mail addresses of you or your communications partners.” [Hoc]
However, users can choose to upload their geographic location to Hoccer’s server to find other
Hoccer users nearby.

Signal The open source messenger Signal12 by Open Whisper Systems is the successor
to their previous products Redphone and TextSecure. As mentioned in 1.2, Signal is often
recommended as one of the most secure mobile messengers available. The privacy policy
states that “Information from the contacts on your device may be cryptographically hashed
and transmitted to the server in order to determine which of your contacts are registered”
[Ope]. According to Signal’s API protocol documentation, only the phone numbers are hashed
using SHA-1 [Ope14a].

SIMSme SIMSme13 is the private messenger developed by the Deutsche Post AG. All its
servers are located inside Germany. Its privacy policy states: “An encrypted list of the telephone
numbers of your contacts are uploaded to our servers in order to compare them and establish
contact between users.” [Deu14]. The term “encrypted” in this statement could refer to hash
values but is not perfectly clear. Analyzing the transmitted data shows, that for each phone
number, a short, random-looking string is transmitted. These strings always have the same
size, even for very large phone numbers. This strongly indicates that a hash based contact
discovery scheme is used. The strings differ when executing the protocol multiple times on
the same contacts. Also, the app uploads a seemingly random value, labeled as salt, to the
server. So we conclude that SIMSme uses randomly salted hash functions for its contact
discovery.

Telegram The Telegram14 client (but not the server) is open source. The security of Telegram
is often discussed, with its end-to-end encryption only available in so called ‘secret chats’ which

10https://www.gdata.de/securechat
11https://hoccer.com/
12https://signal.org/
13https://www.sims.me/en
14https://telegram.org/

21

https://www.gdata.de/securechat
https://hoccer.com/
https://signal.org/
https://www.sims.me/en
https://telegram.org/

3 Motivational Survey

offer only a reduced feature set. The privacy policy states that names and phone numbers
from the users address book are stored on Telegram’s servers [Tel].

Threema Of all surveyed messengers, Threema15 is the only one that cannot be obtained for
free. The Threema developer and all its servers are located in Switzerland. Contacts can be
added manually via their user id. Users may choose to bind their accounts to a phone-number
or e-mail address, in which case they can be found by Threema’s optional contact discovery
scheme. The privacy policy states that data from the address book “is transmitted to the servers
in one-way encrypted ("hashed") form” [Thr18b]. The additional cryptography whitepaper
states that SHA-256 is used to hash phone numbers and e-mail addresses independently.
[Thr18a] Users can also verify each other via QR-codes.

Viber Viber16 is a popular competitor to WhatsApp, with currently over one billion users,
according to their own website. It provides end-to-end encryption since version 6.0. No
privacy is offered during contact discovery: “A copy of the phone numbers and names of all
your contacts (...) will be collected and stored on our servers” [Vib17].

WhatsApp WhatsApp17 is probably the most popular mobile messenger, with over one
billion users, as stated on their website. Although originally not a secure messenger, current
versions of Whatsapp provide end-to-end encryption by default, based on the Signal Protocol
designed by Open Whisper Systems [Wha17]. According to WhatsApp’s privacy policy, users
“provide (WhatsApp) the phone numbers in (their) mobile address book on a regular basis”
[Wha18].

Wickr Me The Wickr Me18 private messenger is one of several Wickr products that all use
the same open source messaging protocol. Users of Wickr Me can choose to bind their phone
number to their account. If they do, they can be found via the optional contact discovery
scheme, for which “the Wickr Me App will send a disguised representation of (the user’s)
contacts phone number to (Wickr’s) servers” [Wic17]. The rest of their privacy policy makes
it clear, that ‘disguised’ means ‘hashed’ in this statement.

Wire Wire19 is an open source messenger with servers located in Germany and Ireland. A
special feature is the support of multiple accounts (e.g., business and private) which can be
switched easily from within the app. Contact discovery is optional and hash based. In addition
to a privacy policy, they provide a detailed security white paper, which states: “each address

15https://threema.ch/en
16https://www.viber.com/
17https://www.whatsapp.com/
18https://www.wickr.com/personal
19https://wire.com/en/

22

https://threema.ch/en
https://www.viber.com/
https://www.whatsapp.com/
https://www.wickr.com/personal
https://wire.com/en/

book entry is hashed (using SHA-256) before being transmitted to the server” [Wir17].

Messenger Contact Discovery Method What was analyzed?

Confide hashed contacts privacy policy
Cyphr none network communication

Dust address book upload
privacy policy and

network communication
Eleet address book upload privacy policy

G DATA Secure Chat hashed contacts network communication

Hoccer
(can upload location

privacy policy
to find nearby users)

Signal hashed contacts
privacy policy and

protocol API

SIMSme
hashed contacts privacy policy and

(with salt) network communication
Telegram address book upload privacy policy
Threema hashed contacts privacy policy

Viber address book upload privacy policy
WhatsApp address book upload privacy policy
Wickr Me hashed contacts privacy policy

Wire hashed contacts privacy policy

Table 3.1: Survey results summary

23

4 Optimizing PSI Protocols for Unequal Set Sizes

This chapter presents the two PSI protocols, NR-PSI [HL08] and GC-PSI [KLS+17], that were
implemented and evaluated for this work. These protocols were chosen based on the results
from [KLS+17]. In that work, Kiss et al. showed how existing PSI protocols for unequal
set sizes could be transformed into a precomputation form, which is well suited for several
mobile applications, including private contact discovery.

While all four protocols presented in [KLS+17] are secure against semi-honest adversaries,
only NR-PSI and GC-PSI can also be secured against malicious clients in a straightforward
way. This is why they were chosen for this work. In addition to improved security, this work
also shows how the performance of the protocols can be increased. For both protocols the
procedure of informing clients about updates in the server database has been improved.
Additionally, a new combination of C-OT and OT-precomputation is presented that reduces
communication costs for NR-PSI.

This chapter is organized as follows: Section 4.1 introduces some notations. The overall
protocol structure, which is the same for both NR-PSI and GC-PSI is described in Section
4.2. Sections 4.3 and 4.4 then explain the more specific details about NR-PSI and GC-PSI
respectively, including the reduction in communication for NR-PSI. The procedure for more
efficient server updates, which is also shared by both protocols, is given in Section 4.5. Section
4.6 discusses a critical bottleneck of the protocols and how it can be mitigated in certain
scenarios. Finally, Section 4.7 analyzes the security of the protocols.

4.1 Notation

This chapter, as well as the remainder of this work, uses the notation from Table 4.1.

4.2 Common Structure

The basic idea for both protocols is as follows: The server, S, encrypts all items in its database
and sends them to the client, C . The secret key used for encryption is only known to S, so
C cannot learn anything anything about those items. S and C then perform secure two-
party computation, to encrypt C ’s inputs with S’s secret key, without revealing either to the

25

4 Optimizing PSI Protocols for Unequal Set Sizes

S: The server party. Typically with strong computation power and large input
set, also referred to as S’s database.

C: The client party. Has a much smaller input set and also less computation
power.

NS: Number of initial server inputs.
N U

S : Number of server inputs that have changed since the last time S and C
have executed the PSI protocol.

NC : Number of initial client inputs.
N U

C : Number of inputs that were added to C ’ input set since the last protocol
execution.

N max
C : Maximum total number of client inputs. This includes the initial NC inputs,

as well as any added in later runs of the PSI protocol.
{x1, ..., xNS

}: server inputs
{y1, ..., yNS

}: client inputs
x i[j]: j-th bit of i-th input

l: length of each input in bits, assuming all inputs have the same length.
1 KB: 1024 bytes
1 MB: 1024 KB

Table 4.1: Notation for PSI protocols

other party. Finally, C obtains the intersection by checking which of its encrypted inputs are
contained in the encrypted database it received from S.

Note that it is not necessary for either party to perform any decryptions. Thus, it is fine to
hash all inputs to a common size, l, before encrypting them. In fact, any randomization
function can be used for encryption, as long as it uses a secret key, only known to S, and is
secure, so that C cannot invert it.

As Kiss et al. have shown, when S and C execute a PSI protocol multiple times, it is not
necessary to repeat all steps for every run. Instead, the protocols can be put into a pre-
computation form, where the operations with high communication and computation costs
are only done during the first run, so that future runs become far more efficient. For this
purpose, the protocols are split into the following phases which are also summarized in table
4.1:

Base Phase The base phase performs precomputations to make the following encryption of
C ’s inputs as efficient as possible. For each element that shall be encrypted later, some data
is generated and stored by both parties. This data will be referred to as resources from now
on. The computation and communication complexity of this phase is linear in the number of
generated resources. Ideally, the base phase is only executed once, generating resources to
encrypt up to N max

C inputs. N max
C must be chosen large enough to encompass the initial NC

inputs, as well as any new inputs in future protocol runs.

26

The base phase is independent of both parties’ actual inputs. Thus, it can be executed long
before the rest of the protocol. However, in practice it will most likely be executed at the
beginning of the first protocol run.

If the generated resources run out, the base phase must be repeated, which undermines the
precomputation approach. Thus N max

C should be chosen large enough so that most clients
will never need to repeat the base phase.

Setup Phase In this phase, S transmits its encrypted database to C . While in [KLS+17],
the database was represented as a bloom filter, this work uses a cuckoo filter instead. Section
4.5 explains this in more detail. Also, in [KLS+17], S would actually encrypt all its inputs
during the setup phase using a unique key for each client. Depending on the protocol, this
made the setup phase highly computationally expensive. However, Kiss et al. also point out
that there is basically no disadvantage when just using the same key for all clients and only
generating the encrypted database once. This is the approach chosen for this work, basically
eliminating all computation costs from the setup phase.

