
Master Thesis

Secure Two-Party Computation:
ABY versus Intel SGX

Susanne Felsen
January 10, 2019

Engineering Cryptographic Protocols
Department of Computer Science
Technische Universität Darmstadt

Supervisors: M.Sc. Christian Weinert
Prof. Dr.-Ing. Thomas Schneider

Erklärung zur Abschlussarbeit
gemäß §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Susanne Felsen, die vorliegende Master Thesis ohne Hilfe Dritter und
nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quel-
len entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher
oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Täuschungsversuch vorliegt,
der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht
wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung überein.

Thesis Statement
pursuant to §23 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I, Susanne Felsen, have written the submitted Master Thesis
independently. I did not use any outside support except for the quoted literature and other
sources mentioned in the paper. I clearly marked and separately listed all of the literature
and all of the other sources which I employed when producing this academic work, either
literally or in content. This thesis has not been handed in or published before in the same or
similar form.

I am aware, that in case of an attempt at deception based on plagiarism (§38 Abs. 2 APB),
the thesis would be graded with 5,0 and counted as one failed examination attempt. The
thesis may only be repeated once.

In the submitted thesis the written copies and the electronic version for archiving are identical
in content.

Darmstadt,

Susanne Felsen

Abstract

Secure Two-Party Computation (2PC) allows two parties to jointly evaluate a publicly known
function without disclosing their respective private inputs. This can be realized using well-
known cryptographic protocols such as Yao’s garbled circuit protocol or the protocol of
Goldreich, Micali and Wigderson (GMW), both of which obliviously evaluate a Boolean
circuit that represents the desired functionality. The ABY framework (Demmler et al.,
NDSS’15) provides state-of-the-art implementations of these protocols. Nonetheless, they
incur high computational and communication overheads compared to the unprotected com-
putation.

Our work explores an alternative approach to the problem of secure computation, which
is based on Intel Software Guard Extensions (Intel SGX). Intel SGX allows applications to
create trusted execution environments called enclaves, which are isolated from all other
software running on the same machine. In a two-party computation scenario, the two
cooperating parties can both submit their private input to the enclave, inside which the
function can then be computed securely and from which they can afterwards retrieve the
result.

Unfortunately, Intel SGX does not provide protection against software side-channel attacks
and researches have proven its vulnerability to them time and again. In contrast, Boolean
circuits as used in cryptographic 2PC protocols are inherently secure against a number of
side-channel attacks. To that effect, we propose evaluating a Boolean circuit representation
of the function inside the enclave. We design an Intel SGX-based 2PC protocol and provide a
proof-of-concept implementation putting it into practice. We benchmark our Intel SGX-based
2PC solution and compare it to an ABY-based solution. For the evaluation of a Boolean circuit
with AND size 1 million and AND depth 1000, the communication of our implementation
is four orders of magnitude lower compared to Yao’s garbled circuit protocol and the GMW
protocol. In a high-latency network setting, the run-time for our protocol’s 2PC phase is
reduced by factors 1.3× and 19×, respectively.

Acknowledgments

At this point, I would like to thank my thesis supervisors, Christian Weinert and
Prof. Dr.-Ing. Thomas Schneider, for providing me with this interesting (but also sometimes
frustrating) research topic and for the opportunity to work in their group. I am particularly
grateful to Christian for his quick replies to my e-mails at any time of day or night and for all
the helpful comments and feedback, I received.

I would also like to thank Ágnes Kiss for being so kind as to generate the universal circuits
for me and for answering any questions I had on the topic.

Contents

1 Introduction 1

2 Background 3
2.1 Secure Function Evaluation . 3

2.1.1 Building Blocks for SFE . 3
2.1.2 Yao’s Garbled Circuit Protocol . 5
2.1.3 The GMW Protocol . 5

2.2 Private Function Evaluation . 6
2.3 The ABY Framework . 7
2.4 Intel SGX . 9

2.4.1 SGX Fundamentals . 10
2.4.2 Programming with Intel SGX . 11
2.4.3 Remote Attestation . 14
2.4.4 Applications of Intel SGX . 19
2.4.5 Side-Channel Attacks on Intel SGX . 19

3 RelatedWork 25

4 Intel SGX-Based Secure Two-Party Computation 27
4.1 Protocol Message Flow . 28
4.2 Implementation . 30

4.2.1 Circuit Evaluation . 31
4.2.2 2PC Protocol Implementation . 32

4.3 Instructions for Use . 36
4.3.1 Set-up . 36
4.3.2 Running the 2PC Protocol . 38

5 Evaluation 41
5.1 Experimental Set-up . 41

5.1.1 Benchmarking Environment . 41
5.1.2 Circuit Design . 42
5.1.3 Protocol Phases . 44

5.2 SGX Operations . 45
5.2.1 Enclave Creation . 45
5.2.2 Remote Attestation . 45

I

Contents

5.3 Intel SGX-Based Secure Two-Party Computation 47
5.3.1 Application Benchmarks . 47
5.3.2 Two-Party Computation Phase . 52

5.4 ABY-Based Secure Two-Party Computation . 56
5.4.1 Base-OTs . 56
5.4.2 Setup Phase . 57
5.4.3 Online Phase . 61
5.4.4 Total Time & Communication . 65

5.5 Discussion & Comparison . 68
5.5.1 One-Time Expenses . 69
5.5.2 Two-Party Computation Phase . 70
5.5.3 SFE Setting . 72
5.5.4 PFE Setting . 77

6 Conclusion 79

List of Abbreviations 83

Bibliography 86

A Appendix 96
A.1 Implementation . 96

A.1.1 Remote Attestation Code Sample . 96
A.2 Evaluation . 99

A.2.1 Intel SGX-Based Secure Two-Party Computation 99
A.2.2 ABY-Based Secure Two-Party Computation 102

II

1 Introduction

Secure Multi-Party Computation (MPC) allows a set of parties with private inputs to jointly
compute a function of these inputs without revealing anything but the result. The focus of
this work is on the two-party special case, which plays an important role in research and is
called Secure Two-Party Computation (2PC) or Secure Function Evaluation (SFE).
In the SFE setting, the function to be computed is publicly known. In cryptographic SFE
protocols such as Yao’s garbled circuit protocol [Yao86] and the protocol of Goldreich, Micali
and Wigderson (GMW) [GMW87], it is typically represented as a Boolean circuit.
Whenever the function to be evaluated should also be kept secret, Private Function
Evaluation (PFE) is used. With the help of universal circuits [Val76], the problem of private
function evaluation can however be reduced to the problem of secure function evaluation.
A universal circuit is a special type of Boolean circuit that can be programmed to simulate
any Boolean function up to a given size. In the PFE setting, one party provides the private
input and the other party provides the private function in form of the programming to the
universal circuit. The universal circuit itself is public. The aforementioned cryptographic 2PC
protocols can also be used to obliviously evaluate universal circuits.

The ABY framework [DSZ15] provides state-of-the-art implementations of Yao’s garbled
circuit protocol and the GMW protocol. It includes the latest 2PC improvements to maximize
efficiency. Unfortunately, cryptographic two-party computation solutions based on these
protocols still have a high computational and communication overhead compared to the
unprotected computation. Intel Software Guard Extensions (Intel SGX) seems to be a promising
alternative, which we explore in this work.
In an era of cloud computing, Intel SGX aims to solve the problem of secure remote computation.
It allows applications to create trusted execution environments called enclaves, which are
isolated from all other software running on the same machine, even privileged software.
Enclaves can be used to protect security-sensitive code and data against modification and
disclosure. In a two-party computation scenario, the two cooperating parties can both submit
their private input to the enclave, inside which the function can then be computed securely
and from which they can afterwards retrieve the result. For that purpose, both parties need
to establish a trusted channel with the enclave. They can use remote attestation to verify the
enclave’s integrity before provisioning it with their secrets.

Due to the strong security guarantees it provides and its availability in commodity hardware,
Intel SGX enjoys increasing popularity. Unfortunately, researchers have shown that Intel SGX
is vulnerable to a variety of software side-channel attacks such as page fault attacks or cache
attacks. These attacks can be used to compromise the confidentiality of SGX-protected data.

1

1 Introduction

Contributions. Boolean circuits as used in cryptographic 2PC protocols are inherently
secure against a number of side-channel attacks. In this work, we therefore propose to
evaluate a Boolean function representation of the function to be computed inside the en-
clave, instead of evaluating the function in plain. We design an Intel SGX-based two-party
computation protocol to that effect and provide a proof-of-concept implementation putting it
into practice.
Due to the fact that we load the circuit into the enclave during the protocol execution, we
make it possible to reuse the same enclave for the secure computation of many different
functions. This makes our approach easy to use, even by non-experts. While many works
have suggested using Intel SGX to realize privacy-preserving applications, most of them focus
on a specific application scenario. In contrast, this work proposes a solution for general
secure two-party computation, eliminating the need for a per-application redesign.
Moreover, to the best of our knowledge, we are the first to design and implement an Intel
SGX-based solution to the problem of private function evaluation.

We benchmark our Intel SGX-based 2PC solution and compare it to an ABY-based cryptographic
solution. To this end, we perform a differentiated analysis, measuring the run-times and
communication required for evaluating circuits with different circuit structures, sizes and
gate types in two different network settings. For the evaluation of a Boolean circuit with AND
size 1 million and AND depth 1000, the communication of our Intel SGX-based approach
is four orders of magnitude lower than that of Yao’s garbled circuit protocol and the GMW
protocol. In a high-latency network setting, the corresponding run-time is reduced by factors
1.3× and 19×, respectively.

Outline. Chapter 2 contains background information on secure function evaluation, private
function evaluation and Intel SGX. For Intel SGX, we do not only explain the theoretical
concepts but also describe how an Intel SGX application is practically implemented. We
furthermore provide a detailed overview of Intel SGX’s security with regards to software side-
channel attacks. In Chapter 3, related works are summarized. In Chapter 4, we introduce our
Intel SGX-based 2PC protocol and explain how we put it into practice in our proof-of-concept
implementation. Chapter 5 contains the benchmarking results for our implementation and the
ABY framework’s implementations of Yao’s protocol and the GMW protocol and a comparison
of the three. Finally, we conclude our work in Chapter 6.

2

2 Background

This chapter aims to provide readers with background information on the topics that are
relevant for the understanding of this work. Specifically, we discuss secure function evaluation
in Section 2.1, private function evaluation in Section 2.2, the ABY framework Section 2.3
and Intel SGX in Section 2.4.

2.1 Secure Function Evaluation

Secure Function Evaluation (SFE) allows two mutually distrusting parties to jointly evaluate
a publicly known function f on their respective private inputs x and y while ensuring
that neither of them learns anything about the other party’s input. In depends on the
application, whether one or both of the parties receive the evaluation result z = f (x , y).
Typically, the values x , y and z are binary values with x = (x1, . . . , xn1

), y = (y1, . . . , yn2
)

and z = (z1, . . . , zm), n1, n2 and m being the respective bit-lengths.

A classic problem which SFE can solve is the so-called millionaires’ problem [Yao86]where two
millionaires want to know who of them is richer without revealing their net worth to each other.
SFE hereby constitutes an alternative to implementing a trusted third party.

The applications of SFE are manifold and continuously growing. They include
auctions [NPS99], data mining [LP08], biometric identification [EFG+09; BCF+14], genome-
wide association studies [TWSH18] and proximity testing [ŠG14; JKS+18] – whenever the
goal is to perform them in a privacy-preserving manner.

Prominent examples of SFE protocols are Yao’s garbled circuit protocol [Yao86] and the
protocol of Goldreich, Micali and Wigderson (GMW) [GMW87], which are explained in more
detail in Sections 2.1.2 and 2.1.3.

2.1.1 Building Blocks for SFE

Boolean Circuits. In many SFE protocols, the (Boolean) function to be computed is repre-
sented as a Boolean circuit. A Boolean function f : {0, 1}n→ {0, 1}m maps n binary inputs to
m binary outputs. The corresponding Boolean circuit is a directed acyclic graph with n inputs,
m outputs and l Boolean gates. The edges are called wires. An example of a Boolean circuit
can be seen in Figure 2.1.

3

2 Background

Both, Yao’s garbled circuit protocol [Yao86] and the GMW protocol [GMW87] securely
evaluate Boolean circuits. Since the evaluation of XOR gates is essentially “for free” in both
protocols (i.e., requires only negligible computation and no communication, see Sections 2.1.2
and 2.1.3), the number of AND gates in a circuit is especially relevant. The (multiplicative)
size of a circuit is defined as its number of AND gates, while the (multiplicative) depth of the
circuit is defined as the maximum number of AND gates on any path from an input to an
output of the circuit [SZ13].

⊕

in0 in1

∧

in2 in3

⊕⊕

in4

out0 out1

Figure 2.1: Boolean Circuit. Example Boolean circuit with n = 5 inputs, m = 2 outputs and
k = 4 Boolean gates.

Oblivious Transfer. Oblivious Transfer (OT) [Rab81] is a two-party protocol executed be-
tween a sender and a receiver. In 1-out-of-2 OT, the sender inputs two values (x1, x2) and
the receiver inputs a private selection bit σ. As a result of the protocol execution, the re-
ceiver learns xσ but does not learn anything about x1−σ while the sender does not learn the
receiver’s selection bit σ.

OT is the foundation for almost all efficient SFE protocols. Yao’s garbled circuit proto-
col [Yao86] requires one OT per input bit of one of the two parties while the GMW pro-
tocol [GMW87] requires two OTs per AND gate of the circuit for the pre-computation of
multiplication triples during its set-up phase. The efficiency of the OT protocol is therefore
extremely important. It can be greatly improved using OT pre-computation [Bea95] and OT
extensions [IKNP03; ALSZ17].

Security Models. There are two widely used security models in the context of SFE. Many
SFE protocols, including Yao’s protocol [Yao86] and the GMW protocol [GMW87] in their
basic form, only guarantee security in the weaker, semi-honest (or passive) model in which
the protocol participants are assumed to be honest-but-curious. They follow the protocol
specification but try to obtain as much information as possible from the protocol execu-
tion. This model allows for highly efficient protocol designs. Security in the malicious (or

4

2 Background

active) model, on the other hand, is harder to achieve. In this model, the protocol partici-
pants may arbitrarily deviate from the protocol specification in order to obtain additional
information.

2.1.2 Yao’s Garbled Circuit Protocol

Yao’s garbled circuit protocol [Yao86] was the first general two-party computation protocol.
It was later proven secure by Lindell and Pinkas [LP09]. The protocol takes place between a
garbler and an evaluator. The first step of the protocol is for the garbler to create a garbled
circuit from the given Boolean circuit. He selects two random wire keys for each wire of
the Boolean circuit, representing the values 0 and 1, respectively. He then creates a garbled
table for each gate of the circuit. Obviously, the gate type defines which combination of
input values results in which output value. The garbled table contains a random permutation
of the corresponding output wire key encrypted with the two input wire keys for all four
combinations of input wire keys. The garbler sends the garbled circuit along with his garbled
private inputs to the evaluator. The evaluator has to obtain the garbled values corresponding
to his own private inputs via 1-out-of-2 oblivious transfer. Consequently, Yao’s garbled circuit
protocol requires one OT per input bit of one of the two parties. In possession of all the input
wire keys, the evaluator can now evaluate the garbled circuit gate-by-gate using the garbled
tables until he reaches the output wires. If the evaluator is supposed to learn the result of the
computation, the garbler can send him an output decryption table mapping the output wire
keys to their corresponding plain text values. Otherwise, the evaluator sends the output wire
keys back to the garbler.
The evaluation of the garbled circuit does not require any further interaction between the
garbler and the evaluator. Therefore Yao’s protocol has a constant number of rounds. As with
oblivious transfer, there are extensions to the protocol which greatly improve its efficiency.
Notably, an extension called Free XOR [KS08b] allows the “free” evaluation of XOR gates
which is to say that the evaluation of a XOR gate does not require any communication and
only negligible computation.

In its basic form, Yao’s garbled circuit protocol provides security against semi-honest adver-
saries. It can however be extended for security against malicious adversaries [LP07].

2.1.3 The GMWProtocol

The protocol of Goldreich, Micali and Wigderson (GMW) [GMW87] also allows the secure eval-
uation of a Boolean circuit. It is based on additive secret sharing. Each input value v is shared
among the two parties so that each of them holds a random-looking share vi with v = v1⊕ v2.
Both parties then evaluate the circuit gate-by-gate. XOR gates can be evaluated locally since
XOR is an associative operation. No interaction between the two parties is required. For an
XOR gate with input values x and y and output value z, both parties compute their share
of the output value as zi = x i ⊕ yi. The evaluation of AND gates does however require

5

2 Background

interaction and can be achieved using multiplication triples [Bea92; SZ13]. Multiplication
triples are random-looking shares ai , bi , ci , i ∈ {0,1} with (c1 ⊕ c2) = (a1 ⊕ a2)∧ (b1 ⊕ b2).
They are usually generated in the offline set-up phase which precedes the online phase in
which the inputs are shared, the circuit is evaluated and finally, the output is reconstructed
by adding up the shares of the output.
When evaluating an AND gate with input values x and y and output value z, both par-
ties compute and exchange di = x i ⊕ ai and ei = yi ⊕ bi, after which they can compute
d = d1 ⊕ d2 and e = e1 ⊕ e2. They can then compute their shares of the output value as
z1 = (b1 ∧ d)⊕ (a1 ∧ e)⊕ c1 ⊕ (d ∧ e) and z2 = (b2 ∧ d)⊕ (a2 ∧ e)⊕ c2. This means that for
every AND gate, two independent 2-bit messages have to be exchanged. In high-latency
networks, this constitutes a performance bottleneck. Fortunately, all AND gates of the same
circuit layer can be evaluated in parallel. The communication complexity of the GMW protocol
therefore depends on the depth of the circuit and the best performance results can be achieved
using depth-optimized circuit constructions. In settings with low network latency, the GMW
protocol can even outperform Yao’s garbled circuit protocol [SZ13].