Still, the size of the filter and thus the communication costs are linear in NS . In practice, these
costs can be very high. Section 4.6 discusses how they can be reduced in certain situations.
However, the setup phase only needs to be executed during the first protocol run. C stores
the received filter, so that for later runs the far more efficient update phase can be used to
inform C about any changes to S’s database.

OnlinePhase During the online phase, the resources from the base phase are used to encrypt
C ’s inputs. In the first protocol run, all of C ’s initial inputs are encrypted and thus the complex-
ity is linear in NC . The ciphertexts are cached by C so that during future protocol runs, only the
N U

C inputs, that were added since the last run, have to be encrypted.

Update Phase During the update phase, S informs C about the N U
S items in its database

that have changed since the last protocol run. Due to the use of cuckoo filters, this process
is highly efficient and can even handle the deletion of items with ease. More details on the
update phase are given in Section 4.5.

4.2.1 Phases in different protocol runs

To further clarify the different phases and their interactions, look at the differences between
the first protocol run and any following runs:

27

4 Optimizing PSI Protocols for Unequal Set Sizes

Phase Purpose Executed during Complexity

Base Phase generate resources first run O(N max
C)

Setup Phase
transmit encrypted

first run O(NS)server database

Online Phase
use resources to encrypt

every run
O(NC)

client inputs or O(N U
C)

Update Phase
inform C about updates every run except

O(N U
S)to S’s database the first

Figure 4.1: Phases of the PSI protocols

First run For the first run, the rather expensive base phase and setup phase are exe-
cuted to generate resources and transmit S’s encrypted database to C . This is followed
by an online phase to encrypt C ’s initial inputs. After that, C can determine the intersec-
tion.

Future runs In future runs, an online phase is performed only for any new inputs C might
have. Additionally, an update phase is done so that C can update the cached database
with any additions or deletions. Both phases are highly efficient, although the actual
costs depend on how much the input sets of both parties have changed since the last
run.

4.2.2 Differences between the protocols

The only differences between NR-PSI and GC-PSI are in how the items are actually encrypted.
This includes the server side encryption when filling the cuckoo filter as well as the oblivious
encryption that both parties prepare during the base phase and finish in the online phase.
These details are presented in the following sections.

4.3 NR-PSI

NR-PSI was proposed in [HL08], based on the Naor-Reingold PRF from [NR04].

It should be noted, that in [KLS+17], a slightly different definition for this PRF is used. While
these differences do not affect security or performance, they do prevent the reduction in
communication, presented in Section 4.3.3. For this reason, the definition from [HL08] is
used in this work.

For the sake of the security arguments in Section 4.7, any oblivious transfers mentioned
in this section use the malicious-secure OT extension protocol from [KOS15] (see Section
2.1.4).

28

4.3.1 The Original Protocol

Initially, S and all clients must agree on parameters p, q and g, where p is an n-bit prime
number, q is an m-bit prime divisor of p− 1 and g is a generator of a multiplicative subgroup
in Z∗p of order q.

Additionally, S chooses a secret key, a, which consists of l + 1 n-bit values a = (a0, a1, ..., al),
all of which are randomly chosen from Z∗q.

To encrypt its own inputs, S calculates:

PRFa(x i) = ga0·Ai mod p, where Ai =
l
∏

j=1

ax i[j]
j mod q, 1≤ i ≤ NS

For executing the PRF on C ’s inputs, we introduce the original version of NR-PSI first, without
any precomputation or different phases. For each of C ’s inputs, S chooses l random n-bit
values ri,1, ..., ri,l . S then calculates

r inv
i = (

l
∏

j=1

ri, j)
−1 mod q, 1≤ i ≤ NC .

followed by
g̃i = ga0·r inv

i mod p, 1≤ i ≤ NC

which are sent to C . Both parties then perform l oblivious transfers per input where S sends
these two values:

R0
i, j = ri, j and R1

i, j = ri, j · a j mod q, 1≤ i ≤ NC , 1≤ j ≤ l

and C chooses to obliviously receive Ryi[j]
i, j . Next, C multiplies the received values:

A′i =
l
∏

j=1

Ryi[j]
i, j =

l
∏

j=1

ri, j ·
l
∏

j=1

a yi[j]
j mod q, 1≤ i ≤ NC

Finally C obtains the PRF results of its inputs as:

PRFa(yi) = g̃
A′i
i = ga0·
∏l

j=1 a
yi [j]
j mod p, 1≤ i ≤ NC

4.3.2 Precomputation Form

The NR-PSI version of Kiss et al. uses OT precomputation (see Section 2.1.3) to split the
original protocol into base and online phase. The OTs are precomputed during the base
phase, after S has transmitted g̃i . The OTs are finalized during the online phase, after which
C can finish the encryption. The only overhead introduced by this is one correction bit per
OT that C must send to S.

29

4 Optimizing PSI Protocols for Unequal Set Sizes

4.3.3 Reduced Communication via C-OT

During the OT step in the original version of NR-PSI, the first of the two values, R0
i, j is

random, which means C-OT can be applied to reduce communication (cf. Section 2.1.2). This
reduces the amount of data S has to send for each input by l · n bits. However, to apply this
improvement to the precomputation form from Kiss et al., C-OT and OT precomputation have
to be combined, which - to our knowledge - has not been done before.

In both C-OT and OT precomputation the sender, S, obtains two random values, (v0, v1) (cf.
Section 2.1). In C-OT the sender selects v0 to be the random message, while v1 is used as a
mask for the transmission of the correlated message. The receiver, R, knows only of the two
random values, vb, depending on its choice bit b. If b = 0, R immediately knows the random
message. If b = 1, R can unmask the correlated message.

However, in OT precomputation, R does not know its actual choice during the precomputation
phase. Instead, it obtains vr , where r is random. For example, if r = 0, R will not be able to
receive the correlated message later.

The solution to this problem is for S to decide which value to choose as random message
and which as mask only after receiving R’s correction bit b′ = r ⊕ b. The random message is
chosen as vb′ , while v1−b′ is used as mask. This way, it only depends on b, which message R
receives. If b = 0, R always receives the random message. If b = 1, it receives the correlated
message.

In the following, all four possible combinations of random and actual choice are listed,
showing that R always receives (only) the message of its choice.

• r = 0, b = 0, b′ = 0: Because r = 0, R knows v0. Due to b′ = 0, S chooses v0 as
random message and v1 as mask. Thus, R knows the random message, but cannot
unmask the correlated message.

• r = 0, b = 1, b′ = 1: R knows v0. S chooses v1 as the random message and v0 as
the mask. So while R does not know the random message, it is able to unmask the
correlated message.

• r = 1, b = 0, b′ = 1: R knows v1, which is also chosen by S as the random message.
Without knowing v0, R cannot learn the correlated message.

• r = 1, b = 1, b′ = 0: R knows v1. S chooses v0 as random message and v1 as mask.
Thus, R can unmask the correlated message but does not know the random message.

Performance Gain When applied to NR-PSI in precomputation form, this technique nearly
cuts the communication costs during the online phase in half, as S only needs to send half as
many messages.

However, because S can now only select the random numbers ri, j after the OTs have been
resolved in the online phase, it also has to wait until then, before it can calculate and transmit

30

g̃i . This means some computation as well as communication is moved from the base phase to
the online phase.

In practice, the added communication is much smaller than what is saved. For each input, n
bits are added, while l ·m bits are saved. Consider a realistic example with l = 128, n = 2048
and m= 224. In this case, the amount of data, S has to transmit during the online phase, is
reduced by about 46%.

The additional computation is only on the server side, which usually has strong computation
power. Also, the client has to perform similarly expensive operations anyways. Because of
this, the overall computation time should not increase.

AWordonSecurity This technique does not affect the security of the underlying OT protocol.
R always receives only one message and cannot obtain the other. Also, since r and therefore
also b′ are random, S cannot learn anything from the correction bits, just like in classical OT
precomputation.

4.4 GC-PSI

GC-PSI was introduced in [KLS+17]. In this protocol, the inputs are encrypted via AES. When
S encrypts its own inputs, it does so in a straightforward way by choosing a secret key k and
computing AESk(x i), 1≤ i ≤ NS .

To encrypt C ’s inputs, AES is evaluated via garbled circuits (see Section 2.2). The use of
garbled circuits, that evaluate AES, in secure multi-party computation was originally proposed
in [PSSW09].

In the base phase, S first expands its key k into k′, according to the Key-Expansion phase of
AES. As this step does not depend on C ’s input, there is no need to do it inside the garbled
circuits. Then S constructs N max

C circuits, using k′ as its input value. As was shown in
[HS13], garbled circuits for AES can be constructed with 5,120 AND-gates by using the S-box
construction from [BP10]. The circuits are then sent to C , together with the wire keys for
S’s input, k′. In addition, both parties precompute l · N max

C OTs via the malicious-secure OT
extension protocol from [KOS15] (see Section 2.1.4).

During the online phase, the precomputed OTs are used so that C obtains its input keys for
the circuit. For each input yi, C resolves l OTs, by using yi[j], 1 ≤ j ≤ l as choice bits. C
then evaluates the circuit without any further interaction with S.

Note that even though the keys for each input wire are correlated (cf. Section 2.2.2, Free-
XOR), C-OT cannot be used here. An optimization as was presented for NR-PSI in Section
4.3.3 is not possible for GC-PSI. When combining C-OT with OT precomputation, S learns the
random messages only after the precomputed OTs are resolved in the online phase. However,
the random messages are keys for the circuits’ input wires and are required for encrypting the

31

4 Optimizing PSI Protocols for Unequal Set Sizes

circuits. Thus, the circuits would have to be encrypted and transmitted during the online phase
which would completely go against the precomputation approach.

4.5 Efficient Server Updates

When S’s database changes between protocol runs, it is usually more efficient to only send
these changes to C instead of retransmitting the entire database. This is done during the
update phase, as explained in Section 4.2.

This section explores the efficiency of updates for cuckoo filters (Section 4.5.1) and addresses
the issue of maximum filter capacity (Section 4.5.2)

4.5.1 Updates for Cuckoo Filters

In [KLS+17], bloom filters were used to represent the encrypted database, but those are not
ideal when it comes to updates. To inform C about any added inputs, the most efficient way
for bloom filters is usually to just transmit the encrypted input and have C insert it into the
filter. Also, deleting inputs is only possible by using bloom filter variations with much larger
space requirements (cf. Section 2.3).

With cuckoo filters, all information, that is required to add a new item, is its fingerprint and
the index of one of its candidate buckets. As shown in Section 2.3, that information is enough
to calculate the second candidate bucket and perform relocations. The same information is
also sufficient to delete an item.

To find out how costly these updates are, consider the following extreme values: For a false
positive rate of ε= 10−9, fingerprints need to be 33 bits long. For a cuckoo filter with up to
one billion entries and a bucket size of b = 4, n= 228 buckets are required, wich means the
bucket indices are 28 bits long. These results show, that for any realistic cuckoo filter, the
amount of data per updated item that S has to send to C should be less than 64 bits. To update,
e.g., 100,000 items, less than 800 KB would need to be transmitted.

4.5.2 Compression of Sparse Cuckoo Filters

Another issue with updates, that was not considered in [KLS+17], is that both bloom and
cuckoo filters actually have limitations on how many additional items may safely be inserted.
For a bloom filter, the false positive rate increases, as more items are inserted. If a bloom
filter has the optimal size for a required ε, no more items can be inserted without breaking
that requirement.

For cuckoo filters, there is a strict limit on how many items they can hold. The only way to
support significant updates in the future is to start off with a large enough filter, that has a

32

lot of empty entries. Depending on the scenario, it might be reasonable to use a filter with
a capacity several times larger than NS. However, this would pose a significant overhead
during the setup phase.

This can be compensated by compressing the cuckoo filter during transmission. In fact, due
to their table structure, cuckoo filters can be compressed in a straight forward way. For each
entry, an additional bit is transmitted, indicating if that entry is empty or holds a fingerprint.
The entry itself is only transmitted, if it is not empty. Thus, the filter is reduced to a bit map
and a list of fingerprints, as illustrated by figure 4.2. To our knowledge, compressing cuckoo
filters in this way, has not been done before.

0 a

1 b

2

3 c d

4 e f

5 g

6 h i

7 j

1 0 0 0

0 0 1 0

0 0 0 0

1 1 0 0

0 0 1 1

1 0 0 0

1 0 1 0

0 1 0 0

(a, b, c, d, e,
f, g, h, i, j) +

Compression of a sparsely filled cuckoo filter

cuckoo filter

bit map list of fingerprints

Figure 4.2: Compression of a sparsely filled cuckoo filter.

For evaluating this method, consider a cuckoo filter with b = 4 and ε= 10−6, resulting in a
fingerprint size of 23 bits. To hold one million items, this filter would require n = 218 buckets,
or 220 entries. Its size would be 2,944 KB. This filter would have a very high load factor of
over 95%, meaning further insertions would be risky.

Now consider a similar filter with four times more space, i.e. 222 entries. Uncompressed,
this filter would obviously be four times larger. However, compressed it only requires
222 + 106 · 23 bits≈ 3, 320 KB. This is only about 13% larger than the original filter.

It should be noted that more efficient compression schemes are possible (although not used
in this work). The bit map requires one additional bit per entry, which is b bits per bucket.
However, the actual position of each fingerprint within a bucket is not important, so it would
be enough to just encode the number of fingerprints (0 to b) in each bucket, requiring only
log2(b+ 1) bits per bucket.

33

4 Optimizing PSI Protocols for Unequal Set Sizes

4.6 Smaller Cuckoo Filters for Efficient Private Contact Discovery

One of the most critical bottlenecks of the presented PSI protocols is the size of the cuckoo
filter that is transmitted during the setup phase. It is linear in NS , which, in some scenarios,
can easily be in the order of several millions. One such scenario is private contact discovery -
the main focus of this work.

This section explores how the cuckoo filter size can be reduced for private contact discovery,
but the results may also be interesting for other scenarios.

It is difficult to obtain exact user numbers for messenger apps. For Signal, the Google Play
Store simply states that it has been downloaded over five million times and Apple’s iTunes
does not provide any download statistics at all. WhatsApp claims to have over a billion
users.

For this section, consider a fictional messenger with 100 million users, so NS = 108. Also
consider a cuckoo filter with b = 4, n = 227 and ε = 10−6, which means it has space for up to
about half a billion contacts and each fingerprint requires 23 bits. Compressed (see section
4.5.2), this filter would be 4 · 227+ 108 · 23 bits≈ 338.2 MB, which is more than some users
might be willing to download solely for private contact discovery.

4.6.1 Adjusting false positive rate

One way of reducing the size of the cuckoo filter is to increase the false positive rate ε.
However, a too high value might undermine the users privacy. This is because in practice,
after both parties finish the PSI protocol, C will most likely reveal the intersection to S. This
is not only to eliminate false positives, but also to obtain additional information about these
contacts, e.g., what features they support. During this process, any false positive contacts
will be revealed to S.

It should also be noted that reducing the filter size like this by any significant amount, will
have a large impact on the false positive rate. For example, to reduce the size of a filter with
ε= 10−6 by about 50%, it is necessary to increase ε to 10−3, resulting in 1000 times more
false positives.

4.6.2 Splitting the Database into different regions

Many users only have contacts from their own country or continent. For those users, it seems
unnecessary to transmit the entire server database. Instead a smaller database containing
only users from a specific region can be transmitted. Before performing contact discovery,
users would select which regions their contacts are from. Since this might reveal more about
the user, than they are comfortable with, there should always be a ‘world wide’ option. The
regions could be countries, continents or anything else, like ‘Western Europe’. However, they

34

should not overlap, so that users do not end up downloading the same contacts multiple
times.

To see the effects of such a regional contact discovery, we need to know how app users might
be distributed across the world. SensorTower1 is a webservice, that collects statistics about
mobile apps, mainly for more efficient advertisement. Among those statistics are the shares of
users the app has in different countries. For the Signal messenger for Android, SensorTower
claims that, as of June 2018, the country with the largest share of users (25%) is the USA,
followed by Germany with 12% and Russia with 5%. Let us use these shares for our fictional
messengers.

If we simply apply these percentages to the original filter’s size, we end up with about 84.5
MB / 40.6 MB / 16.9 MB. However, the number of buckets in a cuckoo filter must always be a
power of two. Assuming that, like the original filter, each regional filter should have enough
space for at least five times the current number of users, this leads to actual (compressed)
filter sizes of 84.5 MB / 40.9 MB / 17.7 MB. Due to compression, the restrictions on the filter
size barely matter.

To put these results into perspective consider the amount of data users need to download
during the installation of a messenger. Signal on Android has a download size of around 30
MB. For users that are sensitive about their privacy, downloading a regional filter of similar
size should not be big hurdle.

4.7 Security

This section discusses the security of the presented PSI protocols. It explains why they
are secure against semi-honest adversaries and on what assumptions that security is based
(Section 4.7.1). It also shows why the protocols are secure even against malicious clients
(Section 4.7.2). Finally, Section 4.7.3 demonstrates that the protocols are not secure against
malicious servers, if C reveals the intersection to S.

4.7.1 Security against Semi-Honest Adversaries

This section argues about the security of NR-PSI and GC-PSI, against semi-honest adversaries,
similar to [KLS+17].

The security of NR-PSI was proven in [HL08] under the decisional Diffie-Hellman assumption.
This assumption requires that given random values a, b, c it is impossible to distinguish
(ga, g b, gab) from (ga, g b, g c). Additionally, for NR-PSI to be secure against semi-honest
adversaries, the OT protocol used must also offer that security. In this work, the OT extension

1https://sensortower.com/

35

https://sensortower.com/

4 Optimizing PSI Protocols for Unequal Set Sizes

protocol from [KOS15] is used, which is secure against semi-honest (and even malicious)
adversaries.

The security of GC-PSI depends on the generally accepted assumption that AES is secure as well
as on the security of garbled circuits, which was proven in [LP09]. Again, it is also required
that the OT protocol is secure against semi-honest adversaries.

4.7.2 Malicious Client

A malicious client differs from a semi-honest client in that it may deviate from the protocol
description arbitrarily, e.g., by manipulating messages sent to the server. As pointed out
in [KLS+17], for both protocols, the only opportunity for such a deviation is during OT
computation as these are the only instances where C sends any messages to S. By using the
malicious-secure OT extension protocol from [KOS15], both protocols are secured against
malicious clients.

4.7.3 Malicious Server

A malicious server can always perform certain trivial attacks, like executing the protocol with
a manipulated database. For example, in the malware detection scenario (see Section 1.1), S
could prevent a specific user from detecting an infection (maybe at the direction of a govern-
ment) by simply removing the corresponding entries from the encrypted database before trans-
mitting it. However, such attacks are possible with any PSI protocol.