In its basic form, the GMW protocol provides security against semi-honest adversaries. It can
however be extended for security against malicious adversaries [NNOB12].

2.2 Private Function Evaluation

Private Function Evaluation (PFE) allows two mutually distrusting parties to jointly evaluate
a private function f provided by one of the parties on a private input x provided by the
other party while ensuring that neither of them learns anything about the other party’s input.
In the PFE setting, only the party which provided the private input receives the evaluation
result z = f (x , y).

PFE is used whenever the function to be evaluated should be kept secret. This is the case
when proprietary software is supposed to be run on private data. In that line, researchers
have proposed privacy-preserving solutions for credit checking [FAZ05], remote diagnos-
tics [BPSW07], medical diagnostics [BFK+09] and intrusion detection [NSMS14]. Conceiv-
able future applications of PFE include privacy-preserving billing protocols as might be used in
the context of smart cars or smart homes when computing individual insurance or electricity
rates.

One approach to PFE is based on universal circuits, background information on which can be
found in the following paragraph.

Universal Circuits. A Universal Circuit (UC) is a special type of Boolean circuit, which
can be programmed to simulate any Boolean function up to a given size k. In addition to
the private input x = (x1, . . . , xn), a UC takes p = (p1, . . . , pq) private programming bits
as input. The same UC can be used to compute many different functions by specifying

6

2 Background

different programming bits. In other words, the concrete function f is given as the program-
ming p f to a universal circuit, such that it computes z = f (x) for any input x . In short:
UC(x , p f) = f (x).
Universal circuits were introduced by Valiant [Val76], who proposed two asymptotically
size-optimal constructions with size Ω(k log k) and depth Ω(k), where k is the size of the
Boolean circuit representation of the simulated function f . Valiant’s two constructions are
based on 2-way and 4-way recursive structures, respectively.
The first implementation of UC-based PFE was provided by Kolesnikov and Schneider [KS08a].
Their UC construction had size Ω(k log2 k), i.e., an asymptotically non-optimal size. Later,
Valiant’s size-optimal 2-way UC construction was brought into practice by Kiss and Schnei-
der [KS16] and by Lipmaa et al. [LMS16] in concurrent and independent works. Recently,
Günther et al. [GKS17] provided an implementation of Valiant’s 4-way UC and proposed an
even more efficient hybrid UC construction.

Universal Circuit-Based PFE. Universal circuits allow reducing the problem of PFE to
the problem of SFE. One party provides the private input x , the other party provides
the private programming bits p f for the UC. The UC can be made public. Due to the
properties of SFE, nothing apart from the circuit size and the number of inputs and outputs
is revealed.

It becomes apparent that UC-based PFE can easily be integrated into an SFE framework. PFE
can be implemented using different underlying SFE protocols such as Yao’s garbled circuit
protocol [Yao86] or the GMW protocol [GMW87] (see Sections 2.1.2 and 2.1.3) and can
therefore directly benefit from recent SFE protocol optimizations.

2.3 The ABY Framework

ABY1 [DSZ15] is a framework for efficient mixed-protocol secure two-party computation.
It combines secure computation schemes based on arithmetic sharing, Boolean sharing and
Yao sharing which is also where its name comes from. The latter two sharings are used to
evaluate functions represented as Boolean circuits, using the GMW protocol [GMW87] and
Yao’s garbled circuit protocol [Yao86], respectively. Explanations of these protocols can be
found in Sections 2.1.2 and 2.1.3. UC-based PFE has also been integrated into ABY.
ABY is under continuous development and provides state-of-the-art implementations of all the
protocols it supports, which includes the latest 2PC improvements to maximize efficiency. It
allows developers to manually specify which part of a function should be computed in which
sharing so that the every part can be computed in the sharing that is most efficient. ABY
focuses on providing security in the semi-honest adversary model.

1The ABY source code is available online under https://encrypto.de/code/ABY.

7

https://encrypto.de/code/ABY

2 Background

TheABYBooleanCircuit Format. ABY defines the ABY Boolean circuit format2. It is human-
readable and can be parsed by the ABY framework. The circuit format distinguishes between
circuit input wires, circuit output wires and constant wires. In addition, there are function
gates with one or more gate input wires and one gate output wire. Every wire has an
individual wire ID and can serve as input to arbitrarily many function gates. The wires are
sorted topologically meaning that a wire ID is always defined before it is used as a gate input
or a circuit output. The ABY circuit format recognizes four different gate types: XOR, AND,
MUX and Inversion. Figure 2.2 contains the ABY circuit format representation of a simple
Boolean circuit.

1 # Circuit Input Wires
2 S 0 1 2 3 4
3 # Function Gates
4 X 0 1 6 # 6 = 0 XOR 1
5 A 2 3 7 # 7 = 2 AND 3
6 X 6 7 8 # 8 = 6 XOR 7
7 X 4 7 9 # 9 = 4 XOR 7
8 # Circuit Output Wires
9 O 8 9

⊕

in0 in1

∧

in2 in3

⊕⊕

in4

out0 out1

Figure 2.2: ABY Boolean Circuit Format. ABY Boolean circuit format representation (left)
of a simple Boolean circuit (right).

The Universal Circuit Format. Kiss and Schneider [KS16] define a similar format for uni-
versal circuits3, which can be parsed by the ABY framework. It is generated by their UC
compiler, together with the corresponding programming file.
Universal circuits are made up of X switches, Y switches and universal gates. The values
computed for the gate output wires depend on one or more programming bits, which are
read from the programming file. Every gate uses one line of the programming file. X switches
and Y switches take a single programming bit. An X switch has two gate input and two
gate output wires, either outputting them in order (if p = 0) or in reverse order (if p = 1).
A Y switch also has two gate input wires but only one gate output wire, either outputting
the value of the first input wire (if p = 1) or the second input wire (if p = 0). Universal
gates take four programming bits and are able to compute any Boolean function with two
inputs.Listing 2.1 shows how the different gate types are represented in the universal circuit
format.

2A detailed description of the ABY Boolean circuit format can be found under https://github.com/
encryptogroup/ABY/blob/public/bin/circ/circuitformat.md.

3A detailed description of the universal circuit format can be found under https://github.com/
encryptogroup/UC/blob/master/README.md

8

https://github.com/encryptogroup/ABY/blob/public/bin/circ/circuitformat.md
https://github.com/encryptogroup/ABY/blob/public/bin/circ/circuitformat.md
https://github.com/encryptogroup/UC/blob/master/README.md
https://github.com/encryptogroup/UC/blob/master/README.md

2 Background

Listing 2.1: Universal Circuit Format. Gate types and number of programming bits they
require.

1 # Gate Types
2 X 0 1 2 3 #(p)
3 Y 4 5 6 #(p)
4 U 7 8 9 #(p1 ,p2 ,p3 ,p4)

2.4 Intel SGX

Intel Software Guard Extensions (Intel SGX) is an Intel architecture extension that adds support
for Trusted Execution Environments (TEEs). It consists of a set of new CPU instructions and
memory access changes and was introduced in 2013 in three papers [MAB+13; HLP+13;
AGJS13]. Intel SGX is a feature of all Intel Core processors from the 6th generation onwards
and therefore ubiquitously available. It aims to be an application security solution for
developers which is not dependent upon platform security.

With Intel SGX, an application is partitioned into an untrusted part and a trusted part called
enclave. All security-critical parts of the application are moved into the enclave.
An enclave is a hardware-based application-layer TEE. It is instantiated by untrusted code. Its
initial content (code and data) is loaded from unprotected memory and is free for inspection
and analysis. It might even be subject to manipulation. Once the enclave has been initialized,
its content is protected from modification and disclosure. The enclave memory cannot be
accessed by the untrusted part of the application or other applications and it cannot even be
accessed by privileged software. Confidential data can now be provisioned to the enclave
using a secure channel.
Intel SGX includes a mechanism called sealing, which allows to persistently store the provi-
sioned secrets or other confidential enclave data for future enclave executions.

In an era of cloud computing, Intel SGX aims to solve the problem of secure remote computation.
It allows a service provider to securely execute software on a remote platform such as a
cloud server that is owned by an untrusted party. Before rendering the service, i.e., before
provisioning secrets to the enclave, the service provider can use an advanced feature of Intel
SGX called Remote Attestation (RA) to verify the enclave’s integrity and authenticity. This
feature is explained in detail in Section 2.4.3. Prior to that, Section 2.4.1 provides an overview
of the fundamentals of Intel SGX and Section 2.4.2 explains how an Intel SGX application is
created in practice. Lastly, applications of Intel SGX are listed in Section 2.4.4 and the topic
of side-channel attacks on Intel SGX is addressed in Section 2.4.5.
Additional information on Intel SGX and an in-depth explanation of the theoretical background
can be found in [CD16].

9

2 Background

2.4.1 SGX Fundamentals

SecurityGuarantees. For enclaves, Intel SGX guarantees confidentiality of data and integrity
of execution. Software running inside an enclave is isolated from all other software running
on the same machine. Enclave memory cannot be accessed from outside the enclave, not
even by privileged system software such as the Operating System (OS), the Virtual Machine
Manager (VMM), device drivers or the system BIOS. The Trusted Computing Base (TCB)
excludes the system software and only includes the CPU (hardware and firmware) and the
software inside the enclave. Intel SGX therefore offers protection against privileged software
attacks. It aims at reducing the TCB to a minimum in order to expose an equally minimal
attack surface.
Intel SGX does not protect against software side-channel attacks such as cache attacks or
page fault attacks. Responsibility for addressing side-channel attacks is deferred to the
developer [AGJS13; Int18e; Int18f].

Physical Memory Organization. The enclaves’ code and data as well as associated SGX
control structures are stored in the Enclave Page Cache (EPC) which is made up of 4 KB pages.
Every EPC page has an associated Enclave Page Cache Map (EPCM) entry which contains
security and access control information. The EPCM’s contents are used by the CPU when
performing memory access checks for the enclave pages during the address translation process.
Every enclave has an associated SGX Enclave Control Structure (SECS) which contains per-
enclave metadata and is stored in its own EPC page. The EPC and EPCM are stored inside a
special range of the main memory (DRAM) called Processor Reserved Memory (PRM). The
PRM cannot be accessed by the system software or by peripherals. Its contents are encrypted
and integrity protected by the Memory Encryption Engine (MEE).
The system software can oversubscribe the EPC by securely evicting EPC pages to non-PRM
DRAM. From there, they can be further evicted to disk by classical page swapping mechanisms.
When an application tries to access a page that has been evicted, it is reloaded into the EPC.
As this might in turn lead to the eviction of another EPC page, this process is called EPC page
swapping or EPC paging [MAB+13; CD16].

Enclave Measurement & Signature. When an enclave is created and its pages are loaded
into the EPC, their memory contents are cryptographically measured. The resulting enclave
measurement not only identifies the contents of the enclave pages (initial code and data),
but also their order and position as well as their security properties. Since the enclave
measurement uniquely identifies an enclave, it is also called enclave identity. It is stored in
the MRENCLAVE register.
In addition, an enclave also has a so-called sealing identity, which includes the sealing authority,
product ID (ISVPRODID) and security version number (ISVSVN) of the enclave. The sealing
authority is represented by the hash of the enclave author’s public key. It uniquely identifies
the enclave author.
The enclave author signs the enclave using an RSA key prior to distribution. More precisely,

10

2 Background

it signs a certificate which also includes the expected values for the aforementioned enclave
properties. The signing process produces the Enclave Signature Structure (SIGSTRUCT). When
the enclave is loaded, the hardware is presented with the SIGSTRUCT. It verifies the sealing
authority’s signature and checks that the value of the MRENCLAVE register matches the
measurement specified inside the SIGSTRUCT. This way, modifications to the enclave file
can be detected. If the checks pass, a hash of the sealing authority’s public key is stored in
the MRSIGNER register. Both, the enclave identity and the sealing identity are stored in the
enclave’s SECS [AGJS13; MAB+13; Int18e].

2.4.2 Programming with Intel SGX

Requirements. On any platform, applications can only use Intel SGX, if all of the following
requirements are met [Int18g]:

• The CPU supports the Intel SGX instructions

• The system BIOS supports Intel SGX

• Intel SGX is enabled in the system BIOS

• The Intel SGX Platform Software (PSW) is installed

The Intel SGX PSW package includes the Intel SGX runtime system library, the Application
Enclave Service Manager (AESM) and Intel SGX application enclaves, which are Intel-provided
architectural enclaves such as the Quoting Enclave (see Section 2.4.3).

For developers, who wish to develop an Intel SGX application, Intel provides the Intel
SGX Software Development Kit (SDK). It contains trusted libraries, development tools and
sample projects. The Intel SGX Developer Guide [Int18e], the Intel SGX SDK Developer
Reference [Int18f] and the Intel website4 render further assistance to developers.

Intel SGX applications are typically written in C/C++ but the Rust SGX SDK5 [DDL+17]
helps developers to write them in the Rust programming language. It is built upon the Intel
SGX SDK and provides additional sample projects and third party libraries, which have been
adapted for use within enclaves.

Development Process. A key aspect of developing an Intel SGX application is partitioning
the application into a trusted and an untrusted part while keeping the TCB size in mind. An
interface between the two parts has to be defined. It contains Enclave Calls (ECALLs), which
allow the untrusted part to call into the enclave, as well as Outside Calls (OCALLs), which allow
the enclave to call out to the outside application, e.g., to use operating system capabilities
such as system calls. The interface is defined within an Enclave Definition Language (EDL)
file. That file is used by the Edger8r Tool to generate proxy functions which can be invoked

4https://software.intel.com/en-us/sgx
5The Rust SGX SDK is available under https://github.com/baidu/rust-sgx-sdk.

11

https://software.intel.com/en-us/sgx
https://github.com/baidu/rust-sgx-sdk

2 Background

by the application as any other function.
Given one EDL file, for example named enclave.edl, the Edger8r Tool generates four
files: enclave_t.h, enclave_t.c, enclave_u.h and enclave_u.c. For every ECALL and
OCALL, a trusted and an untrusted proxy function is created. The first two files contain
the declaration and definition of the trusted proxy function while the last two files contain
those of the untrusted proxy function. When making an ECALL, the untrusted part of the
application will first call the untrusted proxy function, which in turn calls the trusted proxy
function inside the enclave. The trusted proxy function finally calls the actual enclave
function. When an OCALL is made, the sequence is reversed. The proxy functions act as
wrappers and are responsible for bounds checking and marshalling data and pointers into
and out of the enclave. Function parameters and buffers referenced by pointers are copied
from protected enclave memory to unprotected memory and vice versa. The Intel SGX SDK
abstracts from these low-level details and provides developers with a familiar programming
environment [Int18e; Int16].
An enclave can be delivered as a shared library, which is loaded into protected memory (EPC)
when the enclave is created. As already mentioned in Section 2.4.1, the enclave is signed
by the enclave author. The Intel SGX SDK provides the Enclave Signing Tool (sgx_sign) for
that purpose. It typically runs automatically at the end of the build process and generates
the enclave signature (SIGSTRUCT), which is used to confirm that the enclave has not been
tampered with and has been correctly loaded. To this end, the enclave signature includes
the enclave measurement and identifies the enclave author. The Enclave Signing Tool takes
the Enclave Configuration File as input. It sets the enclave properties inside the SIGSTRUCT
according to the values specified by the developer in this XML file. These properties include
the enclave product ID and security version number. Additionally, the developer can also
specify the enclave’s maximum stack and heap size and whether the enclave can be debugged
within the enclave configuration file [MAB+13; Int18e; Int18f].

Intel SGXSDKCompilationProfiles. There are two modes of operations for enclaves: debug
mode and production mode. In contrary to production mode enclaves, debug mode enclaves
do not have the full protection provided by the Intel SGX architecture, so that development
tools such as debuggers and performance analyzers have access.
Enclave developers can choose between four different compilation profiles:

• Debug: In this mode, compiler optimizations are disabled and symbol information is
saved. Enclaves are launched in debug mode.

• Release: In this mode, compiler optimizations are enabled and no symbol information
is saved. Enclaves are launched in production mode.

• Pre-Release: This mode is similar to Release mode, except that enclaves are launched in
debug mode.

• Simulation: In this mode, the application is linked with libraries that simulate the Intel
SGX instructions, which allows the enclave to be run on platforms without Intel SGX.
Enclaves are launched in debug mode.

12

2 Background

An enclave built in Release mode can only be loaded, if the developer has applied for a
commercial use licence6 and has consequently been whitelisted by Intel. The private signing
key that is used to sign enclaves built in Release mode must be kept in a protected environment
such as a hardware security module. Under these circumstances, a two-step signing process
has to be performed [Int18c; Int18i].