This section focuses on how a malicious server might learn any of C ’s inputs that are not part
of the intersection. At first this appears impossible because S does not receive any output
from the PSI protocols at all. In fact, the only time S receives any information from C is
during OT extension, which is malicious-secure.

However, as mentioned in Section 4.6.1, in many practical implementations, after the PSI
protocol is completed, C will reveal the intersection to S. If S is capable of enforcing false
positives for some or all of C ’s inputs, S will learn these inputs as soon as C reveals them to
S. As shown in the following, enforcing false positives is very easy in both PSI protocols. In
fact, whenever C is trying to encrypt one of its inputs, yi , a malicious S can make sure that
the result is not the encrypted form of yi but in fact the encrypted form of a different input,
zi , which can be freely chosen by S.

NR-PSI During the online phase, while resolving the precomputed OTs, S sets R0
i, j = R1

i, j = ri, j .

This renders C ’s choices irrelevant and always leads to A′i being equal to
∏l

j=0 ri, j . Note that C

36

has no way of detecting this. S also does not send g̃i , but instead sends

ĝi = g̃ Âi
i where Âi =

l
∏

j=1

azi[j]
j

Now, when C calculates ĝ
A′i
i , A′i and r inv

i cancel out and the result is PRFa(z).

GC-PSI While encrypting one of C ’s inputs during the online phase, S would normally input
two different keys for each input wire, representing 0 and 1. C makes its choice, depending
on the input bit yi[j]. A malicious S however, can select one of the keys according to zi[j] and
input that key for both choices, practically replacing yi[j] with zi[j].

These results show, that both protocols are not secure against malicious servers if C reveals
the intersection.

37

5 Implementation

This chapter presents all software components that were implemented for this work to
evaluate the PSI protocols from Chapter 4.

All implementations were done within the ABY framework1. ABY implements different secure
two-party computation protocols as well as means to combine them [DSZ15]. For this work,
the relevant components from ABY are its implementation of Yao’s garbled circuit protocol, the
AES circuit implementation, the OT extension library2 (which can also be used separately) and
its utility library, which, among other things, offers cryptographic operations and networking
functionality.

For its garbled circuit implementation, ABY uses most of the optimizations listed in Sec-
tion 2.2.2, with the exception of pipelining. Also, ABY makes use of AES-NI (if avail-
able on the current platform) for AES operations (cf., Section 2.2.2, Fixed-Key Blockci-
pher).

This chapter starts with explaining the selected security parameters in Section 5.1. Section
5.2 shows our implementation of the malicious-secure OT extension scheme from [KOS15],
followed by our implementation of Cuckoo Filters in Section 5.3. Sections 5.4 and 5.5 present
our implementations of NR-PSI and GC-PSI, respectively. Section 5.6 discusses our test
application and its port to Android. Finally, Section 5.7 explains, how we integrated our
implementations into the Signal Android app.

5.1 Security Parameter Choices

For the malicious-secure OT extension protocol from [KOS15], we use κ= 128 bits as the
symmetric security parameter. This is the same choice as in [KLS+17] and according to
the NIST, it provides security beyond the year 2030 [Bar16]. This protocol also requires s
additional OTs, to prevent the checksums from leaking any information. In this work, we use
s = 64, which was also used in [KOS15].

For the PSI protocols, we use an input length of l = 128 bits and bring all inputs to that size
by hashing them with SHA-256 and truncating the result.

1https://github.com/encryptogroup/ABY
2https://github.com/encryptogroup/OTExtension

39

https://github.com/encryptogroup/ABY
https://github.com/encryptogroup/OTExtension

5 Implementation

In [KLS+17], the sizes of p and q were chosen as n = 2048 bits and m = 256 bits. According
to [Bar16], this choice for p is secure until 2030. For better comparison, we aim for the same
level of security as [KLS+17] and also chose n = 2048 bits. However, for q we choose m = 224
bits, which is in agreement with the NIST recommendations for this level of security. For long
term security, at least 3072 bits for p and 256 bits for q should be used.

5.2 Malicious-Secure OT Extension from [KOS15]

The OT extension library used by ABY only supported protocols with security against semi-
honest adversaries. An implementation of the malicious-secure protocol from [KOS15] can
be found in the libOTe3 library. However, that library heavily relies on Intel-specific machine
instructions and does not run on the ARM processors used in most smartphones. Because of
that, we added our own implementation of [KOS15] to ABY’s OT extension library, building
up on its implementation of the protocol from [IKNP03]. As described in Section 2.1.4,
the critical changes [KOS15] makes over [IKNP03] are the required checksums as well as s
additional OTs.

Efficient Checksums The performance critical parts of the checksum calculation are the
multiplications in the finite field F2κ . It was suggested in [KOS15], to use carry-less multiplica-
tions for these and to omit the following reduction by the finite field polynomial. This doubles
the checksum size but allows for much more efficient implementations.

On Intel platforms, the PCLMUL instruction can be used to perform carry-less multiplications
very efficiently. A documentation can be found in [GK10]. This was already suggested
in [KOS15] and is also used in libOTe. We have also included it in our implementation,
but it is only available on Intel platforms. For ARM, we had to write a software-based
version. The newer 64-bit ARMv8 architecture actually has hardware instructions for carry-
less multiplication [arm14]. We did not use these however, because our testing device has a
32-bit ARMv7 CPU.

Additional OTs The existing OT extension protocols in ABY’s library calculate the OTs in
chunks. This was described at the end of Section 2.1.1 in the context of parallelization, but in
ABY it is also used to reduce the maximum memory consumption. While they share the same
base OTs, each of these chunks can be regarded as an individual protocol execution. And
with [KOS15], they would also each need their own checksum verification and s additional
OTs. To avoid these OTs, we had to make sure that no chunk enters the final masking step,
before the checksums are verified. This means, the values used to generate the masks must
all remain in memory until that point.

3https://github.com/osu-crypto/libOTe

40

https://github.com/osu-crypto/libOTe

However, for multithreading we accept the small overhead of s additional OTs per thread.
This is a choice in favor of a cleaner implementation, without having to synchronize the
threads before the final masking step.

5.3 Cuckoo Filters

Bin Fan et al., the inventors of cuckoo filters, also offer an open source implementation4. It
focuses on efficiency while limiting flexibility. Instead of arbitrary false positive rates, only
certain fingerprint sizes are supported that allow for an efficient implementation. For this
reason, it was not used for this work. Still it served as a guideline for our own implementa-
tion.

Our implementation is based on a bit vector class that is part of ABY’s utility library. It allows
us to pack fingerprints of arbitrary size close together and handles any alignment issues
(when a fingerprint starts or ends in the middle of a byte). It minimizes memory consumption,
while slightly increasing computation costs. However, the cuckoo filters are not a bottleneck
in our PSI protocols, so we consider this an acceptable trade-off.

For all hashing operations in our cuckoo filters, we use SHA-256, truncated to the desired
length.

5.4 NR-PSI

For the most part, the implementation of NR-PSI is straightforward. For the modular arithmetic
operations, the GNU Multiple Precision Arithmetic Library (GMP)5 is used, which was already
a dependency of ABY. Network communication was realized with the help of ABY’s utility
library.

Multithreading To increase performance of NR-PSI, multithreading support was included
in the base and online phase, as these are the only phases that pose any significant compu-
tation costs. With the improvements from Section 4.3.3, the base phase only performs OT
precomputation. Here we use the existing multithreading support of the OT extension library.
For the online phase, each input is processed independently. Thus, the work can easily be
split into multiple threads.

4https://github.com/efficient/cuckoofilter
5https://gmplib.org/

41

https://github.com/efficient/cuckoofilter
https://gmplib.org/

5 Implementation

5.5 GC-PSI

For GC-PSI, we use the AES circuit implementation that already comes with ABY. It is con-
structed as shown in [HS13], using 5,120 AND gates. It also uses ABY’s SIMD feature, where
one circuit can be used to process multiple inputs. This slightly improves performance, e.g.,
by calculating the base OTs, for the OT extension protocol, only once.

We use this feature in our implementation, to make the number of inputs per circuit freely
configurable. However, this can lead to wasted resources. If, for example, the circuits,
constructed in the base phase, are designed to process 100 inputs, but the client only has 50
inputs during the online phase, it still must ‘use up’ an entire circuit.

In practice, if NC is known during the base phase, we suggest constructing one circuit for
these NC inputs, that will be used in the first online phase, and N max

C −NC single-input circuits
for future protocol runs.

Splitting Circuit Execution When executing a garbled circuit in ABY, encryption and evalu-
ation are tied together and cannot be run separately. For this work, it was necessary to split
up this process and perform the encryption in the base phase and the evaluation in the online
phase.

Internally, ABY already splits the execution into an offline and an online phase. However, this
did not quite fit our needs. In addition to making this split available from the outside, we
had to apply two more changes. First, we moved the transmission of the garbler’s (i.e., S’s)
input keys from online to offline phase. These keys represent S’s expanded AES key, which
never changes, so there is no need to delay their transmission to the online phase. Second,
we added a way to set the evaluator’s (i.e., C ’s) input between offline an online phase instead
of during circuit construction.

Construction / Destruction Overhead In ABY, it is not possible to reuse the same structure
for multiple circuits. It is possible to reuse a circuit after it has been evaluated, but that is of no
use to us. When creating multiple circuits in the base phase, each circuit must be created from
scratch. Since each added gate performs its own memory allocations, circuit construction takes
a very long time (up to a second per circuit, even longer on smartphones). To a smaller extent,
this is also true for the destruction of used circuits in the online phase.