The Alternative: Shielding Systems. The development effort for Intel SGX applications is
clearly higher than for conventional applications. One reason for this is that Intel SGX imposes
several restrictions on the enclave code. The Intel SGX SDK contains a trusted version of the
C++ standard library, which does not support I/O-related functions or system calls [Int18f].
While the security guarantees offered by Intel SGX are no doubt desirable, its limitations and
the imposed performance overhead are hindering its adoption. This is especially true when
aiming to protect feature-rich, real-world applications or legacy applications, which might
have complex OS dependencies. The protection of the latter requires significant code changes.
To alleviate this problem, researchers have proposed different Intel SGX-based shielding
systems [BPH14; TPV17; ATG+16; SLTS17; OTK+18] over the last few years. Shielding
systems shield applications from the untrusted OS, e.g., validating all inputs received from it.
By adding system and/or trusted library support to enclaves, they make it easier to secure
applications with Intel SGX. The in-enclave support for system and/or library calls typically
reduces the number of expensive thread transitions in and out of the enclave. At the same time,
it also reduces the size and complexity of the interface between the enclave and the untrusted
OS, which constitutes an attack surface for Iago attacks [CS13] from the OS. Pulling more
functionality into the enclave does however also result in a significant increase of the TCB
size. Since any vulnerability in the TCB could possibly result in a breach of enclave security,
this has raised many concerns. Additionally, it is important to note that page swapping will
however become necessary if the application and shielding system’s memory requirements
exceed the EPC size.
The shielding systems Haven [BPH14] and Graphene-SGX [TPV17] allow developers to run
unmodified applications inside SGX enclaves by placing a library OS inside of the enclave. To
achieve maximum compatibility, Graphene-SGX includes glibc7, an implementation if the C
standard library, inside the enclave, which on its own has more than a million lines of code.
The authors do however note that unused code could be removed and the much smaller
musl libc8 implementation could be used for applications that do not need the additional
features only provided by glibc. Aiming for a small TCB but also for a good compatibility
with existing code, SCONE [ATG+16] includes the musl libc implementation inside the
enclave. Panoply [SLTS17], in contrast, does not include any libc implementation, instead
delegating all the system calls to the untrusted OS. The authors prioritize a minimal TCB
over performance. While Panoply’s performance is only slightly worse than that of Graphene-
SGX and SCONE, it cannot run unmodified applications, therefore requiring greater porting

6Companies can apply for a commercial use licence under https://software.intel.com/en-us/sgx/
commercial-use-license-request

7https://www.gnu.org/software/libc/
8https://www.musl-libc.org/

13

https://software.intel.com/en-us/sgx/commercial-use-license-request
https://software.intel.com/en-us/sgx/commercial-use-license-request
https://www.gnu.org/software/libc/
https://www.musl-libc.org/

2 Background

efforts. It is explicitly designed for multi-process applications. In contrast to SCONE, Panoply
synchronously exits the enclave to perform system calls, resulting in higher enclave transition
costs. SCONE, which is short for “secure container environment”, uses enclaves to isolate and
protect docker containers from each other as well as from the privileged system software.
While Graphene-SGX and Panoply are open-source, SCONE is not.
None of the aforementioned shielding systems target side-channel attacks. A new shielding
system called Varys [OTK+18], whose implementation is based on SCONE, has however
recently been proposed, offering protection against the majority of page table- and cache-
based side-channel attacks. More information on these attacks and on how Varys attempts to
prevent them can be found in Section 2.4.5.

2.4.3 Remote Attestation

Remote Attestation (RA) allows a Service Provider (SP) to verify the integrity of the code
running inside an enclave on a remote SGX-enabled platform before rendering a service to it.
A possible service could be the provisioning of secrets, before which the service provider wants
to be sure that the enclave can be trusted and the secrets are well-protected. To ensure the
secure delivery of the service, remote attestation is typically used during the establishment of
a trusted channel.

Remote attestation relies on the ability of the SGX-enabled platform to produce a credential
that accurately reflects the enclave and platform state. This credential is called a quote.
It is generated by the Quoting Enclave, which is an Intel-provided architectural enclave
devoted to remote attestation. The quote is signed using the Intel Enhanced Privacy ID (Intel
EPID) signature scheme, which is explained below. Afterwards, the consecutive steps of
the attestation process are detailed. Last, it is described how remote attestation can be
implemented in practice.

Intel Enhanced Privacy ID. The Intel Enhanced Privacy ID (Intel EPID) signature scheme is
used by the Quoting Enclave to sign quotes. The resulting signature can only be verified by
the Intel Attestation Service (IAS). As a group signature scheme, Intel EPID helps to preserve
the signer’s privacy. In the case of Intel SGX, a signer is synonymous with an SGX-enabled
platform. Each signer belongs to a group of signers. While every signer has their own private
signing key, a single group public key can be used to verify the signatures produced by all
group members. The EPID signature therefore does not uniquely identify the signer that
produced it – it is anonymous. Not even the group issuer can determine which key was used
to create it.
Intel EPID has two signature modes, producing linkable and unlinkable signatures, respectively.
Developers can choose which signature mode they want to use. With linkable signatures,
the verifier (Intel) is able to determine whether two signatures were produced by the same
signer. For the verifier, this has the advantage that behaviour anomalies in the use of an EPID
key can be detected and in case of compromise, all signatures generated by that EPID key

14

2 Background

can be easily identified and revoked. Intel EPID does however include a general mechanism
for revoking signatures and the corresponding signer’s private key. This mechanism works
on the basis of having the signers perform mathematical proofs to indicate that they did
not create any of the signatures on the Signature Revocation List (SigRL) [JSR+16; Cha17;
Int18e].

Remote AttestationProcess. The remote attestation process consists of several steps which
are explained in the following [AGJS13; Int18e].

1. When the enclave requires a service from outside the platform, it sends a provisioning
request to the respective service provider. The service provider replies with a request
for attestation. This request can have the form of a challenge, typically containing a
nonce to guarantee liveliness.

2. Using an Intel SGX instruction, the enclave generates a report structure which contains
enclave information such as the enclave measurement (MRENCLAVE), the enclave
author (MRSIGNER), product ID (ISVPRODID), security version number (ISVSVN) and
additional attributes (ATTRIBUTES), e.g., whether the enclave is running in debug
mode (see Section 2.4.1 for details on these fields). The report further includes the
security version number of the platform TCB (CPUSVN) and a data portion, which
contains user data included by the enclave. The user data allows binding the secure
channel that is being established to the RA process.

3. The report is delivered to the Quoting Enclave which verifies it.

4. The Quoting Enclave converts the report body into a quote which it signs using the
EPID key. Only the Quoting Enclave has access to this key. The quote is then returned
to the service provider.

5. The service provider uses the Intel Attestation Service (IAS) to verify the quote sig-
nature. The IAS also checks whether the TCB level of the platform is up-to-date. It
returns a signed attestation report which contains the attestation status and additional
information in case the attestation status was not “OK”.

6. The service provider verifies the attestation report signature. It then compares the
enclave and platform information inside the quote against a trusted configuration. If
the two match, it renders the service to the application. Possible trust policies include
only trusting an enclave with a specific measurement (MRENCLAVE) or a specific
author (MRSIGNER) or requiring specific attributes to be set.

Remote Attestation in Practice. The following paragraph explains how remote attestation
can be implemented in practice. As previously mentioned, remote attestation is typically
used during the establishment of a trusted channel between the service provider and the
enclave. The enclave proves that it was correctly instantiated and is running on a genuine
SGX-enabled platform, trust is established and keys are exchanged. These keys can then be
used for further, secure communication between service provider and enclave.

15

2 Background

The Intel SGX SDK assists developers by providing remote Key Exchange (KE) libraries which
implement a modified Sigma protocol which is used for Diffie-Hellman Key Exchange (DHKE).
They define protocol messages and wrapper functions for the entire attestation flow. SGX
libraries typically come in pairs: a trusted library which is linked with the enclave and an
untrusted library which is linked with the untrusted application. The corresponding EDL file
also has to be imported.
In order to be able to use the Intel Attestation Service, the service provider first has to register
with Intel9. Since the IAS uses Mutual Transport Layer Security (MTLS) for authentication, this
requires sending in a valid X.509 client certificate. For testing purposes in a pre-production
environment, this certificate is allowed to be self-signed. Furthermore, the service provider
has to specify whether he wants to use linkable or unlinkable EPID signatures in enclave
quotes. Intel then assigns a unique Service Provider ID (SPID) to the service provider, which
is needed for communicating with the IAS.
The key exchange libraries require the service provider to have an ECDSA key pair for
authentication. They use Elliptic Curve Diffie-Hellman (ECDH) for the actual key exchange.
The service provider’s public key is hardcoded inside the enclave. This is to make sure that the
enclave can only communicate with the intended service provider. The established DH shared
secret is used to derive a Key Derivation Key (KDK), which in turn is used to derive multiple
shared session keys for different purposes [Int18a; Int18b; Int18f].

The Rust SGX SDK includes a remote attestation code sample10. Intel also provides two: one11

that is part of its SDK and one12 that is not. The remote attestation process as implemented
in practice in these code samples is detailed below. Protocol 2.1 shows the corresponding
remote attestation message flow. The key exchange libraries defines the communication
sequence for the messages that are exchanged between the service provider (SP) and the
remote SGX application (App). The service provider requires the assistance of the Intel
Attestation Service (IAS).

To begin, the service provider sends a request for attestation to the application (1⃝). The ap-
plication then executes an ECALL to a wrapper function that in turn executes sgx_ra_init()
to initialize the RA process. The function takes the hardcoded service provider’s public
ECDSA key as an input and returns a DHKE context for later use. Additionally, the application
calls sgx_get_extended_epid_group_id() to obtain the platform’s extended Intel EPID
group ID (GID). It can be sent to the service provider as message 0. Alternatively, message 0
can be sent together with message 1 to save one round trip (2⃝). The service provider
does however have to verify that the extended GID that it received is supported by the Intel
Attestation Service. Currently, this is only true for an extended GID of zero. If a different
value is received, the RA process has to be aborted.

9Developers can request access to the Intel SGX development services under https://software.intel.com/en-
us/form/sgx-onboarding

10https://github.com/baidu/rust-sgx-sdk/tree/master/samplecode/remoteattestation
11https://github.com/intel/linux-sgx/tree/master/SampleCode/RemoteAttestation
12https://github.com/intel/sgx-ra-sample

16

https://software.intel.com/en-us/form/sgx-onboarding
https://software.intel.com/en-us/form/sgx-onboarding
https://github.com/baidu/rust-sgx-sdk/tree/master/samplecode/remoteattestation
https://github.com/intel/linux-sgx/tree/master/SampleCode/RemoteAttestation
https://github.com/intel/sgx-ra-sample

2 Background

IAS SP App

1⃝ request for attestation

2⃝ msg0∥msg1

3⃝ request

4⃝ sigRL

5⃝ msg2

6⃝ msg3

7⃝ quote

8⃝ attestation report

9⃝ attestation result

Protocol 2.1: Remote Attestation Message Flow. Messages exchanged between the Service
Provider (SP) and the Application (App) and between the Service Provider and the Intel
Attestation Service (IAS) during the remote attestation process.

To obtain message 1, the application calls sgx_ra_get_msg1() which is part of the KE library.
Message 1 contains the enclave’s public key for DHKE, which is denoted by Ga= (Gax, Gay),
and the GID. Consequently:

msg0∥msg1= ExGID∥Ga∥GID

Upon receiving message 1, the service provider requests the Signature Revocation List (SigRL)
for the remote platform’s GID from the Intel Attestation Service (3⃝, 4⃝). The service provider
then generates its own public key for DHKE denoted by Gb= (Gbx, Gby). It can now compute
the DH shared secret from Ga and Gb and derive the Key Derivation Key (KDK) from it. With
the help of a Key Derivation Function (KDF), multiple shared keys serving different purposes
are derived from the KDK. One of them is the Session MAC Key (SMK).

To generate message 2 (5⃝), the service provider further has to perform the following
steps:

• Set the quote type which should be requested from the application, i.e., linkable or
unlinkable. The service provider’s SPID has to be associated with that quote type.

• Set the KDF_ID.

17

2 Background

• Generate the ECDSA signature of Gbx∥Gby∥Gax∥Gay using its ECDSA private key, pro-
ducing SigSP.

• Compute the AES-128 CMAC of A= Gb∥SPID∥Quote_Type∥KDF_ID∥SigSP using the
SMK.

Message 2 is created as follows:

msg2= A∥CMACSMK(A)∥SigRL, with A= Gb∥SPID∥Quote_Type∥KDF_ID∥SigSP

The application processes message 2 using the library function sgx_ra_proc_msg2(). The
function verifies the service provider’s signature, checks the signature revocation list and
returns message 3 (6⃝), which contains the quote:

msg3=M∥CMACSMK(M), with M = Ga∥PS_Security_Property∥Quote

When message 3 is received, the service provider first verifies that the value of Ga in message 3
matches the one in message 1. It then also verifies the CMAC.
As previously mentioned, the quote includes a data portion, containing user data included by
the enclave. This way, the trusted channel that is being established can be bound to the RA
process. The enclave is to include the SHA-256 digest of Ga∥Gb∥V K in that data portion. The
Verification Key (VK) is another one of the keys derived from the KDK. The service provider
has to verify that the digest has been correctly included. If all of these checks pass, the
service provider sends the quote to the Intel Attestation Service (7⃝). The IAS verifies it
and returns a signed attestation report (8⃝). If the verification was successful and the SGX
platform’s TCB level was up-to-date, the attestation report contains the attestation status “OK”.
If this is not the case, it may contain attestation statuses such as “SIGNATURE_REVOKED”,
“KEY_REVOKED” or “GROUP_OUT_OF_DATE” in the event that the TCB level is outdated.
In the latter case, the attestation report contains a so-called Platform Information Blob (PIB)
which the service provider should forward to the application. The application can use the
function sgx_report_attestation_status() to find out which of the TCB components
on the SGX platform requires an update.
Upon receiving the attestation report, the service provider validates the attestation report
signature. It then has to decide whether or not to trust the enclave based on its trust policy
and the enclave and platform information contained in the quote. The attestation result (9⃝)
contains the service provider’s trust decision. It may also contain the aforementioned PIB or
secrets that the service provider is provisioning to the enclave, which are encrypted using
a symmetric session key SK that is derived from the KDK. The enclave can obtain this key
by calling the trusted library function sgx_ra_get_keys(). It can use it to decrypt the
provisioned secrets and encrypt any computation results that should be sent back to the
service provider.
Finally, when the secure channel is no longer needed, the session can be closed by entering
the enclave and calling sgx_ra_close() [Int18a; Int18b; Int18f].

To conclude, it should be noted that the remote attestation code samples provided by the
Intel SGX SDK and Rust SGX SDK include a sample cryptographic library (libsample_

18

2 Background

libcrypto.so) that is used by the sample service provider and not meant for production use.
It generates reproducible messages to aid in the debugging the remote attestation message
flow. While the sample code may be very useful for getting started, it needs to be carefully
inspected to figure out whether it is working as suspected. The RA code sample supplied
by the Intel SGX SDK for example simulates the IAS. Smaller issues as e.g., found in the
code sample from the Rust SGX SDK include not actually parsing the platform info blob but
generating a default one.

2.4.4 Applications of Intel SGX

Due to the strong security guarantees provided by Intel SGX and its availability in commodity
hardware, a wide variety of protocols and frameworks tailored to specific application scenarios
have been proposed over the last few years. Shielding systems such as Haven [BPH14],
Graphene-SGX [TPV17], SCONE [ATG+16], Panoply [SLTS17] and Varys [OTK+18] allow to
run unmodified applications inside SGX enclaves (see also Section 2.4.2). Usage of Intel SGX is
also frequently suggested for data processing and analytics in cloud computing environments.
VC3 [SCF+15], one of the early applications of Intel SGX, allows to perform distributed
MapReduce computations in an untrusted cloud. SecureKeeper extends Apache Zookeeper,
which is a service for distributed coordination [BWG+16] and Opaque [ZDB+17] is an
oblivious distributed data analytics platform. Microsoft Azure has rolled out SGX-capable
servers [Rus17a], making the possibility of securing cloud applications with Intel SGX a
reality.
Intel SGX is also often relied upon whenever data privacy is essential. There are Intel
SGX-based approaches for secure genomic data analysis such as PREMIX [CDD+16] and
PRINCESS [CWJ+17], privacy-preserving machine learning [OSF+16], privacy-preserving
machine learning as a service [HSVW18], privacy-preserving speech processing [BFR+18]
and private web search [MBF+17], just to name a few. Intel SGX can also be used for securing
networking applications [KSH+15; PPFF16; KHH+17] or blockchain technologies such as
smart contracts [KMS+16; LEPS16; ZCC+16; MHWK16; BCKS18]. Most notably, Intel SGX
finds real-world use in the Hyperledger Sawtooth blockchain framework, where it secures the
Proof of Elapsed Time (PoET) consensus protocol [Int] and Microsoft Azure’s Confidential
Consortium (Coco) Framework for blockchain networks [Rus17b]. It is also used for private
contact discovery by the Signal messaging service [Mar18]. Even more works which focus
on securing applications with Intel SGX are linked to on a page of the Intel SGX website
dedicated to academic research13.