Moreover, the large amount of memory allocations severely limits the number of circuits that
can exist at the same time. For example, more than a handful of circuits are enough to crash
our implementation on Android.

In a production-ready implementation, the circuit structure would only be built once, probably
at program start. When constructing a new circuit instance, only one buffer for all keys would
have to be allocated.

42

Because this overhead is ABY specific and not fundamental to GC-PSI, we remove the con-
struction and destruction times from our measurements in Chapter 6.

Multithreading For parallelization we use ABY’s multithreading feature. However, as we
found out during our evaluation, this only applies to the OT extension protocol, not the
encryption or evaluation of the circuit itself. Unfortunately, when we noticed this, we did not
have enough time to change our code. Thus, our GC-PSI implementation is practically not
parallelized.

5.6 Test Application

In this section we describe our test application, which we used to perform the evaluation in
Chapter 6. The following sections explain our initial command line application, as well as its
Android port.

5.6.1 Command-Line Application

Our command-line application is written as an ABY project and can act as server or client.

The server side can connect to multiple clients at the same time and most configuration is
done on the client. This is useful, because it allows us to test different parameters without
restarting the server. Clients can even choose the PSI protocol, because the server keeps two
encrypted database at the same time, one for each protocol.

The different phases can be triggered individually on the client side at any time and after each
phase, both parties display the required runtime and communication.

For both parties, inputs can be added or removed at any point, by providing a file with a list
of inputs.

For NR-PSI, our client can also store a session to persistent memory and then reload it later.
This includes the cuckoo filter as well as the resources generated during the base phase.
Unfortunately, ABY does not support storing and loading of garbled circuits, so we cannot
support this feature for GC-PSI.

5.6.2 Port to Android

ABY’s code is architecture independent, so it runs on ARM without any modifications. The
larger hurdle was to integrate ABY into Androids build process for native code. At the time
we created our implementation, ABY could only be built via a rather complicated makefile.
To make ABY compatible with the Android NDK, we created a suitable CMake script. For the

43

5 Implementation

dependent libraries, openssl and gmp, we used existing precompiled versions for Android6,7.
We wrote a detailed manual, that allows others to effortlessly integrate ABY into their Android
app.

From our test application, we only brought the client side to Android. Instead of reading inputs
from files, our app reads the phone numbers from the device’s address book and uses them as
inputs. It also registers the device’s own phone number in the server database when the client
establishes a connection, so that it can be discovered by other clients.

In general, the app offers the same features as the command line application, although
through a graphical UI, which is shown in Figure 5.1.

(a) Choose parameters. (b) Trigger phases and display
measurements.

(c) Show matches.

Figure 5.1: Screenshots of the PSI test application on Android.

5.7 Signal Integration

This chapter describes how we integrated our PSI protocol implementations into the Signal
Android app.

Due to time constraints and because setting up our own Signal server proved to be more
difficult than expected, we decided against integrating our protocols into Signal’s server.

6https://github.com/r4sas/OpenSSL-1.1-Android-Prebuilt
7https://github.com/Rupan/gmp

44

https://github.com/r4sas/OpenSSL-1.1-Android-Prebuilt
https://github.com/Rupan/gmp

Instead, the modified app executes our protocol first. The resulting intersection is then used
as input for Signal’s own contact discovery protocol.

Note that a very similar approach would have been necessary, even if we integrated our
protocol into the Signal server. In Signal’s current hashing-based contact discovery protocol,
the server does not only send the intersection to the client, but also additional information
about each matching contact [Ope14a]. To obtain this information with our PSI protocols,
the clients would have to send the matching contacts to the server, which would then
not only respond with the additional information, but also inform the client about which
contacts were actually found in the database, to eliminate false positives. This additional
step is basically what we are doing when we input the intersection into Signal’s own contact
discovery.

The most important addition to Signal’s code base, aside from copying most of the code
from our test app, is a helper class, which manages sessions (i.e., storing/loading the cuckoo
filter and resources to/from persistent memory) and automatically runs the necessary phases,
given only a list of inputs. Because of the limitations of our GC-PSI implementation (see
Section 5.5), the helper always uses NR-PSI. For the first base phase, N max

C =max(NC , 1000)
is chosen and if the resources ever run out, a new base phase is run automatically. The actual
integration of our protocols into Signal’s contact discovery scheme is done with only a single
line of code, where we take the list of phone numbers, Signal has prepared, pass it to our
helper class and finally replace it with the obtained intersection.

These changes are completely transparent to the user, which demonstrates the practicality
of our implementation. Only two changes to the UI were made and those are only for
debugging purposes. In the user registration process on first app start, we added input fields
for IP-address and port of our PSI server. This is merely for our convenience. Also, we
added a small Toast message that is displayed after every run of our PSI protocol and shows
how much time and communication was required. These changes can be seen in Figure
5.2.

45

5 Implementation

(a) Specify PSI server. (b) Show required runtime and commu-
nication.

Figure 5.2: UI changes to Signal.

46

6 Evaluation

Here we present the evaluation results for our implementations from Chapter 5.

This chapter begins with describing our test scenarios in Section 6.1. The evaluation of our
implementation of the malicious-secure OT extension protocol from [KOS15] is given in
Section 6.2. Section 6.3 evaluates the construction of the encrypted database. Setup and
update phase are evaluated together in Section 6.4, because their performance depends on
the same parameters. The same is true for base and online phase, which are evaluated in
Section 6.5.

6.1 Test Scenarios

In all our tests we used the same desktop computer to run the server. It uses an Intel i5-4570
CPU with 3.2 GHz. The server is run inside a virtual machine (using VirtualBox1) with Linux
Mint as the operating system. The virtual machine uses four cores and 5 GB of RAM. AES-NI
is available inside the virtual machine.

For our client device, we distinguish the following three scenarios:

LAN The client device is a laptop with an Intel i5-2430M CPU with 2.4 GHz and is connected
via 100 Mbit Ethernet to the same LAN as the desktop computer that runs the server. The
client runs inside a virtual machine with two cores and 4 GB of RAM. This setting has the
lowest communication overhead.

WiFi The client is a Samsung Galaxy S3 with a quad-core 1.4 GHz Cortex-A9 CPU. It is
connected to the server via WiFi (IEEE 802.11 n, 72 Mbps). This scenario, with moderate
communication overhead, is especially relevant for the rather communication intensive first
protocol run, because users may not want to download that much data over their mobile
network.

1https://www.virtualbox.org/

47

https://www.virtualbox.org/

6 Evaluation

MobileNetwork This scenario uses the same Samsung Galaxy S3 as the WiFi scenario. Here
however, the smartphone connects to the server via its mobile network, which is a 3G network
with HSPA+. This is not only the scenario with the lowest bandwidth (8 Mbps download /
2.8 Mbps upload), but it also has the highest latency at 75 ms.

6.2 Evaluating OT extension

This section compares our implementation of the malicious secure OT extension protocol from
[KOS15] to the implementation of [IKNP03], that comes with ABY’s OT extension library. As
the communication overhead is well defined and, for large numbers of OTs, neglible, we only
focus on computation time here. To further highlight the differences in computation, we only
consider the LAN scenario, where communication costs are smallest.

As OT flavor, we chose R-OT because this skips the final masking step that would be equal for
both protocols. The OT precomputations in our implementations of the PSI protocols also
use R-OT.

For the checksum calculations, we test both the hardware based implementation, that uses In-
tel’s PCLMUL instruction, as well as our software based implementation.

Each experiment was repeated 10 times. The average results are shown in Table 6.1. All
protocols show very similar performance. Our software implementation does not seem to
introduce a large overhead, compared to using hardware instructions.

For large OT numbers, the malicious secure protocol is slightly slower, due to the addition
of checksums. However, for smaller numbers, it is, surprisingly, faster than the semi-honest
protocol. We have repeated the tests to make sure that this is not a random fluctuation. We do
not fully understand the reason for this result. We can only speculate that it is caused by our
changes to how chunks are handled (see Section 5.2 Additional OTs).

Number of OTs 10,000 100,000 1,000,000 10,000,000

[IKNP03] 107.9 619.3 4,773 42,509
[KOS15] 103.4 596.8 4,957 47,348
[KOS15] with PCLMUL 96.3 575.6 4,945 47,137

Table 6.1: Runtime of R-OT extension protocol in milliseconds.

6.3 Generating the Encrypted Database

In our implementation, the server database is encrypted outside the actual PSI protocols.
However, some implementations could choose to use a different secret key for each client

48

and encrypt the database in every setup phase. One reason for this could be that the server
provides customized databases for each client and wants to prevent clients from figuring out
how similar their databases are.

For each protocol we measured the time it took to hash and encrypt 10 million inputs. We also
measured the time necessary to insert the encrypted items into cuckoo filters with different
false positive rates. Each filter had n= 224 buckets of size b = 4. Because the ciphertexts in
NR-PSI are longer than in GC-PSI, the insertion also takes more time. The results are shown
in Table 6.2.

Hash & Encryption
Insertion into cuckoo filter

ε= 10−3 ε= 10−6 ε= 10−9

NR-PSI 4,828,446 11,010 11,198 11,301
GC-PSI 3,314 3,750 3,815 3,977

Table 6.2: Times in milliseconds required to build the encrypted database.

Our results are for a single-threaded implementation, but since each item can be encrypted
independently from the others, a highly efficient multi-threaded implementation would be
possible. For the insertion into the cuckoo filter, at least the generation of fingerprints and
bucket indices can be parallelized.