2.4.5 Side-Channel Attacks on Intel SGX

Intel SGX does not provide protection against software side-channel attacks. The developers
themselves are responsible for building enclaves that are protected against side-channel

13https://software.intel.com/en-us/sgx/academic-research

19

https://software.intel.com/en-us/sgx/academic-research

2 Background

adversaries who may gather power statistics, cache miss statistics, branch statistics via timing
or page access statistics via page tables [Int15]. This is extremely hard, especially since new
side-channel vulnerabilities of Intel SGX are continuously being discovered by the research
community.
A page on the Intel SGX website dedicated to academic research14 lists some of the most
relevant works on side-channel attacks targeting Intel SGX. Furthermore, Lindell [Lin18]
gives a good general overview while Wang et al. [WCP+17] provide an in-depth analysis of
memory side-channels.
Many of these attacks do not even require the attacker to have physical access to the machine
running the victim enclave. If the implementation is not constant-time, meaning that its
execution time depends on the secret data, that secret data can be deduced [BB03; BT11].
Furthermore, if different processes are executed on the same machine, secrets can be leaked
due to the fact that the processes share physical resources such as for example caches. There-
fore, achieving co-location of an attacker process on the same physical machine often suffices.
In virtualized environments as used in cloud computing, multiple virtual machines (VMs)
typically run on the same machine and researchers have shown that cache attacks can be
performed across VMs running on different cores or even different CPUs of the same ma-
chine [OST06; RTSS09; ZJRR12; IES15]. Side-channel attacks such as cache attacks have also
been shown to be practical in SGX environments. The different categories that side-channel
attacks on Intel SGX can be divided into are briefly explained below.

Page Table-Based Attacks. In the SGX security model, the OS is untrusted. Nonetheless, it
is relied upon for memory management, including paging, and more. A privileged attacker
with control over the OS is able to manipulate the page tables, allowing him to induce
page faults. By monitoring their occurrences, he can learn which pages were accessed. The
resulting page-level access pattern was shown to be sufficient for extracting text documents or
outlines of images from widely used application libraries [XCP15] and bits of encryption keys
from cryptographic implementation libraries [SCNS16]. Later, Van Bulck et al. [VWK+17]
as well as Wang et al. [WCP+17] were able to show that page accesses can also be inferred
without inducing page faults, e.g., by monitoring page table attributes.
These page table-based side-channel attacks, which are also called controlled-channel attacks,
exploit secret-dependent control transfers and data accesses. Mitigation strategies include
placing sensitive data within the same page [SCNS16] or detecting the anomalously high
exception or interrupt rate often associated with these attacks as T-SGX [SLKP17] and
Déjà Vu [CZRZ17] do. These existing defenses fall short in the face of more sophisticated
attacks that avoid producing too many interrupts [WCP+17]. An alternative approach is SGX-
Shield [SLK+17], which implements fine-grained Address Space Layout Randomization (ASLR).
The memory layout is however only randomized at enclave load time and could still be learned
by observing memory access patterns.

14https://software.intel.com/en-us/sgx/academic-research

20

https://software.intel.com/en-us/sgx/academic-research

2 Background

Cache-Based Attacks. Memory caching is used by the CPU to reduce memory access times.
A copy of the most recently accessed code and data is kept in cache memory, which is an
order of magnitude faster and orders of magnitude smaller than the computer’s main mem-
ory (DRAM). When a memory access is requested, the cache is checked for the requested
data first. If it is found, a cache hit occurs and the request is served by reading from the cache.
In contrast, in case of a cache miss, the data has to be retrieved from the next level of the
memory hierarchy, from where it is copied to the cache. This typically leads to some other
previously existing cache entry being evicted to make room. Cache fills and evictions operate
on cache lines, which contain copies of contiguous ranges of DRAM and typically have a size
of 64 bytes. Modern Intel CPUs have a three-level cache hierarchy. Each core has its own
L1 and L2 cache while the L3 cache, which is also called Last-Level Cache (LLC), is shared
between all cores. The L1 cache is the smallest and fastest. In contrast to the L2 and L3
caches, it is divided into two separate caches for code and data [CD16].
Cache-based side-channel attacks take advantage of the fact that the time it takes to access a
memory location depends on whether it has been cached or not and exploit secret-dependent
memory accesses. Different cache attacks targeting different caches have been proposed. Pop-
ular attack techniques, which are often reused, include EVICT+TIME, PRIME+PROBE [OST06]
and FLUSH+RELOAD [YF14]. Recent works [BMD+17; GESM17; HCP17; MIE17; SWG+17]
have demonstrated that known cache attacks can also be performed on Intel SGX enclaves.
They all use the PRIME+PROBE approach. First, the attacker process primes the cache, filling it
with its own data. It then waits for the victim enclave to access the cache in a secret-dependent
manner. This results in some of the attacker’s cache lines being evicted from the cache. The
attacker process then probes the cache by re-accessing the data that he previously loaded into
the cache. From the measured access times the attacker can find out which of the cache lines
were evicted. Due to the fact that a memory location is mapped to specific cache lines based
on some of its address bits, this also reveals part of the memory address that was accessed by
the victim. This has been shown to be enough to extract RSA private keys [BMD+17], AES
keys [GESM17; MIE17] and sensitive information such as genomic data [BMD+17], images
and parts of text documents [HCP17] from cryptographic and application libraries running
inside enclaves. As the L1 cache was targeted, co-location on the same core was a prerequisite.
An enclave-to-enclave cache attack targeting the LLC was demonstrated in [SWG+17].
Some, but not all, of the proposed attacks lead to an increased interrupt rate and can therefore
be detected by existing defenses such as T-SGX [SLKP17] and Déjà Vu [CZRZ17]. These
defenses do however also impose a noticeable overhead. T-SGX and Déjà Vu rely on Intel
Transactional Synchronization Extension (Intel TSX), which provides support for Hardware
Transactional Memory (HTM). HTM enables multiple threats to optimistically execute trans-
actions in parallel, aborting and rolling back transactions in case of a conflict. Current HTM
implementations use the caches to keep track of transactional changes. Transactions are
therefore also aborted whenever transactional memory is prematurely evicted from the cache.
Cloak [GLS+17a], another approach that aims at providing protection against cache-based
side-channel attacks, leverages this behaviour of HTM implementations such as Intel TSX.
It preloads all sensitive memory locations into the caches before accessing any of them in
a possibly secret-dependent way. Cloak does however have the disadvantage of requiring

21

2 Background

the developer to annotate sensitive data structures manually. Additionally, Intel TSX is not
supported by all Intel SGX-enabled processors.
An alternative approach that has been proposed is DR.SGX [BCD+17], which is short for “Data
Location Randomization for SGX”. It prevents information leakage due to secret-dependent
data accesses by continuously randomizing the enclave’s memory layout and thereby obfus-
cating the link between memory locations and data objects.
Since cache attacks often target cryptographic libraries, great efforts have gone into designing
side-channel resistant, constant-time variants of encryption algorithms [OST06; BGNS06].
The recently proposed MemJam attack [MES18] demonstrated the vulnerability of a constant-
time AES implementation from the Intel IPP library, which is part of the Intel SGX SDK and was
thought to be secure. The attack has a 4-byte intra-cache line granularity, breaking the assump-
tion that constant cache line accesses prevent any leakage. Only code with true constant-time
properties, including constant memory accesses can be expected to be leakage-free. The Mem-
Jam authors suggest exclusively using hardware-based or hardware-assisted implementations
such as AES-NI. Unfortunately, hardware support for cryptographic primitives is limited and
support for AES-NI can in some cases be disabled in the BIOS.

Speculative Execution-Based Attacks. Speculative execution is an optimization technique
used by modern processors. The Meltdown [LSG+18] and Spectre [KHF+19] attacks have
shown that it also opens the door for powerful side-channel attacks. Following their discovery,
similar speculative execution-based attacks against Intel SGX enclaves were demonstrated.
Processors speculatively execute instructions for example when reaching a conditional branch
instruction, whose direction has yet to be determined. This might be because the direction
depends on preceding instructions, whose execution is not yet completed or because the
instruction is being executed out-of-order to further speed up the program. When this happens,
the processor will make a prediction as to which path will be taken and continue executing the
instructions along that path. If the prediction was correct, the execution results are committed.
Otherwise, the instructions are rolled back. Their transient execution may however leave
traces on the CPU’s microarchitectural state such as the caches. Spectre attacks including
SgxPectre [CCX+18] trick the processor into speculatively executing instruction sequences
that are not part of the victim’s intended execution path. Due to the transient execution of
these instructions, information that the victim (e.g., enclave) is authorized to access is leaked.
Similarly, Meltdown and Meltdown-type attacks such as Foreshadow [VMW+18; WVM+18;
Int18h] exploit the fact that during a small time window the results of unauthorized memory
accesses can be used in transient out-of-order instructions before they are rolled back. The
attacker aims to transiently execute instructions that perform secret-dependent operations
and alter the CPU’s microarchitectural state, which is used as a covert channel, over which the
secrets are transferred. Foreshadow for example uses the L1 cache as a covert channel. It is
therefore also referred to as L1 Terminal Fault (L1TF). It comes in three variants, one of which
targets Intel SGX enclaves, defeating memory isolation, sealing and attestation guarantees.
Depending on a secret value, the location of a slot in an “oracle buffer” is computed. The slot
is then brought into the cache, from where it can be recovered. This is done by measuring
the time it takes to reload each slot of the oracle buffer.

22

2 Background

Spectre-type attacks against Intel SGX require vulnerable code to be executed within the
enclave. This is not the case for Meltdown-type attacks, which can even be performed with-
out executing the victim enclave. The Foreshadow authors were able to extract enclave
secrets residing in protected memory or CPU registers but more importantly, they were the
first to be able to extract long-term keys from Intel-provided architectural enclaves such as
the Quoting Enclave, thereby completely invalidating remote attestation guarantees. They
showed that Meltdown-type attacks can also be used to breach non-hierarchical intra-address
space isolation barriers. In contrast, the original Meltdown attack was used to breach the
memory isolation barriers between kernel and user space, allowing an unprivileged user
space attacker to read kernel memory. It has been mitigated using kernel page table isolation
techniques [GLS+17b], which cannot defend against Foreshadow. Intel has however released
a microcode update to protect enclaves from Foreshadow, which ensures that the L1 cache is
flushed upon enclave exit. As secret data still resides in the L1 cache during enclave execution
and the L1 cache is shared between logical cores, this leaves the possibility of cross-logical
core attacks when HyperThreading is enabled. HyperThreading is Intel’s proprietary imple-
mentation of Simultaneous Multithreading (SMT). Intel has acknowledged the possible threat
by deriving different keys depending on whether HyperThreading is enabled or disabled and
including the status of HyperThreading in quotes. Consequently, service providers can decide
for themselves whether or not to reject attestations from HyperThreading-enabled platforms.
In the long run, in future Intel processors, Spectre, Meltdown and Foreshadow will reportedly
be mitigated through hardware changes [Int18h; Int18j; WVM+18].

Bottom Line. The large and continuously increasing amount of side-channel attacks and
corresponding mitigation strategies are hard to keep up with for any developer. It should
be noted that this work does not aim to provide an exhaustive list. Many conventional side-
channel attacks are amplified under the strong adversary model of Intel SGX and many existing
mitigations require code changes or expert knowledge, or incur high performance costs. The
underlying problem, as stated by Wang et al. [WCP+17], is that defenses are usually proposed
in response to a newly discovered attack, only targeting this specific attack and failing to
consider the bigger picture. Many defenses are therefore unable to offer protection against
alternative attack strategies or even variations of the same attack.

Two recent works, HyperRace [CWC+18] and the shielding system Varys [OTK+18], do in
fact aim to offer protection against a wider range of side-channel attacks. Both of them defend
against interrupt-based as well as HyperThreading-based attacks. HyperThreading allows to
run two concurrent threads on a single physical CPU core, improving processor performance.
Consequently, each physical core is said to have two logical cores. Since the two logical cores
share all the core resources such as the L1 and L2 cache, HyperThreading enables or assists
same-core side-channel attacks, e.g., [WCP+17; GRBG18]. HyperThreading-based attacks
typically do not trigger a large number of interrupts and are therefore not detected by many
existing defenses. Nonetheless, due to the performance gains HyperThreading brings about,
simply disabling it might not be in the developers’ interest.
HyperRace and Varys ensure that the enclave thread is executed on a dedicated CPU core

23

2 Background

that is not shared with untrusted threats. HyperRace creates a shadow thread, which it asks
the OS to schedule on the physical core’s second logical core. Since the OS is untrusted,
HyperRace then verifies whether the two threads are indeed co-located on the same core.
In principle, Varys does the same, except that it explicitly aims to protect multi-threaded
applications, in that case scheduling two enclave threads on the same core.
Both, HyperRace and Varys additionally monitor interrupts. They therefore make page table-
based side-channel attacks as well as L1/L2 cache attacks on enclaves much harder or even
entirely impossible to mount. They are limited in that they do not protect against cross-core
side-channel attacks such as LLC attacks. Cross-core side channels do however tend to be
noisy and are often hard to exploit in practice.

On another note, assuming that developers can simply write code that is resistant to all sorts
of side-channel attacks seems to be fairly unreasonable. The recently published MemJam
attack [MES18] shows that even code that was written by experts and was thought to be secure
can still be vulnerable. Additionally, some attacks like Foreshadow [VMW+18; WVM+18] do
not require code vulnerabilities in the victim enclave.
Side-channel resistance is especially important for cryptographic implementations, which
might otherwise leak secret keys. Hardware-assisted implementations such as AES-NI have
so far withstood attacks, which is why their usage is strongly encouraged. In this line, it
should be noted that while there is in-enclave support for AES-NI and the SGX Developer
Guide [Int18e] references it as being resistant to timing-based side-channel attacks due to
its constant-time properties, it has been repeatedly stated (e.g., in [GESM17; AM16]) that
the Linux SGX SDK does not use it, instead using a slower software implementation without
side-channel mitigations. While this is the default condition, Linux developers can manually
link the SDK with a precompiled optimized binary of the Intel IPP library, which uses AES-NI,
thereby improving the performance and security of their SGX applications [MES18; HTCK18].
Unfortunately, Intel itself does not provide any official information on this matter, making it
hard to put into practice. On a brighter note, the Intel SGX SDK for Windows probably uses
AES-NI by default.

24

3 RelatedWork

There are other works which investigate the use of trusted execution environments such as
Intel SGX for secure computation. Koeberl et al. [KPR+15] were among the first to propose
a TEE-based solution as a more efficient alternative to cryptographic secure multi-party
computation protocols. While their work was purely theoretical in nature, they describe
TEEs as neutral environments with strong protection, which enable multiple parties to jointly
perform computations under previously agreed security and privacy policies. The authors ac-
curately list assessing the security properties of a TEE-based solution, including its resistance
to side-channel attacks, as one of the main challenges that have to be addressed.
Gupta et al. [GMF+16] suggest SGX-supported two-party secure function evaluation, pro-
viding a maliciously secure protocol that enables two parties with SGX-enabled machines to
perform joint computations on their private data. They did not implement their proposed
solution but expect it to be significantly more efficient than one based on garbled circuits
due to the fact that much less cryptographic operations are required. The authors recognize
the possibility of side-channel attacks such as memory side-channel attacks or timing attacks.
The latter are protected against by including N extra loop iterations whenever the number
of iterations is determined by a secret value, where N is a pseudo-random number which is
based on secret information from both parties.
In this work, an Intel SGX-based two-party computation approach is practically implemented
and compared against 2PC solutions based on cryptographic protocols. Additionally, an
overview of Intel SGX’s security with regards to software side-channel attacks is provided.
Specifically, memory side-channel attacks and timing attacks are mitigated by evaluating
a Boolean circuit-representation of the function to be computed inside the enclave and by
performing constant memory accesses whenever a gate is evaluated.

Küçük et al. [KPM+16] explore the use of Intel SGX for many-party applications that involve
thousands or tens of thousands of participants such as privacy-preserving energy metering
or location-based services. Specifically, they use Intel SGX for implementing a Trustworthy
Remote Entity (TRE), which is a trusted third party providing strong assurance guarantees
about its state and behaviour. The trustworthiness of this TRE is established via remote
attestation. The authors imagine it to be an intermediary between data providers and data
processors which can for example perform privacy-preserving operations. They implement
a prototype TRE for the smart grid use case, which aggregates data from different energy
meters. Due to the fact that all many-party applications share certain core features, they
imagine it to serve as an architectural template for other applications. The authors further-
more emphasize the importance of minimizing the size of the TRE in order to minimize the
TCB and the effort required to verify it. After benchmarking several SGX operations and

25

3 Related Work

assessing the performance of their approach, they conclude that Intel SGX is well-suited for
use in large-scale many-party applications, having a significant performance advantage over
cryptographic MPC protocols.
This work obviously differs from Küçük et al.’s in that it only targets two-party applications.
Extending it to the many-party case would however be feasible. What distinguishes this work
from many others, including Küçük et al.’s, is that its design allows to reuse the same enclave
for many different applications. This is due to the fact that the function to be computed is
not executed in plain inside the enclave but instead, a Boolean circuit representation of it is
executed. The circuit is loaded into the enclave during the protocol execution. By loading
different circuits into the same enclave, it can be used to secure the computation of many
different functions.
More works which focus on securing specific applications with Intel SGX are listed in Sec-
tion 2.4.4. In contrast, this work proposes a solution for general secure two-party computation
that does not require a per-application redesign.