6.4 Evaluation of Setup and Update Phase

The setup and update phase are the only phases in both PSI protocols that depend on the
false positive rate ε of the cuckoo filter. For that reason, they are evaluated together in this
section.

As in Section 6.3, we chose n = 224 and b = 4 for the cuckoo filters. In the update phase,
we insert 100,000 new items into the filters. To account for any implementation specific
overhead, not only did we measure the runtime, but also the number of transmitted bytes,
instead of using theoretic values.

Table 6.3 shows the communication costs, while Table 6.4 shows the runtimes for all three
scenarios.

Setup Phase Update Phase
False positive rate 10−3 10−6 10−9 10−3 10−6 10−9

Data transmitted 23.497 MB 35.418 MB 47.34 MB 452 KB 574 KB 696 KB

Table 6.3: Communication for setup and update phase.

49

6 Evaluation

Setup Phase Update Phase
False positive rate 10−3 10−6 10−9 10−3 10−6 10−9

LAN 6,142 8,644 10,993 145 166 187
WiFi 11,235 14,143 18,605 344 366 435
mobile 34,077 49,788 74,556 2,747 2807 3269

Table 6.4: Runtimes in milliseconds for setup and update phase.

Even though our cuckoo filters have space for five times their current number of items, in their
compressed form they are smaller (in relation to NS) than the bloom filters used in [KLS+17].
Also, their results for update sizes are multiple times larger than ours.

Compression Overhead We have observed that our implementation of cuckoo filter com-
pression and decompression introduces a noticeable computation overhead, especially on the
smartphone. Our findings are given it Table 6.5. To minimize this overhead in future imple-
mentations, we suggest a streaming approach, where parts of the filter are compressed/de-
compressed while other parts are still transmitted. We believe that the overhead can be nearly
eliminated this way, reducing the setup phase runtimes accordingly.

False positive rate 10−3 10−6 10−9

Compression on Desktop 1,086 1,252 1,416
Decompression on Laptop 598 759 875
Decompression on Smartphone 3,442 4,240 5,081

Table 6.5: Cuckoo filter compression and decompression times in milliseconds.

6.5 Evaluation of Base and Online Phase

Base and online phase are evaluated together in this section, because they depend on the
same parameters, namely the number of threads and, for GC-PSI, the number of inputs per
circuit.

For NR-PSI we ran both phases with N max
C = NC = 1000 inputs. As mentioned in Section 5.5,

our GC-PSI implementation only supports a small number of circuits, so we only used five
circuits at a time for our measurements. Also, we removed the ABY specific construction and
destruction overhead from our results.

To see the effects of different input numbers per circuit, we ran our tests once for single-input
circuits and once for circuits with 10 inputs. We refer to the later variant as GC-PSI-10 in the
tables.

50

All results in this chapter are given relative to a single input. This is because both base and
online phase are mostly linear in the number of inputs (except for the calculation of base OTs
in the base phase).

Table 6.6 shows the communication costs for each phase and protocol. All results come from
measurements and are not theoretic values. Tables 6.7, 6.8 and 6.9 show the runtimes in the
LAN, WiFi and mobile network scenario, respectively.

Base Phase Online Phase

NR-PSI 2,041 3,874
GC-PSI 497,372 4,121
GC-PSI-10 200,894 4,113

Table 6.6: Communication in base and online phase. All results are given in bytes per item.

Base Phase Online Phase
Threads 1 2 1 2

NR-PSI 0.950 0.901 0.923 0.778
GC-PSI 144 140 63 60
GC-PSI-10 45 44 8 8

Table 6.7: Runtimes in milliseconds for base and online phase in the LAN scenario.

Base Phase Online Phase
Threads 1 2 1 2

NR-PSI 2.277 1.697 4 2.235
GC-PSI 126 129 52.2 49
GC-PSI-10 59 61 12 16

Table 6.8: Runtimes in milliseconds for base and online phase in the WiFi scenario.

The communication costs for GC-PSI appear to be abnormally large. This is because, in ABY,
each circuit runs its own OT extension protocol, including base OTs. This is an unnecessary
overhead and unfortunately it also makes the runtimes much larger than necessary. ABY’s
SIMD feature mitigates these effects to some degree in GC-PSI-10. Overall, the results for
GC-PSI and GC-PSI-10 are far worse than those for NR-PSI. According to [KLS+17], GC-PSI
should, at least in the LAN setting, where both devices support AES-NI, have a much faster
online phase. We assume that, despite our efforts, we were not able to fully eliminate ABY’s
implementation specific overhead from our measurements.

For NR-PSI, all our runtimes are a multiple times smaller than those presented in [KLS+17].

51

6 Evaluation

Base Phase Online Phase
Threads 1 2 1 2

NR-PSI 9.300 9.052 5.070 5.738
GC-PSI 1,062 1050 244 228
GC-PSI-10 322 293 51 54

Table 6.9: Runtimes in milliseconds for base and online phase in the mobile network scenario.

Multithreading For NR-PSI, the benefits of multithreading are most noticeable in the WiFi
scenario. For mobile networks, the communication takes so much time, that computational
improvements have less of an impact. In the LAN scenario, even though communication is
much faster, the client has enough computation power to make communication the bottleneck
again. We conclude that multithreading is only useful in certain scenarios. But given the
ease of its implementation and its substantial benefit under the right conditions, we certainly
recommend it for any practical implementation.

For GC-PSI, multithreading shows no benefits. As mentioned in Section 5.5, this is a flaw
in our implementation. We expect that in the online phase, proper multithreading can
lead to improvements similar to the results for NR-PSI. Because the base phase for GC-
PSI is so communication heavy, we do not expect significant benefits through multithread-
ing.

52

7 Conclusion

We have motivated the need for efficient PSI protocols for unequal set sizes with a survey, show-
ing that private contact discovery protocols used in practice offer little privacy.

We have presented several improvements for two existing PSI protocols and made them
secure against malicious clients.

We have implemented these protocols within the ABY framework and have ported our
implementation to Android. We also integrated it into the Signal messenger app. Together
with the results from our evaluation, this integration demonstrates that the protocols can be
used in practice.

A remaining bottleneck is the encrypted database transmitted during the first protocol run.
While we suggested several ways to reduce its size, our current protocols would not scale
well for messengers like WhatsApp with over a billion users. We leave this point as future
work.

53

List of Figures

2.1 Garbled circuits: AND-gate encryption . 11
2.2 Cuckoo hash table insertion . 14

4.1 Phases of the PSI protocols . 28
4.2 Compression of a sparsely filled cuckoo filter. 33

5.1 Screenshots of the PSI test application on Android. 44
5.2 UI changes to Signal. 46

List of Tables

3.1 Survey results summary . 23

4.1 Notation for PSI protocols . 26

6.1 Runtime of R-OT extension protocol in milliseconds. 48
6.2 Times in milliseconds required to build the encrypted database. 49
6.3 Communication for setup and update phase. 49
6.4 Runtimes in milliseconds for setup and update phase. 50
6.5 Cuckoo filter compression and decompression times in milliseconds. 50
6.6 Communication in base and online phase. 51
6.7 Base and online phase runtimes in LAN setting. 51
6.8 Base and online phase runtimes in WiFi setting. 51
6.9 Base and online phase runtimes in mobile network setting. 52

Bibliography

[ALSZ13] G. ASHAROV, Y. LINDELL, T. SCHNEIDER, M. ZOHNER. “More efficient oblivious
transfer and extensions for faster secure computation”. In: Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security. ACM.
2013, pp. 535–548 (cit. on pp. 5, 7, 10, 12).

[ALSZ15] G. ASHAROV, Y. LINDELL, T. SCHNEIDER, M. ZOHNER. “More efficient oblivious
transfer extensions with security for malicious adversaries”. In: Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2015, pp. 673–701 (cit. on p. 9).

[ALSZ17] G. ASHAROV, Y. LINDELL, T. SCHNEIDER, M. ZOHNER. “More efficient oblivious
transfer extensions”. In: Journal of Cryptology 30.3 (2017), pp. 805–858 (cit.
on pp. 5, 7).

[arm14] ARM. ARM Compiler armasm Reference Guide: PMULL, PMULL2 (vector). 2014.
URL: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.dui0802b/PMULL_advsimd_vector.html (visited on 07/19/2018) (cit.
on p. 40).

[Bar16] E. BARKER. “National Institute of Standards and Technology Special Publi-
cation 800-57 Part 1, Revision 4. Recommendation for Key Management”.
In: enero de (2016) (cit. on pp. 39 sq.).

[Bea95] D. BEAVER. “Precomputing oblivious transfer”. In: Annual International
Cryptology Conference. Springer. 1995, pp. 97–109 (cit. on p. 8).

[Bea96] D. BEAVER. “Correlated pseudorandomness and the complexity of private
computations”. In: Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing. ACM. 1996, pp. 479–488 (cit. on p. 5).

[BHKR13] M. BELLARE, V. T. HOANG, S. KEELVEEDHI, P. ROGAWAY. “Efficient garbling from
a fixed-key blockcipher”. In: Security and Privacy (SP), 2013 IEEE Symposium
on. IEEE. 2013, pp. 478–492 (cit. on p. 13).

[Blo70] B. H. BLOOM. “Space/time trade-offs in hash coding with allowable errors”.
In: Communications of the ACM 13.7 (1970), pp. 422–426 (cit. on p. 15).

[BMR90] D. BEAVER, S. MICALI, P. ROGAWAY. “The round complexity of secure proto-
cols”. In: Proceedings of the twenty-second annual ACM symposium on Theory of
computing. ACM. 1990, pp. 503–513 (cit. on p. 12).

55

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0802b/PMULL_advsimd_vector.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0802b/PMULL_advsimd_vector.html

Bibliography

[BP10] J. BOYAR, R. PERALTA. “A new combinational logic minimization technique
with applications to cryptology”. In: International Symposium on Experimental
Algorithms. Springer. 2010, pp. 178–189 (cit. on p. 31).

[CHK+12] S. G. CHOI, K.-W. HWANG, J. KATZ, T. MALKIN, D. RUBENSTEIN. “Secure multi-
party computation of boolean circuits with applications to privacy in on-
line marketplaces”. In: Cryptographers’ Track at the RSA Conference. Springer.
2012, pp. 416–432 (cit. on p. 10).

[CLR17] H. CHEN, K. LAINE, P. RINDAL. “Fast private set intersection from homo-
morphic encryption”. In: Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM. 2017, pp. 1243–1255 (cit. on
p. 4).

[CO15] T. CHOU, C. ORLANDI. “The simplest protocol for oblivious transfer”. In:
International Conference on Cryptology and Information Security in Latin America.
Springer. 2015, pp. 40–58 (cit. on pp. 5 sq.).

[Con17] CONFIDE, INC. Confide privacy policy. 2017. URL: https://getconfide.com/
privacy (visited on 05/03/2018) (cit. on p. 20).

[Deu14] DEUTSCHE POST AG. SIMSme privacy policy. 2014. URL: https://www.sims.
me/data-protection (visited on 05/03/2018) (cit. on p. 21).

[Dis17] DISTRICT COURT BAD HERSFELD. Court order from 20th March 2017, file
number F 111/17 EASO. 2017. URL: https://www.jurion.de/urteile/ag-
bad_hersfeld/2017-03-20/f-111_17-easo/ (visited on 04/30/2018)
(cit. on p. 1).

[DRRT18] D. DEMMLER, P. RINDAL, M. ROSULEK, N. TRIEU. “PIR-PSI: Scaling Private
Contact Discovery”. In: (2018) (cit. on p. 4).

[DSZ15] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “ABY-A Framework for Efficient
Mixed-Protocol Secure Two-Party Computation.” In: NDSS. 2015 (cit. on
p. 39).

[DW07] M. DIETZFELBINGER, C. WEIDLING. “Balanced allocation and dictionaries
with tightly packed constant size bins”. In: Theoretical Computer Science
380.1-2 (2007), pp. 47–68 (cit. on p. 13).

[EC16] EUROPEAN PARLIAMENT, COUNCIL OF THE EUROPEAN UNION. General Data
Protection Regulation. 2016. URL: https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=celex%3A32016R0679 (visited on 04/25/2018) (cit.
on p. 17).

[EGL85] S. EVEN, O. GOLDREICH, A. LEMPEL. “A randomized protocol for signing
contracts”. In: Communications of the ACM 28.6 (1985), pp. 637–647 (cit. on
p. 5).

[ELE] ELEET LP. Eleet privacy policy. URL: https://eleet.im/privacy/ (visited
on 05/03/2018) (cit. on p. 20).

56

https://getconfide.com/privacy
https://getconfide.com/privacy
https://www.sims.me/data-protection
https://www.sims.me/data-protection
https://www.jurion.de/urteile/ag-bad_hersfeld/2017-03-20/f-111_17-easo/
https://www.jurion.de/urteile/ag-bad_hersfeld/2017-03-20/f-111_17-easo/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32016R0679
https://eleet.im/privacy/

Bibliography

[FAKM14] B. FAN, D. G. ANDERSEN, M. KAMINSKY, M. D. MITZENMACHER. “Cuckoo filter:
Practically better than bloom”. In: Proceedings of the 10th ACM International
on Conference on emerging Networking Experiments and Technologies. ACM. 2014,
pp. 75–88 (cit. on pp. 3 sq., 13 sqq.).

[FCAB00] L. FAN, P. CAO, J. ALMEIDA, A. Z. BRODER. “Summary cache: a scalable wide-
area web cache sharing protocol”. In: IEEE/ACM transactions on networking
8.3 (2000), pp. 281–293 (cit. on p. 15).

[G D17] G DATA SOFTWARE AG. G DATA Secure Chat repository. 2017. URL: https:
//github.com/GDATASoftwareAG/SecureChat (visited on 05/03/2018) (cit.
on p. 21).

[GK10] S. GUERON, M. E. KOUNAVIS. “Intel R⃝ carry-less multiplication instruction
and its usage for computing the GCM mode”. In: White Paper (2010) (cit. on
p. 40).

[GMW87] O. GOLDREICH, S. MICALI, A. WIGDERSON. “How to play any mental game”.
In: Proceedings of the nineteenth annual ACM symposium on Theory of computing.
ACM. 1987, pp. 218–229 (cit. on p. 10).

[Gue10] S. GUERON. “Intel R⃝ Advanced Encryption Standard (AES) New Instruc-
tions Set”. In: Intel Corporation (2010) (cit. on p. 13).

[Ham18] HAMBURG HIGHER ADMINISTRATIVE COURT. Press Release on file number 5 Bs
93/17. 2018. URL: https://justiz.hamburg.de/aktuelles/10550476/
pressemitteilung/ (visited on 04/24/2018) (cit. on p. 1).

[HEKM11] Y. HUANG, D. EVANS, J. KATZ, L. MALKA. “Faster Secure Two-Party Computa-
tion Using Garbled Circuits.” In: USENIX Security Symposium. Vol. 201. 1.
2011, pp. 331–335 (cit. on p. 13).

[HL08] C. HAZAY, Y. LINDELL. “Efficient Protocols for Set Intersection and Pattern
Matching with Security Against Malicious and Covert Adversaries”. In:
(2008) (cit. on pp. 25, 28, 35).

[Hoc] HOCCER BETRIEBS GMBH. Hoccer Privacy & Security Statement. URL: https:
//hoccer.com/hoccer-xo-privacy-security-statement/ (visited on
05/03/2018) (cit. on p. 21).

[HS13] W. HENECKA, T. SCHNEIDER. “Faster secure two-party computation with less
memory”. In: Proceedings of the 8th ACM SIGSAC symposium on Information,
computer and communications security. ACM. 2013, pp. 437–446 (cit. on pp. 31,
42).

[IKNP03] Y. ISHAI, J. KILIAN, K. NISSIM, E. PETRANK. “Extending oblivious transfers
efficiently”. In: Annual International Cryptology Conference. Springer. 2003,
pp. 145–161 (cit. on pp. 5, 9, 40, 48).

[IR89] R. IMPAGLIAZZO, S. RUDICH. “Limits on the provable consequences of one-
way permutations”. In: Proceedings of the twenty-first annual ACM symposium
on Theory of computing. ACM. 1989, pp. 44–61 (cit. on p. 5).

57

https://github.com/GDATASoftwareAG/SecureChat
https://github.com/GDATASoftwareAG/SecureChat
https://justiz.hamburg.de/aktuelles/10550476/pressemitteilung/
https://justiz.hamburg.de/aktuelles/10550476/pressemitteilung/
https://hoccer.com/hoccer-xo-privacy-security-statement/
https://hoccer.com/hoccer-xo-privacy-security-statement/

Bibliography

[KGG+18] P. KOCHER, D. GENKIN, D. GRUSS, W. HAAS, M. HAMBURG, M. LIPP, S. MANGARD, T.
PRESCHER, M. SCHWARZ, Y. YAROM. “Spectre attacks: Exploiting speculative
execution”. In: arXiv preprint arXiv:1801.01203 (2018) (cit. on p. 4).

[KK13] V. KOLESNIKOV, R. KUMARESAN. “Improved OT extension for transferring short
secrets”. In: Advances in Cryptology–CRYPTO 2013. Springer, 2013, pp. 54–70
(cit. on pp. 5, 9).

[KKRT16] V. KOLESNIKOV, R. KUMARESAN, M. ROSULEK, N. TRIEU. “Efficient batched
oblivious PRF with applications to private set intersection”. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM. 2016, pp. 818–829 (cit. on p. 2).

[KLS+17] Á. KISS, J. LIU, T. SCHNEIDER, N. ASOKAN, B. PINKAS. “Private set intersection
for unequal set sizes with mobile applications”. In: Proceedings on Privacy
Enhancing Technologies 2017.4 (2017), pp. 177–197 (cit. on pp. 2 sq., 15, 25,
27 sq., 31 sq., 35 sq., 39 sq., 50 sq.).

[KOS15] M. KELLER, E. ORSINI, P. SCHOLL. “Actively secure OT extension with optimal
overhead”. In: Annual Cryptology Conference. Springer. 2015, pp. 724–741
(cit. on pp. 9, 28, 31, 36, 39 sq., 47 sq.).

[KS08] V. KOLESNIKOV, T. SCHNEIDER. “Improved garbled circuit: Free XOR gates
and applications”. In: International Colloquium on Automata, Languages, and
Programming. Springer. 2008, pp. 486–498 (cit. on p. 12).

[Lar18] LARGE-SCALE DATA & SYSTEMS (LSDS) GROUP. Spectre attack against SGX
enclave. 2018. URL: https://github.com/lsds/spectre-attack-sgx
(visited on 07/22/2018) (cit. on p. 4).

[LP09] Y. LINDELL, B. PINKAS. “A proof of security of Yao’s protocol for two-party
computation”. In: Journal of Cryptology 22.2 (2009), pp. 161–188 (cit. on
p. 36).