Bahmani et al. [BBB+16; BBB+17] were the first to implement an Intel SGX-based approach
for general secure multi-party computation. They provide a formal protocol specification
and formal security definitions but lack to explain how they translate these into a practical
implementation. At the center of their approach is the notion of labelled attested computation.
It allows multiple parties, which concurrently and asynchronously interact with the same
enclave, to obtain attestation guarantees. The parties establish individual secure channels
with the remote program. The authors compare a two-party version of their Intel SGX-based
solution against a cryptographic solution as implemented by the ABY framework. They do
not specify what kind of network settings were used for the performance evaluation but
report a speed-up of up to 300× for the total run time. It should however be noted that the
performance gain for the online phase only is much smaller. In comparison to Intel SGX, the
ABY framework provides weaker security in the semi-honest model. Bahmani et al. briefly
address the topic of side-channel attacks against Intel SGX. They claim to provide a protocol
implementation that is fully constant-time and thereby able to resist timing attacks.
Same as Bahmani et al.’s work, this work also implements an Intel SGX-based 2PC solution
and compares its performance against an ABY-based solution but differs from it in that a
Boolean circuit representation of the function to be computed is evaluated. The circuit is
loaded into the enclave during the protocol execution. This does not only provide inherent
security against a number of side-channel attacks but also makes it unnecessary to design a
new enclave for every application. As a result the approach proposed in this work is much
easier to use, even by non-experts. Additionally, it supports the secure evaluation of private
functions. Further comparisons are hard without being provided with details about the
implementation or even the protocol message flow.

26

4 Intel SGX-Based Secure Two-Party Computation

Secure two-party computation approaches based on cryptographic protocols incur high com-
putational and communication overheads. This work explores an alternative Intel SGX-based
approach to the problem of secure computation, which is described in this chapter. It targets
secure function evaluation as well as private function evaluation. Both scenarios involve two
mutually distrusting parties with private inputs that want to jointly evaluate a function while
being sure that the other party does not learn their input.

Intel SGX allows applications to create trusted execution environments called enclaves which
can be used to protect security-sensitive code and data against modification or disclosure. In
a two-party computation scenario, the two cooperating parties can both submit their private
input to the enclave, where the function can then be computed securely. Afterwards they can
retrieve the computation result. For that purpose, the two parties need to establish individual
trusted channels with the enclave. They can use remote attestation to verify the integrity of
the enclave software before provisioning it with their secrets (see Section 2.4.3). This is the
basic set-up of our 2PC approach.

DesignConsiderations. Intel SGX does not provide protection against software side-channel
attacks and its vulnerability to them has been proven time and again (see Section 2.4.5). In
our work, the function is not computed in plain inside the enclave. Instead, a Boolean circuit
representation of it is executed, mitigating side-channel vulnerabilities. The main goal of this
work therefore is to enable the execution of Boolean circuits and universal circuits within
SGX enclaves.

Another goal of this work is to compare the performance of the Intel SGX-based solution
against a cryptographic solution as implemented by the ABY framework. For this reason,
circuits encoded in the ABY Boolean circuit format and the universal circuit format (see
Section 2.3) are processed. The respective circuit is loaded into the enclave after the enclave’s
creation and can be selected per execution. This way, the same enclave can be reused for
computing many different functions, which represents a big advantage. It however also
means that the circuit is not covered by the enclave measurement, creating the need for a
mechanism by which the two parties can be sure that the right circuit is being executed inside
the enclave.

27

4 Intel SGX-Based Secure Two-Party Computation

Basic Set-up. Figure 4.1 illustrates the basic set-up of our Intel SGX-based 2PC approach.
The two cooperating parties are called service providers to match Intel’s remote attestation
terminology. The service they provide is the provisioning of secrets to the enclave. They
both perform remote attestation and establish an individual trusted channel with the enclave,
over which the secrets are exchanged. The following section describes the concrete protocol
message flow between the service providers and the application. Inside the enclave, a Boolean
circuit representation of the function to be computed is evaluated.

Service Provider 1 Service Provider 2

Application

Enclave

Figure 4.1: Basic Set-up. In the 2PC setting with Intel SGX, the two cooperating parties
are called service providers because they provide the enclave with their secrets. Inside the
enclave, a Boolean circuit is evaluated.

4.1 Protocol Message Flow

We designed a protocol for our Intel SGX-based 2PC approach. This section explains the
protocol messages that are exchanged between each service provider and the application.
The complete protocol message flow is shown in Protocol 4.1. It can be used for secure
function evaluation as well as private function evaluation. Steps 1⃝ to 9⃝ are part of the
remote attestation process and are described in Section 2.4.3. If the RA process has been
successfully completed and a trusted channel has been established between the service
provider and the enclave, the application signals the service provider to provision its se-
crets over the newly established channel (10). We also count this step towards remote
attestation.

In consequence, the service provider generates the circuit message (11). Despite its name, it
does not actually contain the circuit to be evaluated in-enclave. Instead it contains a hash
of it. Since Boolean circuits and especially universal circuits can get quite large for realistic
applications, this significantly reduces the communication cost. The masking key MK and the
symmetric key SK are two of the keys derived from the key derivation key. The MK is used to
generate the AES-128 CMAC of the circuit hash in order to protect its integrity.

28

4 Intel SGX-Based Secure Two-Party Computation

IAS SP App

. remote attestation started .

1⃝ request for attestation

2⃝ msg0∥msg1

3⃝ request

4⃝ sigRL

5⃝ msg2

6⃝ msg3

7⃝ quote

8⃝ attestation report

9⃝ attestation result

10 attestation ok msg

. remote attestation completed .

11 circuit msg

12 result msg

Protocol 4.1: Complete 2PC Protocol Message Flow for one Service Provider. Messages
exchanged between each Service Provider (SP) and the Application (App) and between each
Service Provider and the Intel Attestation Service (IAS) during the two-party computation
which includes remote attestation.

The SK is used to encrypt the service provider’s private input. As an encryption algorithm,
AES in Galois/Counter Mode (AES-GCM) is used. AES-GCM produces a cipher text and an
authentication tag, thereby providing both confidentiality and authenticity. Finally, the circuit
message also contains the service provider’s role in the 2PC computation. This role determines
how the service provider’s input is used, which enables using the same application for both
secure function evaluation and private function evaluation. A wrong value will therefore lead

29

4 Intel SGX-Based Secure Two-Party Computation

to the computation being aborted. In the PFE case, the private input of one of the parties is
the programming to the universal circuit. This party does not receive the computation result.
Summing it up, the circuit message has the following structure:

circuit msg= Role∥CircuitHash∥CMACMK(CircuitHash)∥AES-GCMSK(Input)

The application is responsible for loading the circuit into the enclave. This is only done once,
after the first circuit message is received and requires identifying the circuit file corresponding
to the circuit hash inside the message. The circuit file therefore needs to be stored on the
remote platform. Since the application and the respective other service provider are untrusted,
verifying whether the enclave contains the intended circuit before evaluating it is essential
for security. The enclave code checks whether the hash of the actual circuit that was loaded
into the enclave matches the circuit hashes submitted by both service providers. If this is not
the case, the computation is aborted.

After the circuit inside the enclave has been initialized, the application performs an ECALL
to pass the contents of the circuit message along to the enclave. It can then call into the
enclave once more to check whether the computation result is available. If the enclave has
received both service providers’ inputs, this will trigger the evaluation of the circuit, given
that the aforementioned checks have passed. If the second service provider’s input has not
yet been received, the first is informed accordingly and will have to request the result again.
Otherwise, the computation result is encrypted with the respective shared secret key and
returned to the service provider in form of the result message (12):

result msg= AES-GCMSK(Result)

Upon receiving the message, the service provider decrypts the result. This concludes the
secure two-party computation process.

4.2 Implementation

This section explains how our Intel SGX-based 2PC protocol presented in the preceding
section is practically implemented.

The implementation was done using the Rust SGX SDK v1.0.4, which supports the Intel SGX
SDK1 v2.3.1. The development platform was Ubuntu 18.04 LTS.

1The Rust SGX SDK is available under https://github.com/baidu/rust-sgx-sdk.

30

https://github.com/baidu/rust-sgx-sdk

4 Intel SGX-Based Secure Two-Party Computation

4.2.1 Circuit Evaluation

This section briefly describes how Boolean circuits and universal circuits are represented and
evaluated in this work.

A circuit is made up of nodes, which can be inputs, outputs or gates. The circuit files from
which the circuits are parsed contain the nodes in topological order. To preserve this order,
the circuit keeps a vector of node IDs. The node ID wraps the node type (input, output or
gate) and an actual ID integer value. When the circuit is evaluated, the implementation
iterates over the node IDs in the vector and looks up the corresponding node in one of three
maps, each containing the nodes of one type. The circuit also keeps a lookup map with the
circuit input and gate output values. Every gate has a gate type and a number of gate inputs
and outputs. When a gate is processed, every input value is either a circuit input or the
output of another gate that has already been processed and can therefore be looked up. The
gate output value(s) are computed according to the gate type and inserted into the map. For
side-channel protection, it is essential that the evaluation of a function gate is constant-time
and that does not perform any secret-dependent cache accesses (see Section 2.4.5). Since the
circuit topology is public and all possible paths of the circuit are always executed, the fact that
a specific gate function is being evaluated does not leak any secrets. X switches, Y switches
and universal gates are implemented using AND and XOR gates to avoid secret-dependent
branching and data accesses.

The following two listings contain our implementations for the gate evaluation of Boolean
circuits and universal circuits, respectively. The ABY Boolean circuit format supports four gate
types, which are XOR, AND, MUX and Inversion. Universal circuits consist of X switches, Y
switches and universal gates. The programming language is Rust. Our gate input and output
values have the u8 data type.

Listing 4.1: Boolean Circuit Gate Evaluation. Computation of the gate output value from
the gate input value(s) for different gate types in a Boolean circuit.

1 #XOR
2 input_values [0] ^ input_values [1]
3

4 #AND
5 input_values [0] & input_values [1]
6

7 #MUX
8 input_values [0] & !(input_values [2] ^ 0 b1111_1110)) |
9 (input_values [1] & (input_values [2] ^ 0 b1111_1110)

10

11 # Inversion
12 !(input_values [0] ^ 0 b1111_1110)

31

4 Intel SGX-Based Secure Two-Party Computation

Listing 4.2: Universal Circuit Gate Evaluation. Computation of the gate output value(s)
from the gate input values for different gate types in a universal circuit.

1 #X Switch
2 let e = (input_values [0] ^ input_values [1]) & p;
3 e ^ input_values [0]
4 e ^ input_values [1]
5

6 #Y Switch
7 input_values [0] ^ input_values [1]) & p) ^ input_values [1]
8

9 # Universal Gate
10 let c = ((p1 ^ p2) & input_values [1]) ^ p1;
11 let d = ((p3 ^ p4) & input_values [1]) ^ p3;
12 (c ^ d) & input_values [0]) ^ c)

In order to achieve the best possible performance, we experimented with different data
types for the four lookup maps that we use in our circuit implementation. As explained
above, they contain the circuit input and output values, the gates and the gate output values,
respectively. We started off using Rust’s default hash map implementation (HashMap) and
ended up using a map that is based on a B-tree (BTreeMap2). We also tried using FxHashMap
from the fxhash library3 and FnvHashMap from the fnv library4 as adapted for use within
enclaves by the Rust SGX SDK. In-enclave, using B-tree maps results in significantly shorter
circuit evaluation times than can be achieved by using any of the hash map implementations.
While Rust’s BTreeMap reportedly provides excellent performance for small keys which are
cheap to compare, its superior performance within enclaves is presumably mainly owed to
the fact that it is more compact in memory, which leads to the circuit evaluation requiring
less EPC paging.

4.2.2 2PC Protocol Implementation

In this section, we describe how we actually implemented the 2PC protocol we designed. Our
implementation relies on the Rust SGX SDK’s remote attestation code sample5, which is a
practical implementation of the remote attestation protocol as presented in Section 2.4.3.
Further inspiration was taken from a code sample for private set intersection6, which also
extends the RA code sample.

2https://doc.rust-lang.org/std/collections/struct.BTreeMap.html
3https://github.com/baidu/rust-sgx-sdk/tree/master/third_party/fxhash
4https://github.com/baidu/rust-sgx-sdk/tree/master/third_party/rust-fnv
5https://github.com/baidu/rust-sgx-sdk/tree/master/samplecode/remoteattestation
6https://github.com/baidu/rust-sgx-sdk/tree/master/samplecode/psi

32

https://doc.rust-lang.org/std/collections/struct.BTreeMap.html
https://github.com/baidu/rust-sgx-sdk/tree/master/third_party/fxhash
https://github.com/baidu/rust-sgx-sdk/tree/master/third_party/rust-fnv
https://github.com/baidu/rust-sgx-sdk/tree/master/samplecode/remoteattestation
https://github.com/baidu/rust-sgx-sdk/tree/master/samplecode/psi

4 Intel SGX-Based Secure Two-Party Computation

The Remote Attestation Code Sample. The RA sample project consists of two separate
programs: the application, which includes the enclave, and the service provider. Only
the former needs to be run on an SGX-enabled platform. The service provider and the
untrusted part of the application are written in C++ while the enclave is written in the Rust
programming language. Most notably, the RA code sample uses Google Protocol Buffers7

for message exchange between the service provider and the application and Boost.Asio8 for
networking. By default, the communication between the service provider and the application
is secured with TLS. The application takes the role of the TLS server, requiring a certificate
for authentication.
Additional information on the RA code sample can be found in Appendix Section A.1.1.
Before the code can be run, some set-up steps need to be performed which are explained in
detail in Section 4.3.1.

Modifications & Extensions. We extended the RA code sample in a number of ways. Firstly,
we added support for a second service provider, allowing the two service providers to both
interact with the same enclave. Both service providers perform remote attestation and
establish an individual trusted channel with the enclave. When the RA process is initialized,
the service provider is assigned an RA context. This context is used to differentiate the two
service providers and therefore included in all messages exchanged between the application
and the service provider. In-enclave, it is used to retrieve the corresponding shared keys.
The application simultaneously communicates with both service providers. We aimed to
implement the protocol in such a way that it is properly terminated in case of an error on any
of the three sides.

The RA code sample was modified so that messages 0 and 1 are sent in conjunction instead
of separately, eliminating one additional round-trip. For the 2PC computation, the following
new message types were added:

• The attestation failed message that is sent by the application to the service provider in
case the remote attestation process could not successfully be completed.

• The circuit message sent from the service provider to the application to transmit the
circuit hash and the service provider’s private input.

• The result message sent from the application to the service provider, containing the
result of the two-party computation in encrypted form.

• The result not ready message that is sent by the application to the service provider in
case the result could not yet be computed because the second service provider’s input
has not yet been received.

• The result request message sent by the service provider to the application, requesting
the application to check whether the computation result is available. It will either be
answered with a result message or a result not ready message.

7https://developers.google.com/protocol-buffers/
8https://www.boost.org/doc/libs/1_68_0/doc/html/boost_asio.html

33

https://developers.google.com/protocol-buffers/
https://www.boost.org/doc/libs/1_68_0/doc/html/boost_asio.html

4 Intel SGX-Based Secure Two-Party Computation

• The abort request message sent from the service provider to the application in case
it failed to retrieve the result after a certain number of tries. This will lead to the
application checking whether the computation result is available one last time. If this
is not the case, the computation is aborted and the enclave is re-initialized, clearing the
secrets. This is to make sure that either both service providers receive the computation
result or neither of them do.

• The abort message that is sent from the application to the service provider to signal that
the computation has been aborted. This can be due to an error such as the circuit hash
values received from the two service providers not matching or due to having received
an abort request message from one of the service providers.

Generally, the actions of both, the application and the service provider, depend on the type of
the messages that are received. We aimed to ensure that the computation is aborted and no
information is leaked in case wrong values are included in messages or in case the messages
are sent out of order. All security critical data such as the private input, result or circuit hash
is confidentiality and/or integrity-protected.

In the RA code sample, the service provider uses a sample cryptographic library (libsample_
libcrypto.so9). This leads to reproducible messages being generated and therefore fa-
cilitates the debugging of the remote attestation message flow. The library is not meant
for production use which is why we replaced it. The replacement relies on OpenSSL’s EVP
interface10 and is based on code from Intel’s RA code sample11 which was extended to support
AES-GCM encryption and decryption.
Furthermore, smaller issues of the Rust SGX SDK’s RA code sample were identified and fixed.
In the RA code sample, the Platform Information Blob (PIB) that is transmitted by the Intel
Attestation Service in case the attestation status is not “OK” is not actually parsed. Instead, a
default one filled with zeros is generated and self-signed. The negative attestation status is
also not reported on the application side, which is something that Intel recommends to do
in order to find out which of the TCB components on the SGX platform requires an update.
Additionally, the IAS signature on the attestation report is not verified. We resolved these
issues, parsing the PIB, reporting the attestation status and verifying the IAS certificate chain
and signature.

The RA code sample uses Google Protocol Buffers for message exchange. With quite some
effort, we created a second version of our implementation without the additional TLS pro-
tection of the communication between the application and service provider to be able to
inspect the plaintext messages exchanged between them using Wireshark12. A protocol buffer
message is a series of key-value pairs, which are concatenated into a byte stream when the
message is encoded13. The keys are the field numbers. For each field, a so-called wire type can

9https://github.com/baidu/rust-sgx-sdk/blob/master/samplecode/remoteattestation/
ServiceProvider/sample_libcrypto

10https://www.openssl.org/docs/man1.1.1/man7/evp.html
11https://github.com/intel/sgx-ra-sample/blob/master/crypto.c
12https://www.wireshark.org/
13https://developers.google.com/protocol-buffers/docs/encoding

34

https://github.com/baidu/rust-sgx-sdk/blob/master/samplecode/remoteattestation/ServiceProvider/sample_libcrypto
https://github.com/baidu/rust-sgx-sdk/blob/master/samplecode/remoteattestation/ServiceProvider/sample_libcrypto
https://www.openssl.org/docs/man1.1.1/man7/evp.html
https://github.com/intel/sgx-ra-sample/blob/master/crypto.c
https://www.wireshark.org/
https://developers.google.com/protocol-buffers/docs/encoding

4 Intel SGX-Based Secure Two-Party Computation

be chosen which determines how that field is encoded. It becomes obvious that using Protocol
Buffers incurs some additional communication overhead. We tried to reduce this overhead by
changing some of the wire types used in the RA code sample, yielding smaller message sizes,
and picking the right wire types for our newly added message types. Nonetheless, in the PFE
scenario, where one service provider’s private input is the programming of the circuit, four
bits are transmitted for each gate in the universal circuit due to the fact that universal gates
require four programming bits. Since the circuit evaluation takes both the circuit input values
and the programming bits as bytes (u8 primitive type), the values need to be unpacked after
they are decrypted inside the enclave.

To be able to measure the duration times of different phases of our protocol, we copied
and adapted the timer implementation14 provided by the ABY framework’s utility library
ENCRYPTO_utils.

Loading the Right Circuit into the Enclave. The central question during the implementa-
tion of the 2PC protocol was how to get the right Boolean or universal circuit into the enclave.
This is actually a twofold problem: first, the circuit that is available in file form outside the
enclave needs to be loaded into the enclave and second, the service providers need to be
assured that the circuit they intend to be evaluated is being evaluated inside the enclave.
Both, the case that the second service provider tries to get a different circuit evaluated and
the case that the untrusted application or the untrusted OS loads the wrong circuit into the
enclave need to be covered.
One of the first decisions we made was not to have the service provider transmit the circuit
to the application during the protocol execution. The circuit is public, meaning that it does
not have to be hidden and circuit sizes get quite large for realistic applications. To reduce the
communication cost of the protocol, the circuit files are stored on the SGX-enabled platform.
Here, we also want to point out that cryptographic 2PC solutions differ in whether they
transmit the circuit or not. While in Yao’s protocol, the garbled circuit is transferred from the
garbler to the evaluator, the transfer of the circuit is not part of the GMW protocol.
Still, this leaves us with the problem of loading the right circuit into the enclave. As briefly
mentioned, the second part of the problem is addressed by having the service providers
transmit the hash value of the circuit they intend to be evaluated along with a CMAC of it to
protect its integrity. When the circuit is loaded into the enclave, its hash value is computed.
The circuit will only be evaluated if its hash value matches the values sent by the two service
providers. For the first part of the problem, namely, how to get the circuit into the enclave,
we considered several options. We first tried reading in and parsing the circuit file outside
the enclave. The circuit object was then serialized and sent into the enclave via an ECALL,
where it was deserialized and then hashed. This was somewhat challenging to implement. It
required the help of the Rust SGX SDK’s serialization library (sgx_serialize), which had to
be extended to guarantee the deterministic serialization of the hash maps that were part of the
circuit object by sorting their keys first. Without this, hashing the same circuit twice will result

14https://github.com/encryptogroup/ENCRYPTO_utils/blob/master/src/ENCRYPTO_utils/
timer.cpp

35

https://github.com/encryptogroup/ENCRYPTO_utils/blob/master/src/ENCRYPTO_utils/timer.cpp
https://github.com/encryptogroup/ENCRYPTO_utils/blob/master/src/ENCRYPTO_utils/timer.cpp

4 Intel SGX-Based Secure Two-Party Computation

in different hash values. The reading and the serialization of the circuit was implemented in
Rust code which was called from C++ code via a Foreign Function Interface (FFI). As this
approach did not yield the desired performance results, a second approach was implemented,
which removes the serialization and deserialization steps. Instead of the serialized circuit
object, the raw circuit file data is sent into the enclave, where it is hashed and parsed. This
approach has a slightly better performance and also comes with a smaller TCB. To reduce
the computation cost on the service provider side, the circuit hash is looked up rather than
computed during the protocol execution.
One option we did not implement but which might still be worth exploring was the Intel
Protected File System Library [Int18d] for secure file I/O inside enclaves. An enclave can use
it to create SGX files, which are confidentiality and integrity protected, and to read them back
in. It can however not be used to read in conventional files. For this purpose, the enclave
would have to issue an OCALL. In theory, the circuit file could be read in and its contents
could be copied into an SGX file during the protocol set-up phase, from where they could
securely be read. This way, the expensive marshalling of the file data into the enclave would
be avoided.

By loading the circuit into the enclave after its creation and by having the service providers
select the circuit to be evaluated we are able to reuse the same enclave for many different
applications.

4.3 Instructions for Use

This section contains instructions on how to use the Intel SGX-based 2PC solution that we
designed and implemented. Before the code can be run as explained in Section 4.3.2, some set-
up steps need to be performed. These are described in Section 4.3.1.

4.3.1 Set-up

Prerequisites. Our 2PC solution can either be run with our without Docker15. Docker allows
to build and deploy applications with containers, which are isolated from each other. A Docker
container is built from an image and packages the application and all of its dependencies
such as tools and libraries. Docker significantly reduces the effort required for setting up the
development environment and guarantees that the application always runs the same way by
eliminating environment inconsistencies.
The publishers of the Rust SGX SDK recommend for it to be used with Docker. This only
requires installing the Intel SGX Driver, cloning the GitHub repository and pulling the Docker
image in order to start application development. Of course, Intel SGX has to be enabled in
the system BIOS.

15https://docs.docker.com/

36

https://docs.docker.com/

4 Intel SGX-Based Secure Two-Party Computation

In order to be able to build and run an SGX application without Docker, the following
components have to be installed16:

• Intel SGX Driver

• Intel SGX Platform Software (PSW)

• Intel SGX Software Development Kit (SDK)

Building and running our 2PC solution without Docker further requires the installation of the
following external libraries:

• libprotobuf-c0-dev, protobuf-compiler

• libboost-thread-dev, libboost-system-dev

• curl, libcurl4-openssl-dev

• libssl

• libjsoncpp-dev

• liblog4cpp5-dev

Service Provider Registration. Access to the Intel SGX development services such as the
Intel Attestation Service requires registering with Intel to obtain a valid Service Provider
ID (SPID). The service provider has to send in a client certificate and chose an attestation policy.
In this work, the unlinkable signature policy was chosen and the same SPID is used by both
service providers. The service providers’ ECDSA public key is hardcoded inside the enclave
(lib.rs) to make sure that the enclave can only communicate with the intended service
providers. The corresponding private key is hardcoded inside the ServiceProvider.cpp
file. Both are in little endian format. If another SPID is to be used, these keys need to
be replaced as well. If one wants to use the linkable signature policy, the quote type that
is requested from the enclave has to be changed from “SGX_UNLINKABLE_SIGNATURE”
to “SGX_LINKABLE_SIGNATURE”. This can also be done inside the ServiceProvider.cpp
file.

Configuration. The GeneralSettings.h file is used to configure both the application and
the service provider. The following values have to be set:

• the application’s IP address and port number

• the application’s server certificate and corresponding private key for the TLS connection

• the service provider’s ID (SPID) and client certificate including the corresponding
private key

• the URL of the Attestation API (see also [Int18a])

16They can be downloaded under https://01.org/intel-softwareguard-extensions/downloads or
https://github.com/intel/linux-sgx.

37

https://01.org/intel-softwareguard-extensions/downloads
https://github.com/intel/linux-sgx

4 Intel SGX-Based Secure Two-Party Computation

The file was extended to include the path to the signing certificate of the Intel Attestation Ser-
vice, enabling the verification of the IAS signature on the attestation report.

As explained in Section 4.1, the circuit to be evaluated inside the enclave is not transmitted
over the network. It needs to be stored on the SGX-enabled platform. The application
furthermore needs a way to identify which circuit to load into the enclave. Since computing
the circuit hash for all the available circuits until a match is found would be too time-
consuming, the application is supplied with a file that maps circuit hash values to circuit file
names. Analogously, the service provider is supplied with a file that maps circuit file names to
circuit hashes. Both files can be auto-generated using a helper program (abycircuitparser)
that iterates over all files in a directory. The settings file was therefore extended to include
three additional values:

• the application’s path to the directory containing the circuit files

• the application’s path to the file that maps circuit hash values to circuit file names

• the service provider’s path to the file that maps circuit file names to circuit hash values

The files have to contain one line per mapping and the key-value pair in that line has to
be separated by a single space. The key-value pairs are read into a hash map during the
initialization of the application.

4.3.2 Running the 2PC Protocol

This section provides information on how to run the 2PC protocol between the two service
providers and the application on the SGX-enabled platform. Specifically, it explains which
command-line parameters are required and how to start the necessary Docker containers.

Command-Line Parameters. The application does not take any command-line parameters
but the service provider takes several, which are listed below and need to be specified in
order. They are:

• the circuit file name

• the path to the service provider’s private input

• the service provider’s role in the 2PC computation

The circuit file name has to be contained in the file that maps circuit file names to circuit
hash values. Both service providers have to specify the same circuit file name in order for
the computation to be successful. The service provider’s private input has to be supplied in
form of a text file, which has to contain the input bit sequence in string form. The user can
either specify an absolute path or a path relative to the ServiceProvider directory. The
service provider’s role in the 2PC computation is either client or server and is denoted by an
integer.

38

4 Intel SGX-Based Secure Two-Party Computation

In the SFE setting, one service provider’s role should be 0 and the other one’s role should
be 1. The following lines show example commands which could be entered to run the two
service providers:

./app circuit_file.aby resources/input1.txt 0

./app circuit_file.aby resources/input2.txt 1

In the PFE setting, the service providers’ roles need to be 2 and 3. The input of the ser-
vice provider which takes the role of the server (3) is used as the programming to the
universal circuit and that service provider does not receive the result of the computa-
tion.

Logging Capabilities. Both, the application and the service provider use logging to make
the individual steps of the SGX-based 2PC protocol observable and to report any errors to the
user. Some more detailed information can be obtained by activating verbose logging. This will
for example lead to the attestation report and circuit hash being printed and can be done inside
the respective isv_app.cpp file by adding the following line of code:

LogBase::Inst()->Enable(log::verbose, true);

Working with Docker. For ease of use, we recommend running the application as well
as both service providers each within their own Docker containers. For Ubuntu 18.04,
this requires pulling the Docker image baiduxlab/sgx-rust:1804. The container for the
application can then be started by entering the following commands:

docker run -p 127.0.0.1:22222:22222 -v /path/to/rust-sgx-sdk/:/root/sgx
-ti --device /dev/isgx baiduxlab/sgx-rust:1804

root@docker:/# /opt/intel/libsgx-enclave-common/aesm/aesm_service &

This has several effects. Port 22222 of the container is bound to port 22222 on 127.0.0.1
of the host machine. The port number and IP address should match the ones specified in
GeneralSettings.h (see Section 4.3.1). A host directory is mounted as a volume in the
container, which can access it via the path specified after the colon. In this example, the
application code is located inside the samplecode subdirectory of the Rust SGX SDK. An
interactive terminal session is started and the isgx kernel module is loaded. The container
is based on the aforementioned image. Inside the container, the AESM service is started.
Users can then navigate to the Application directory, where they can build and/or run the
application.

The service providers do not require SGX support and can be run inside or outside a Docker
container as desired, provided that the prerequisites listed above are fulfilled. When running
them on the same platform as the application, it is the easiest to run them within containers
created from the aforementioned image.

39

4 Intel SGX-Based Secure Two-Party Computation

The containers need to be connected to the host network by entering:

docker run --net="host" -v /path/to/rust-sgx-sdk/:/root/sgx -ti
--device /dev/isgx baiduxlab/sgx-rust:1804

The computation result is written to files called output_CLIENT.txt and output_SERVER.txt
within the service provider’s resource directory.

40

5 Evaluation

In this chapter, we benchmark our Intel SGX-based solution for secure function evaluation
and private function evaluation and compare it to a cryptographic solution as implemented
by the ABY framework.

Section 5.1 contains information about our experimental set-up, including the circuits
we used for benchmarking and the phases that we divided our protocol into. In Sec-
tions 5.2ff., we present our experimental results. They are discussed and compared in
Section 5.5.

5.1 Experimental Set-up

5.1.1 Benchmarking Environment

General. We perform our benchmarks on an SGX-enabled Intel Compute Stick STK2mv64CC
equipped with an Intel Core m5-6Y57 CPU with 1.10 GHz and 3,6 GB RAM, running Ubuntu
18.04 LTS.

We evaluate our solution using two realistic network settings, which are simulated using Linux
Traffic Control: a low-latency LAN setting with a bandwidth of 1 GBit/s and a round-trip time
of 1 ms and a high-latency WAN setting with a bandwidth of 100 MBit/s and a round-trip
time of 100 ms.

Intel SGX. We manually built the Intel SGX PSW and the Intel SGX SDK v2.3.1 for Linux
using a precompiled optimized binary of the Intel IPP library.
We use the newest Attestation API version of the Intel Attestation Service (IAS) [Int18a], which
is version 3. This leads to the attestation status “CONFIGURATION_NEEDED” being returned
along with a platform information blob. The status was added after the recent disclosures
of HyperThreading-based attacks such as Foreshadow and indicates that HyperThreading is
enabled on the SGX platform. Since the BIOS of the Intel Compute Stick that we used for our
experiments does not include an option to disable HyperThreading, we were not able to switch
it off. This leads to an additional 103 bytes being sent from each of the service providers to the
application during the remote attestation process and two additional ECALLs being performed
in order to report the respective attestation status to the enclave.

41

5 Evaluation

The enclave’s maximum stack and heap size has to be specified within the enclave config-
uration file. The Enclave Page Cache (EPC) has a maximum size of 128 MB, out of which
around 90 MB are usable. Whenever the sum of the stack and heap size exceeds 90 MB, EPC
paging will occur. This has a negative impact on the performance because additional enclave
transitions are required to handle page faults and because the pages that are swapped into
and out of the EPC need to be decrypted and encrypted, respectively [WAK18].
The maximum stack and heap size required by the enclave can be determined with the help
of the Enclave Debugger sgx-gdb, which is part of the Intel SGX SDK. To be able to evaluate
circuits with 1 000 000 gates, we unfortunately had to set the stack size to 8 KB and the heap
size to 205 MB.

The communication between the service providers and the application as well as between the
service providers and the Intel Attestation Service is secured with TLS v1.2. The amount of
data exchanged between the parties, including Ethernet, TCP/IP and TLS protocol overheads
was determined with the help of Wireshark. Each Ethernet frame has at least 66 bytes. It
includes a 14 byte Ethernet header, a 20 byte IP header and a 32 byte TCP header. The
TLS-encrypted messages are sent over TCP and each TLS record comes with a 5 byte header.
The messages exchanged between the service providers and the application are sent with a
20 byte header that includes the message length and type. This header is transmitted in its own
TCP packet. The corresponding Ethernet frame has a total size of 66+ 49= 115 bytes.

5.1.2 Circuit Design

The performance of cryptographic 2PC protocols, namely the GMW protocol and Yao’s garbled
circuit protocol, is mainly determined by the circuit structure and the network latency. The
evaluation of XOR gates is essentially “for free” in both protocols (i.e., requires only negligible
computation and no communication, see Sections 2.1.2 and 2.1.3). In contrast, the evaluation
of AND gates is costly. This is why the number of AND gates in a circuit, which is also called
its AND size, is of special importance. The performance of the GMW protocol is additionally
influenced by the AND depth of the circuit. Generally, during the online phase of the GMW
protocol, two independent 2-bit messages have to be exchanged per AND gate. All AND gates
of the same circuit layer can however be evaluated in parallel, which is why circuits with a
small AND depth yield the best performance.
For a fair comparison of our Intel SGX-based SFE approach with cryptographic approaches
based on the GMW protocol and Yao’s garbled circuit protocol, we generate Boolean circuits
with different circuit sizes, AND sizes and AND depths. Figure 5.1 shows the two basic
structures of the generated circuits that are used for benchmarking. We call them sequential
and parallel because in the first case, all gates of the circuit have to be evaluated sequentially
and in the second case, all gates in the same layer can be evaluated in parallel. For each basic
structure, we generate circuits with 100, 10 000 and 1 000 000 gates. We additionally gener-
ated sequential circuits with 10, 1 000 and 100 000 gates, which have the same AND depth as
the just mentioned parallel circuits. For each circuit size, we construct circuits only consisting
of AND gates, circuits only consisting of XOR gates and circuits consisting of alternating layers

42

5 Evaluation

of AND gates and XOR gates. All circuits have only two inputs. A sequential circuit has a single
output while a parallel circuit with a circuit size n has

p
n outputs.

out1

⊕

⊕

⊕

⊕

in1 in2

out1

⊕

∧

⊕

∧

out2

⊕

∧

⊕

∧

out3

⊕

∧

⊕

∧

out4

⊕

∧

⊕

∧

in2in1

layer 1

layer 2

layer 3

layer 4

Figure 5.1: Circuit Structures. Example of a sequential circuit with four XOR gates (left)
and a parallel circuit with alternating layers of AND gates and XOR gates and a total of
4× 4= 16 gates (right).

For the PFE setting, we use universal circuits which were generated using Kiss and Schneider’s
UC compiler [KS16] that implements Valiant’s UC constructions. The simulated random
circuits had circuit sizes 10, 100, 1 000 and 10 000. The sizes of the resulting universal
circuits can be found in Table 5.1.