[NPS99] M. NAOR, B. PINKAS, R. SUMNER. “Privacy preserving auctions and mecha-
nism design”. In: Proceedings of the 1st ACM conference on Electronic commerce.
ACM. 1999, pp. 129–139 (cit. on p. 12).

[NR04] M. NAOR, O. REINGOLD. “Number-theoretic constructions of efficient pseudo-
random functions”. In: Journal of the ACM (JACM) 51.2 (2004), pp. 231–262
(cit. on p. 28).

[OOS17] M. ORRÙ, E. ORSINI, P. SCHOLL. “Actively secure 1-out-of-n OT extension
with application to private set intersection”. In: Cryptographers’ Track at the
RSA Conference. Springer. 2017, pp. 381–396 (cit. on p. 9).

[Ope] OPEN WHISPER SYSTEMS. Signal privacy policy. URL: https://signal.org/
signal/privacy/ (visited on 05/03/2018) (cit. on p. 21).

[Ope14a] OPEN WHISPER SYSTEMS. Signal API Protocol. 2014. URL: https://github.
com/signalapp/Signal-Server/wiki/API-Protocol (visited on 05/13/2018)
(cit. on pp. 21, 45).

58

https://github.com/lsds/spectre-attack-sgx
https://signal.org/signal/privacy/
https://signal.org/signal/privacy/
https://github.com/signalapp/Signal-Server/wiki/API-Protocol
https://github.com/signalapp/Signal-Server/wiki/API-Protocol

Bibliography

[Ope14b] OPEN WHISPER SYSTEMS. The Difficulty Of Private Contact Discovery. 2014. URL:
https://signal.org/blog/contact-discovery/ (visited on 05/13/2018)
(cit. on p. 19).

[PR04] R. PAGH, F. F. RODLER. “Cuckoo hashing”. In: Journal of Algorithms 51.2
(2004), pp. 122–144 (cit. on p. 13).

[PSSW09] B. PINKAS, T. SCHNEIDER, N. P. SMART, S. C. WILLIAMS. “Secure two-party
computation is practical”. In: International Conference on the Theory and
Application of Cryptology and Information Security. Springer. 2009, pp. 250–267
(cit. on p. 31).

[PSSZ15] B. PINKAS, T. SCHNEIDER, G. SEGEV, M. ZOHNER. “Phasing: Private Set Inter-
section Using Permutation-based Hashing.” In: USENIX Security Symposium.
Vol. 15. 2015, pp. 515–530 (cit. on p. 2).

[PSZ14] B. PINKAS, T. SCHNEIDER, M. ZOHNER. “Faster Private Set Intersection Based
on OT Extension.” In: USENIX Security Symposium. Vol. 14. 2014, pp. 797–
812.

[PSZ18] B. PINKAS, T. SCHNEIDER, M. ZOHNER. “Scalable private set intersection
based on OT extension”. In: ACM Transactions on Privacy and Security (TOPS)
21.2 (2018), p. 7 (cit. on pp. 2, 4).

[RA18] A. C. D. RESENDE, D. F. ARANHA. “Faster Unbalanced Private Set Intersection”.
In: Journal of Internet Services and Applications 9.1 (2018), pp. 1–18 (cit. on
p. 4).

[Rab81] M. O. RABIN. “How to Exchange Secrets with Oblivious Transfer”. In: (1981)
(cit. on p. 5).

[Rad16] RADICAL APP, LLC. Dust privacy policy. 2016. URL: https://usedust.com/
privacy-policy (visited on 05/03/2018) (cit. on p. 20).

[Row14] S. ROWLANDS. “Mobile messaging: War of the words”. In: White Paper (2014)
(cit. on p. 1).

[SHS+15] E. M. SONGHORI, S. U. HUSSAIN, A.-R. SADEGHI, T. SCHNEIDER, F. KOUSHANFAR.
“Tinygarble: Highly compressed and scalable sequential garbled circuits”.
In: Security and Privacy (SP), 2015 IEEE Symposium on. IEEE. 2015, pp. 411–
428 (cit. on p. 12).

[SWG+17] M. SCHWARZ, S. WEISER, D. GRUSS, C. MAURICE, S. MANGARD. “Malware guard
extension: Using SGX to conceal cache attacks”. In: International Conference
on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer.
2017, pp. 3–24 (cit. on p. 4).

[SZ13] T. SCHNEIDER, M. ZOHNER. “GMW vs. Yao? Efficient secure two-party com-
putation with low depth circuits”. In: International Conference on Financial
Cryptography and Data Security. Springer. 2013, pp. 275–292 (cit. on p. 10).

[Tel] TELEGRAM MESSENGER LLP. Telegram privacy policy. URL: https://telegram.
org/privacy (visited on 05/03/2018) (cit. on p. 22).

59

https://signal.org/blog/contact-discovery/
https://usedust.com/privacy-policy
https://usedust.com/privacy-policy
https://telegram.org/privacy
https://telegram.org/privacy

Bibliography

[Thr18a] THREEMA GMBH. Threema Cryptography Whitepaper. 2018. URL: https://
threema.ch/press-files/2_documentation/cryptography_whitepaper.
pdf (visited on 06/25/2018) (cit. on p. 22).

[Thr18b] THREEMA GMBH. Threema privacy policy. 2018. URL: https://threema.ch/
en/privacy (visited on 05/03/2018) (cit. on p. 22).

[TLP+17] S. TAMRAKAR, J. LIU, A. PAVERD, J.-E. EKBERG, B. PINKAS, N. ASOKAN. “The circle
game: Scalable private membership test using trusted hardware”. In: Pro-
ceedings of the 2017 ACM on Asia Conference on Computer and Communications
Security. ACM. 2017, pp. 31–44 (cit. on pp. 2, 4, 19).

[Vib17] VIBER MEDIA S.À R.L. Viber privacy policy. 2017. URL: https://www.viber.
com/terms/viber-privacy-policy/ (visited on 05/03/2018) (cit. on p. 22).

[Wha17] WHATSAPP INC. WhatsApp Security Whitepaper. 2017. URL: https://www.
whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf (visited
on 05/06/2018) (cit. on p. 22).

[Wha18] WHATSAPP INC. WhatsApp privacy policy. 2018. URL: https://www.whatsapp.
com/legal/?l=en#privacy-policy (visited on 05/03/2018) (cit. on p. 22).

[Wic17] WICKR INC. Wickr privacy policy. 2017. URL: https://www.wickr.com/
privacy-policy (visited on 05/03/2018) (cit. on p. 22).

[Wir17] WIRE SWISS GMBH. Wire Security Whitepaper. 2017. URL: https://wire-
docs.wire.com/download/Wire+Privacy+Whitepaper.pdf (visited on
05/03/2018) (cit. on p. 23).

[Yao86] A. C.-C. YAO. “How to generate and exchange secrets”. In: Foundations of
Computer Science, 1986., 27th Annual Symposium on. IEEE. 1986, pp. 162–167
(cit. on p. 10).

[ZRE15] S. ZAHUR, M. ROSULEK, D. EVANS. “Two halves make a whole”. In: Annual In-
ternational Conference on the Theory and Applications of Cryptographic Techniques.
Springer. 2015, pp. 220–250 (cit. on p. 12).

60

https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://threema.ch/press-files/2_documentation/cryptography_whitepaper.pdf
https://threema.ch/en/privacy
https://threema.ch/en/privacy
https://www.viber.com/terms/viber-privacy-policy/
https://www.viber.com/terms/viber-privacy-policy/
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/legal/?l=en#privacy-policy
https://www.whatsapp.com/legal/?l=en#privacy-policy
https://www.wickr.com/privacy-policy
https://www.wickr.com/privacy-policy
https://wire-docs.wire.com/download/Wire+Privacy+Whitepaper.pdf
https://wire-docs.wire.com/download/Wire+Privacy+Whitepaper.pdf

	Introduction
	Private Set Intersection
	Contribution
	Related Work

	Background
	Oblivious Transfer
	OT Extension
	OT Extension Flavors
	OT Precomputation
	Malicious-Secure OT Extension

	Yao's Garbled Circuits
	Basic Protocol
	Improvements

	Cuckoo Filters

	Motivational Survey
	Performing the Survey
	Evaluating Privacy Policies
	Inspecting App Communication

	Found Contact Discovery Methods
	Uploading Hashed Contact Data
	Contact Discovery with Intel SGX

	Details on Surveyed Messengers

	Optimizing PSI Protocols for Unequal Set Sizes
	Notation
	Common Structure
	Phases in different protocol runs
	Differences between the protocols

	NR-PSI
	The Original Protocol
	Precomputation Form
	Reduced Communication via C-OT

	GC-PSI
	Efficient Server Updates
	Updates for Cuckoo Filters
	Compression of Sparse Cuckoo Filters

	Smaller Cuckoo Filters for Efficient Private Contact Discovery
	Adjusting false positive rate
	Splitting the Database into different regions

	Security
	Security against Semi-Honest Adversaries
	Malicious Client
	Malicious Server

	Implementation
	Security Parameter Choices
	Malicious-Secure OT Extension from keller2015actively
	Cuckoo Filters
	NR-PSI
	GC-PSI
	Test Application
	Command-Line Application
	Port to Android

	Signal Integration

	Evaluation
	Test Scenarios
	Evaluating OT extension
	Generating the Encrypted Database
	Evaluation of Setup and Update Phase
	Evaluation of Base and Online Phase

	Conclusion
	Bibliography