In 2PC protocols, X switches, Y switches and universal gates are usually implemented using
AND and XOR gates. The evaluation of a Y switch requires the evaluation of two XOR gates
and one AND gate while the evaluation of an X switch requires the evaluation of three XOR
gates and one AND gate. Evaluating a universal gate requires the evaluation of three Y
switches, i.e., the evaluation of nine gates in total, three of which are AND gates.
As implemented by the ABY framework, the GMW protocol uses this standard implementation
while Yao’s garbled circuit protocol uses a more efficient universal gate implementation with
only one AND gate.

43

5 Evaluation

Table 5.1: Number of Gates in the UCs used for Benchmarking. Number of gates in the
simulated circuit and resulting number of actual gates in the universal circuit for different
gate types. The number of AND gates and XOR gates are computed assuming that X switches,
Y switches and universal gates are implemented in the standard manner.

#Gates in the Simulated Circuit

10 100 1 000 10 000

X Switches 42 1 678 32 132 482 656

Y Switches 11 167 1 191 11 807

Universal Gates 8 98 998 9 998

Total 61 1 943 34 321 504 461

AND Gates 77 2 139 36 317 524 457

XOR Gates 196 5 956 104 766 1 531 570

5.1.3 Protocol Phases

Our Intel SGX-based 2PC Protocol. We divide our 2PC protocol into two basic phases: the
remote attestation phase and the actual two-party computation phase (see Protocol 4.1). The
RA phase ends and the 2PC phase starts when the attestation ok message is received by the
service provider. The 2PC phase includes the construction of the circuit message during which
the inputs are read from file, encrypted and integrity-protected and the processing of the
circuit message on the application side. It ends after the result message has been processed
and the results have been written to file.

On the application side, we separately measure the time it takes to read the circuit file, to
load it into the enclave, where it is parsed, and finally, to evaluate it inside the enclave. Less
importantly, we measure the time it takes to load the service providers’ private inputs into
the enclave. This enables us to find out which steps in our current protocol implementation
take the most time and need to be optimized.

Cryptographic 2PC Protocols. We compare our protocol to two cryptographic protocols:
Yao’s garbled circuit protocol and the GMW protocol as implemented by the ABY framework.
Both protocols are divided into a setup phase and an online phase. The ABY framework is
highly optimized for performance and includes the latest 2PC improvements. It’s main design
goal is to achieve an efficient online phase, which is why all cryptographic operations are
pre-computed in the setup phase except for those required for evaluating garbled circuits. In
Yao’s protocol, the garbled circuit is transferred in the setup phase [DSZ15].
We furthermore compute the total run-time comprising the times for the setup phase and the
online phase.

44

5 Evaluation

5.2 SGX Operations

This section contains benchmarking results for the enclave creation and for the remote
attestation phase, which is independent of the two-party computation phase. The circuit has
not yet been loaded into the enclave when remote attestation is performed. The run-time is
therefore the same for both secure function evaluation and private function evaluation. The
values we specify in this section are the overall average of 360 executions (2 circuit structures
× 6 circuit sizes × 3 gate type compositions × 10 executions).

5.2.1 Enclave Creation

The enclave pages are cryptographically measured during enclave initialization, which is
why the enclave creation time depends on the enclave’s total size. We set the stack size
to 8 KB and the heap size to 205 MB. Consequently, enclave creation via the function
sgx_create_enclave takes an average time of 2 205 ms. The standard deviation was
13 ms.

We start the two service providers after the application, so that the enclave creation precedes
the remote attestation phase.

5.2.2 Remote Attestation

The remote attestation phase comprises steps 1⃝ to 10 of our 2PC protocol (see Protocol 4.1).
Both service providers individually perform remote attestation and establish a trusted channel
with the same enclave.

Run-Time. Table 5.2 shows the average run-times we measured for the remote attestation
phase in the LAN and WAN network settings.

Table 5.2: Remote Attestation Run-Time. Average run-time and corresponding standard
deviation (SD) for the remote attestation phase in dependence on the network setting.

Time [ms] SD [ms]

LAN Setting 1 318.485 120.139

WAN Setting 2 612.672 104.920

45

5 Evaluation

Communication. In Table 5.3, we list the sizes of the plain messages that are exchanged be-
tween the service providers and the application during the remote attestation phase.

Table 5.3: Remote Attestation Plain Message Sizes. Plain message sizes in bytes for the
messages sent from the service provider to the application (left) and the messages sent from
the application to the service provider (right). The 20 byte header that each message is sent
with is not included.

Service Provider→ App App→ Service Provider

request for attestation 2

msg0∥msg1 80

msg2 187

msg3 1471

attestation result 65

platform information blob 103

attestation ok msg 4

total 357 total 1555

The actual communication for the remote attestation phase that was determined using Wire-
shark can be found in Table 5.4. It includes Ethernet, TCP/IP and TLS protocol overheads.
Before the service provider and the application can communicate using TLS, a secure session
has to be established. This is achieved with the help of the TLS Handshake Protocol. The total
amount of data transmitted for the actual remote attestation process includes 12 TCP acknowl-
edgement (ACK) packets, 6 message header packets and 6 message packets. The latter account
for 642+1840 = 2482 bytes out of the 3964 bytes that are exchanged.

Table 5.4: Remote Attestation Phase Communication. Amount of data exchanged between
(a) the service provider and the application and (b) the service provider and the Intel
Attestation Service (IAS).

Communication [bytes]
SP→ App App→ SP Total

TLS Handshake 607 2 666 3 273

Remote Attestation 1 383 2 581 3 964

Total 1 990 5 247 7 237

(a) Communication between the Service Provider and the Application

46

5 Evaluation

Communication [bytes]
SP→ IAS IAS→ SP Total

TLS Handshake 2 302 47 654 49 956

Remote Attestation 2 347 5 930 8 277

Total 4 649 53 584 58 233

(b) Communication between the Service Provider and the IAS

The amount of data exchanged between the service provider and the Intel Attestation Service
is also contained in Table 5.4. We measured an average round trip time of 10.498 ± 0.785 ms
for the connection to the IAS, which is not simulated and runs over Wi-Fi. The IAS uses
Mutual Transport Layer Security (MTLS) for authentication. It transmits a very large amount
of data during the TLS handshake. Generally, the amount of data exchanged between
the service provider and the IAS is subject to fluctuations caused by variable-size packet
segmentation and varying numbers of TCP ACK packets. The values in Table 5.4 are supposed
to give an indication of the order of magnitude of the transmitted amount of data, both
during the TLS handshake and during the actual remote attestation process. Specifically,
the communication includes the retrieval of the (typically empty) signature revocation list
and the verification of the quote which results in the attestation report being returned (see
Protocol 2.1).

5.3 Intel SGX-Based Secure Two-Party Computation

In this section, we present our benchmarking results for the SFE setting and the PFE setting.
Section 5.3.1 contains the results for the benchmarks run on the application side. We measure
the time to read the circuit file, to load it into the enclave, to send the service providers’ private
inputs into the enclave and to evaluate the circuit inside the enclave. These benchmarks are
independent of the network setting. Section 5.3.2 contains the benchmarking results for the
two-party computation phase in the LAN and WAN network settings.

5.3.1 Application Benchmarks

Reading In the Circuit File. The application has to read in the circuit file in order to send it
into the enclave. Since we re-ran our benchmarking experiments several times, the circuit
file is cached and the values we specify in the following are for retrieving the circuit file from
the cache. In the first benchmark run, the time required for reading in the circuit is typically
much longer.

Table 5.5 contains the times required to read in different circuit files. They depend solely
on the size of the circuit file and are independent of the gate type and network setting. In

47

5 Evaluation

the SFE setting, the values we specify are therefore an average of 60 executions. A parallel
circuit has the same number of gates but more outputs than a sequential circuit of the same
circuit size. The corresponding circuit file is therefore bigger and takes slightly longer to read
in. In the PFE setting, the specified values are an average of 10 executions. Unexpectedly, we
observed different times for the LAN and WAN network settings when starting the service
provider providing the programming bits before the other service provider. In this case, the
programming file is read before the circuit file. If the service providers are started in reverse
order, the times observed for the LAN and WAN setting are the same. We assume this to be a
caching phenomenon.

Table 5.5: Time Required for Reading In Different Circuit Files. Time needed to read
in the circuit file representations of sequential and parallel Boolean circuits and universal
circuits with different circuit sizes. The circuit sizes we specify for the PFE setting are the
sizes of the simulated circuits. The resulting universal circuits consist of 61, 1 943, 34 321
and 504 461 gates, respectively.

Sequential Circuits Parallel Circuits

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms]

10 0.098 0.015

100 0.109 0.016 0.109 0.019

1 000 0.238 0.027

10 000 2.100 0.232 2.126 0.206

100 000 13.965 5.866

1 000 000 75.557 9.178 77.160 10.699

(a) SFE Setting

LAN Setting WAN Setting

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms]

10 0.089 0.010 0.117 0.015

100 0.463 0.093 0.576 0.043

1 000 9.593 0.534 10.586 0.732

10 000 44.287 0.622 74.210 1.462

(b) PFE Setting

Loading the Circuit into the Enclave. The circuit file data is marshalled into the enclave,
where it is parsed and hashed. Especially for circuits with large sizes this leads to a large
amount of EPC paging and therefore to long run-times. In Table 5.6 the average times
required to load circuits of different sizes into the enclave are summarized along with the
corresponding standard deviations. A more detailed overview with the times to load circuits

48

5 Evaluation

with different circuit structures and gate types can be found in Appendix Section A.2.1.
Because the times do not substantially differ, we specify overall average values at this point.
In some cases, the times required for loading the circuit into the enclave do not seem
to be uniformly distributed, which leads to large standard deviations. This was particu-
larly observed for circuits with 10 000 gates, where in 105 of 120 executions an average
time of 19.67 ± 0.64 ms was required and in the other 15 executions an average time of
45.21 ± 1.01 ms was required. We assume this to be due to different amounts of EPC paging.
In cases like this one, Table 5.6 contains the average of the larger group of values, which is
marked with an asterisk to point out that fact.
For the PFE setting, we specify the times measured for the LAN setting.

Table 5.6: Time Required for Loading Different Circuits into the Enclave. The time to
parse and hash the circuit in-enclave is included. Values marked with an asterisk only cover
the majority of executions but not all of them. The circuit sizes we specify for the PFE setting
are the sizes of the simulated circuits. The resulting universal circuits consist of 61, 1 943,
34 321 and 504 461 gates, respectively.

Circuit Size Time [ms] SD [ms]

10 0.500 0.062

100 *0.913 *0.114

1 000 5.821 0.535

10 000 *19.665 *0.642

100 000 204.107 6.165

1 000 000 2 280.337 12.330

(a) SFE Setting

Circuit Size Time [ms] SD [ms]

10 0.732 0.068

100 *7.400 *0.158

1 000 92.843 1.606

10 000 1 205.211 1.727

(b) PFE Setting

Sending the Private Inputs into the Enclave. The service providers’ private inputs are sent
into the enclave along with the circuit hash. Inside the enclave, the CMAC of the circuit hash
is verified and the private inputs are decrypted and unpacked.
We separately measure the time to send in the first and the second service provider’s input
and summarize them in Table 5.7. In the SFE setting, SP1 and SP2 both have a 1-bit private
input. The same function is called to send that input into the enclave. Nonetheless, the
required times differ measurably, presumably due to different amounts of EPC paging. SP1’s
input is sent into the enclave right after the circuit was loaded into the enclave. SP2’s input
is sent in afterwards. Due to the involved paging, the time also depends on the circuit size.
Again, for some circuit sizes, the times we observed were not uniformly distributed. For SP1’s
input and circuits with 1 000 000 gates, an average time of 250 ± 11 µs was observed in 98 of
120 executions and in the other 22 executions an average time of 851 ± 24 µs was observed.
In cases like this one, we specify the more frequently occurring and typically smaller value in
Table 5.7 and mark it with an asterisk.

49

5 Evaluation

In the PFE setting, SP2 has a 1-bit private input and SP1 has the programming to the universal
circuit as private input, consisting of four bits per gate in the universal circuit. The universal
circuits we use possess 61, 1 943, 34 321 and 504 461 gates, respectively (see Table 5.1).
Again, we specify the times measured for the LAN setting at this point.

Looking at the values in Table 5.7, the large influence of EPC paging on enclave performance
becomes apparent. While in the SFE setting, the time required to send SP2’s private input
into the enclave is almost constant, it observably differs from the time required to send SP1’s
private input into the enclave. For SP1 the required time depends on the size of the circuit
that was loaded into the enclave right before the input is sent in.
In the PFE setting, the length of SP1’s private input increases with the circuit size. For large
circuit sizes, the time required to send this input into the enclave also notably increases. For
smaller circuit sizes, this effect is masked by EPC paging effects.

Table 5.7: Time Required for Sending the Private Inputs into the Enclave. Time needed
to separately send both service providers’ private inputs into the enclave in dependence on
the size of the circuit that was previously loaded into the enclave. Values marked with an
asterisk only cover the majority of executions but not all of them. The circuit sizes we specify
for the PFE setting are the sizes of the simulated circuits.

SP1’s Input SP2’s Input

Circuit Size Time [µs] SD [µs] Time [µs] SD [µs]

10 112 15 86 5

100 *116 *19 88 8

1 000 *39 *5 85 4

10 000 54 4 89 11

100 000 55 2 87 11

1 000 000 *250 *11 73 13

(a) SFE Setting

SP1’s Input SP2’s Input

Circuit Size Time [µs] SD [µs] Time [µs] SD [µs]

10 115 13 94 3

100 *52 *11 95 2

1 000 185 3 94 3

10 000 2 314 35 89 6

(b) PFE Setting

50

5 Evaluation

Evaluating the Circuit inside the Enclave. When both service provider’s private inputs are
available, the circuit is evaluated inside the enclave as described in Section 4.2.1. Beforehand,
the three circuit hash values are checked for equality. Afterwards, the computation result is
encrypted for the service provider requesting it and marshalled out of the enclave.
Table 5.8 contains the average times required for evaluating sequential and parallel Boolean
circuits and universal circuits of different sizes. Since parallel circuits have more outputs that
need to be encrypted and marshalled out of the enclave, their evaluation takes slightly longer
compared to sequential circuits. Because the times do not substantially differ for circuits with
different gate types, we specify overall average values at this point. For the SFE setting, a
more detailed overview can be found in Appendix Section A.2.1.

Table 5.8: Time Required for Evaluating Different Circuits inside the Enclave. The time
to check the three circuit hash values for equality and to encrypt the computation result and
marshal it out of the enclave is included. Values marked with an asterisk only cover the
majority of executions but not all of them. The circuit sizes we specify for the PFE setting
are the sizes of the simulated circuits. The resulting universal circuits consist of 61, 1 943,
34 321 and 504 461 gates, respectively.

Sequential Circuits Parallel Circuits

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms]

10 0.173 0.012

100 0.340 0.023 0.339 0.033

1 000 2.222 0.040

10 000 *9.462 *0.522 *9.613 *0.444

100 000 *59.163 *2.650

1 000 000 1 901.219 6.598 1 933.360 10.291

(a) SFE Setting

Circuit Size Time [ms] SD [ms]

10 0.320 0.019

100 6.207 0.651

1 000 34.800 0.290

10 000 1 145.774 2.032

(b) PFE Setting

51

5 Evaluation

5.3.2 Two-Party Computation Phase

As the application in our Intel SGX-based 2PC protocol was originally designed to support
only one service provider, it is single-threaded. Both the remote attestation and the two-party
computation phase will therefore take substantially longer if both service providers are started
at the same time. For this reason, we start the second service provider (SP2) 6 seconds after
the first (SP1). Nonetheless, we also present experimental results for starting SP1 and SP2 at
the same time for comparison. They can be found in Appendix Section A.2.1.
Our 2PC protocol does not require direct interaction between the two service providers. After
performing remote attestation, they merely both need to send their inputs to the enclave,
from which they can later obtain the result. Currently, the circuit is loaded into the enclave
when the first circuit message is received. SP1’s two-party computation phase therefore
includes this step. As the second service provider’s input is not yet available, SP1 receives a
result not ready message and is sent to sleep for 8 seconds. During that time, SP2 performs
remote attestation and transmits its inputs. The circuit is evaluated and the computation
result is returned to SP2. When SP1 awakes, it can obtain the result from the enclave.
In the PFE setting, we only return the computation result to SP2 and stop SP1 after it has re-
ceived the result not ready message. We want to note that the enclave will not return the result
to SP1 even if it should request it. This protects SP2’s private input from SP1 that can make
the universal circuit compute an arbitrary function up to a given size.

SP1’s sleep duration was set to be this long to fit both the LAN and WAN network settings
and to be able to exclude any interference between the two service providers. Our imple-
mentation could of course be improved upon by adding support for multi-threading on
the application side and/or by loading the circuit into the enclave during a distinct setup
phase.

52

5 Evaluation

Run-Time in the SFE Setting. Table 5.9 contains the run-time results for the two-party
computation phase in the LAN and WAN network settings. As explained in the previous
section, some of the run-times on the application side are not uniformly distributed. In
some cases, this also leads to non-uniform run-time results on the service provider side.
In those case, we specify the more frequently occurring value and mark it with an aster-
isk.

Table 5.9: Two-Party Computation Run-Time in the SFE Setting. Average run-time for
the two-party computation phase in (a) the LAN setting and (b) the WAN setting. The time
required by SP1 to send its input includes the time to load the circuit into the enclave and
ends when the result not ready message is received. The time required to get the result is
started when SP1 awakes after sleeping for 8 seconds and includes the processing of the
result. The time required by SP2 includes the evaluation of the circuit.

SP1 SP2

Send Input Get Result Complete 2PC Phase

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms] Time [ms] SD [ms]

10 88.605 1.294 46.667 0.138 89.049 1.361

100 89.934 2.116 46.682 0.426 89.010 1.119

1 000 95.156 1.963 46.624 0.082 93.014 1.383

10 000 115.777 12.022 *46.704 *0.107 99.561 5.222

100 000 314.957 12.244 5.229 0.133 162.523 13.814

1 000 000 2 447.729 18.916 4.845 0.223 2 006.275 18.321

(a) LAN Setting

SP1 SP2

Send Input Get Result Complete 2PC Phase

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms] Time [ms] SD [ms]

10 380.709 14.680 346.098 6.797 386.889 7.971

100 380.345 16.334 350.050 27.225 386.507 9.228

1 000 390.303 8.122 *343.827 *6.464 383.181 15.907

10 000 408.685 9.487 *345.131 *11.694 397.022 11.337

100 000 598.326 9.814 301.518 7.365 448.012 9.099

1 000 000 2 742.420 15.172 306.603 23.578 2 303.766 19.317

(b) WAN Setting

53

5 Evaluation

Run-Time in the PFE Setting. In Table 5.10 the run-time results for the two-party compu-
tation phase in the LAN and WAN network settings are summarized.

Table 5.10: Two-Party Computation Run-Time in the PFE Setting. Average run-time for
the two-party computation phase in (a) the LAN setting and (b) the WAN setting. The time
required by SP1 to send its input includes the time to load the circuit into the enclave and
ends when the result not ready message is received. The time required by SP2 includes the
evaluation of the circuit. Values marked with an asterisk only cover the majority of executions
but not all of them. The circuit sizes we specify are the sizes of the simulated circuits.

SP1 SP2

Send Input Complete 2PC Phase

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms]

10 88.460 0.996 88.687 1.232

100 95.141 1.243 96.507 2.437

1 000 199.026 2.969 124.684 1.201

10 000 1328.588 8.593 1237.075 9.607

(a) LAN Setting

SP1 SP2

Send Input Complete 2PC Phase

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms]

10 361.104 21.163 401.543 39.310

100 391.743 9.955 392.385 4.318

1 000 481.876 19.984 419.033 10.600

10 000 1855.970 16.570 1530.428 6.952

(b) WAN Setting

Communication in the SFE Setting. In the SFE setting, the amount of data sent by the
service providers to the application does not depend on the circuit size or the circuit structure.
SP2 only sends the circuit message which has a size of 81 bytes for a 1-bit input. SP1
additionally sends a result request message, transmitting 81+ 4= 85 bytes in total.
The size of the result message sent by the application depends on the circuit structure. All
sequential circuits have a single output while a parallel circuit with circuit size n has

p
n output

bits. When a sequential circuit is evaluated, the application transmits 27 bytes to SP2. It
additionally transmits a result not ready message to SP1, leading to a total of 27+4 = 31 bytes.
The amount of plain message data transmitted by the application to the two service providers
in case a parallel circuit is evaluated is summarized in Table 5.11. Additionally, a 20 byte
header is transmitted per message.

54

5 Evaluation

Table 5.11: Plain Message Data Exchanged in the 2PC Phase for Parallel Circuits.
Amount of plain message data transmitted by the application to the two service providers SP1
and SP2 when parallel circuits of different sizes are computed in the SFE setting. Header
data is not included.

Circuit Size Plain Message Data [bytes]
SP1→ App SP2→ App App→ SP1 App→ SP2

100 81 85 32 28

10 000 81 85 43 39

1 000 000 81 85 156 152

The actual communication for the two-party computation phase that was determined using
Wireshark can be found in Table 5.12. It includes Ethernet, TCP/IP and TLS protocol over-
heads. For sequential circuits, the application transmits 369 bytes to SP1 and 715 bytes to
SP2. The amount of data transmitted by SP1 and SP2 to the application is the same as for
parallel circuits.

Table 5.12: Communication in the 2PC Phase for Parallel Circuits. Amount of data ex-
changed between the application and the two service providers SP1 and SP2 when parallel
circuits of different sizes are computed in the SFE setting.

Circuit Size Communication [bytes]
SP1→ App SP2→ App App→ SP1 App→ SP2

100 423 769 370 716

10 000 423 769 381 727

1 000 000 423 769 494 840

Communication in the PFE Setting. In the PFE setting, the amount of data sent by SP2 is
constant while the amount of data sent by SP1 to the application depends on the circuit size
as the number of programming bits increases with the number of gates. This can be seen
in Table 5.13. For large circuits, the private input is split over multiple TCP packets. This
also leads to an increase in the total amount of data sent by the application to SP1, which
includes ACK packets.
The universal circuits we use all have a single output bit, so that the size of the result message
sent by the application to SP2 has a constant size. SP1 does not receive the computation
result.

55

5 Evaluation

Table 5.13: Communication in the 2PC Phase for Universal Circuits. Amount of data
exchanged between the application and the two service providers SP1 and SP2 in the PFE
setting. The circuit sizes we specify are the sizes of the simulated circuits. The resulting
universal circuits consist of 61, 1 943, 34 321 and 504 461 gates, respectively.

Circuit Size Communication [bytes]
SP1→ App SP2→ App App→ SP1 App→ SP2

10 453 423 346 369

100 1 396 423 346 369

1 000 17 616 423 346 369

10 000 230 198 423 1 078 369

5.4 ABY-Based Secure Two-Party Computation

In this section, we present our benchmarking results for Yao’s garbled circuit protocol and the
GMW protocol as implemented by the ABY framework in the SFE setting and the PFE setting.
In Section 5.4.1, we summarize the run-time for the base-OTs. The following Sections 5.4.2ff.
contain the times for the setup phase and the online phase and the total time. We present
experimental results for the LAN and WAN network settings. The values we specify are for
128 bit symmetric security.

5.4.1 Base-OTs

OT extension protocols use a small number of base-OTs to cheaply compute a very large
number of OTs. The base-OTs are used in both Yao’s garbled circuit protocol and the GMW
protocol and need to be performed once when the connection between the client and the
server is established. Because the time for the base-OTs is a one-time expense, it is not
included in the setup time nor the total time.

Table 5.14 shows the average run-times we measured for the base-OTs in the LAN and WAN
network settings. The specified values are an average of 360 executions. 49 956 bytes are
sent (and also received) by both the client and the server.

Table 5.14: Base-OT Run-Time. Average run-time and corresponding standard deviation
for the base-OTs in dependence on the network setting.

Time [ms] SD [ms]

LAN Setting 377.595 41.557

WAN Setting 561.591 56.623

56

5 Evaluation

5.4.2 Setup Phase

Yao’s Garbled Circuit Protocol. In the constant-round setup phase of Yao’s protocol, all
cryptographic operations are pre-computed except for those required for evaluating the
garbled circuit. Furthermore, the garbled circuit is transferred. The run-time results for the
setup phase in the LAN and WAN network settings are summarized in Table 5.15. The server
acts as the circuit garbler and the client acts as the circuit evaluator. The specified values
are for the client. A complete overview of the average setup phase run-times for the client
and the server along with the corresponding standard deviations can be found in Appendix
Section A.2.2.

Table 5.15: Setup Phase Run-Time for Yao’s Protocol in the SFE Setting. Average run-
time for the setup phase when computing sequential and parallel circuits in (a) the LAN
setting and (b) the WAN setting. The circuits are of different sizes and either consist only of
XOR gates (X) or consist of alternating layers of AND gates and XOR gates (AX) or consist
only of AND gates (A).

Circuit Size Time [ms]
X AX A

Sequential Parallel Sequential Parallel Sequential Parallel

10 1.637 1.661 1.696

100 1.711 1.738 1.756 1.752 1.762 1.759

1 000 1.707 1.976 2.307

10 000 2.339 2.298 4.973 4.978 7.717 7.652

100 000 6.784 32.801 60.384

1 000 000 51.350 52.632 205.208 207.551 342.664 349.783

(a) LAN Setting

Circuit Size Time [ms]
X AX A

Sequential Parallel Sequential Parallel Sequential Parallel

10 107.255 109.304 110.240

100 108.281 108.639 108.637 108.916 109.727 109.665

1 000 108.450 110.119 110.178

10 000 111.512 108.553 203.177 203.102 205.900 204.123

100 000 128.175 419.272 648.742

1 000 000 199.807 221.747 1 871.232 1 885.767 3 482.470 3 472.997

(b) WAN Setting

57

5 Evaluation

For Yao’s protocol, the run-time and communication does not depend on the AND depth of the
circuit. The run-times and communication for sequential and parallel circuits are therefore
similar. Since parallel circuits have more outputs, they take slightly longer to compute. This
is only reflected in the results for large circuits.

Table 5.16 contains the setup phase communication for the client. For 128 bit symmet-
ric security 2 × 128 = 256 bits = 32 bytes have to be transmitted per AND gate in the
circuit.

Table 5.16: Setup Phase Communication for Yao’s Protocol in the SFE Setting. Amount
of data that is sent and received by the client during the setup phase of Yao’s protocol when
sequential and parallel circuits of different sizes are computed. The circuits are of different
sizes and either consist only of XOR gates (X) or consist of alternating layers of AND gates
and XOR gates (AX) or consist only of AND gates (A).

Circuit Size Communication [bytes]
X AX A

Sent Rcv Sent Rcv Sent Rcv

10 2 082 44 2 082 204 2 082 364

100 2 082 44 2 082 1 644 2 082 3 244

1 000 2 082 44 2 082 16 044 2 082 32 044

10 000 2 082 44 2 082 160 044 2 082 320 044

100 000 2 082 44 2 082 1 600 044 2 082 3 200 044

1 000 000 2 082 44 2 082 16 000 071 2 082 32 000 107

(a) Sequential Circuits

Circuit Size Communication [bytes]
X AX A

Sent Rcv Sent Rcv Sent Rcv

100 2 082 45 2 082 1 645 2 082 3 245

10 000 2 082 56 2 082 160 056 2 082 320 056

1 000 000 2 082 168 2 082 16 000 195 2 082 32 000 231

(b) Parallel Circuits

The GMWProtocol. In the GMW protocol, all required symmetric cryptographic computa-
tions are performed during the setup phase, which has a constant number of rounds. This
includes the pre-computation of the multiplication triples for the AND gates. The ABY frame-
work implements load balancing for the setup phase of the GMW protocol. As a consequence,

58

5 Evaluation

the work and communication is equally distributed among the two parties. We therefore report
an average of the run-times for the client and the server in Table 5.17.

For the GMW protocol, the run-time and communication depend on the AND depth of the
circuit. The run-time and communication for a parallel circuit is therefore substantially
smaller than for the sequential circuits of the same AND size.

We set the limit for the end-to-end run-time to 10 minutes = 600 000 milliseconds. The table
contains an upward pointing arrow (↑) if the computation was not completed during that
time and thus, no timing result was obtained.

Table 5.17: Setup Phase Run-Time for the GMW Protocol in the SFE Setting. Average
run-time for the setup phase when computing sequential and parallel circuits in (a) the LAN
setting and (b) the WAN setting. The circuits are of different sizes and either consist only of
XOR gates (X) or consist of alternating layers of AND gates and XOR gates (AX) or consist
only of AND gates (A).

Circuit Size Time [ms]
X AX A

Sequential Parallel Sequential Parallel Sequential Parallel

10 0.104 1.558 1.605

100 0.098 0.091 1.698 1.574 1.949 1.576

1 000 0.097 4.852 7.895

10 000 0.082 0.096 34.343 5.360 63.423 9.358

100 000 0.081 175.645 ↑
1 000 000 0.088 0.071 1 606.825 208.181 ↑ 378.451

(a) LAN Setting

Circuit Size Time [ms]
X AX A

Sequential Parallel Sequential Parallel Sequential Parallel

10 0.172 105.449 106.395

100 0.170 0.185 106.123 105.472 107.707 106.394

1 000 0.171 211.329 217.556

10 000 0.179 0.181 445.263 211.187 ↑ 222.847

100 000 0.173 ↑ ↑
1 000 000 0.161 0.181 ↑ 1 796.707 ↑ 3 185.629

(b) WAN Setting

59

5 Evaluation

The communication for the setup phase of the GMW protocol can be found in Table 5.18.
It is equal for client and server. Per AND gate, one multiplication triple is required and per
multiplication triple, 134 bits have to be transferred. The multiplication triples for all AND
gates of one layer are transferred together. The resulting number of bits is padded to a
multiple of 8.

Table 5.18: Setup Phase Communication for the GMW Protocol in the SFE Setting.
Amount of data that is sent (and also received) by both the client and the server during the
setup phase of the GMW protocol when sequential and parallel circuits of different sizes are
computed. The circuits either consist only of XOR gates (X) or consist of alternating layers of
AND gates and XOR gates (AX) or consist only of AND gates (A).

Circuit Size Communication [bytes]
X AX A

Sequential Parallel Sequential Parallel Sequential Parallel

10 0 2 091 2 091

100 0 0 8 235 2 091 16 419 4 139

1 000 0 73 771 145 451

10 000 0 0 720 939 88 107 1 441 835 174 123

100 000 0 7 200 904 ↑
1 000 000 0 0 72 002 429 8 065 142 ↑ 16 130 266

PFE Setting. The benchmarking results for the setup phase of both Yao’s garbled circuit
protocol and the GMW protocol in the PFE setting are presented in the following two tables.
Table 5.19 contains the average run-times in the LAN and WAN network settings and Table 5.20
contains the communication.

Table 5.19: Setup Phase Run-Time in the PFE Setting. Average run-time for the setup
phase of Yao’s protocol and the GMW protocol when universal circuits that simulate circuits
of different sizes are computed.

Circuit Size Time [ms]
Yao GMW

LAN WAN LAN WAN

10 2.476 199.262 1.715 106.235

100 3.765 198.711 5.410 212.564

1 000 32.120 356.794 53.141 549.132

10 000 393.929 2 057.248 353.315 ↑

60

5 Evaluation

Table 5.20: Setup Phase Communication in the PFE Setting. Amount of data sent and
received by the client during the setup phase of Yao’s protocol and the GMW protocol when
universal circuits that simulate circuits of different sizes are computed.

Circuit Size Communication [bytes]
Yao GMW

Sent Rcv Sent/Rcv

10 2 082 3 102 6 187

100 2 082 63 782 94 251

1 000 2 082 1 114 286 1 187 883

10 000 2 082 16 302 784 14 471 361

5.4.3 Online Phase

Yao’s Garbled Circuit Protocol. Yao’s protocol has a constant-round online phase. The
evaluation of the garbled circuit is performed non-interactively by the client. Symmetric
cryptography is required per AND gate. The online phase run-time therefore increases with
the circuit’s AND size. The run-times for sequential and parallel Boolean circuits with different
gate types and circuit sizes are summarized in Table 5.21. Again, we report the run-times for
the client.

Table 5.21: Online Phase Run-Time for Yao’s Protocol in the SFE Setting. Average run-
time for the online phase when computing sequential and parallel circuits in (a) the LAN
setting and (b) the WAN setting. The circuits are of different sizes and either consist only of
XOR gates (X) or consist of alternating layers of AND gates and XOR gates (AX) or consist
only of AND gates (A).

Circuit Size Time [ms]
X AX A

Sequential Parallel Sequential Parallel Sequential Parallel

10 2.652 2.583 2.548

100 2.617 2.624 2.687 2.580 2.584 2.619

1 000 2.677 2.656 2.876

10 000 3.428 3.445 3.963 4.539 4.613 5.044

100 000 10.327 14.670 19.360

1 000 000 79.532 80.360 117.649 118.346 163.657 171.337

(a) LAN Setting

61

5 Evaluation

Circuit Size Time [ms]
X AX A

Sequential Parallel Sequential Parallel Sequential Parallel

10 213.836 210.284 212.144

100 212.250 211.892 210.180 211.147 208.809 211.081

1 000 214.182 214.356 211.817

10 000 213.615 215.332 217.766 215.740 218.848 219.915

100 000 242.127 232.797 229.768

1 000 000 304.553 305.056 338.923 340.471 390.611 381.711

(b) WAN Setting

The communication for the online phase can be found in Table 5.22. During the online phase,
the server transmits its garbled private inputs to the client. The client receives its garbled
private inputs via oblivious transfer. It then evaluates the circuit gate by gate. Finally, it sends
the computation result to the server. The amount of data sent by the client in the online phase is
therefore slightly larger for parallel circuits than for sequential circuits.

Table 5.22: Online Phase Communication for Yao’s Protocol in the SFE Setting. Amount
of data that is sent and received by the client during the online phase of Yao’s protocol when
sequential and parallel circuits of different sizes are computed.

Circuit Size Communication [bytes]
Sequential Parallel

Sent Rcv Sent Rcv

10 29 50

100 29 50 30 50

1 000 29 50

10 000 29 50 41 50

100 000 29 50

1 000 000 29 50 153 50

62

5 Evaluation

The GMWProtocol. Table 5.23 contains the average run-time results for the online phase
of the GMW protocol, during which two independent 2-bit messages have to be transmitted
per layer of AND gates. This need for interaction constitutes a performance bottleneck,
especially in high latency networks. The evaluation of the circuit only requires One Time Pad
operations.

Table 5.23: Online Phase Run-Time for the GMW Protocol in the SFE Setting. Average
run-time for the online phase when computing sequential and parallel circuits in (a) the LAN
setting and (b) the WAN setting. The circuits are of different sizes and either consist only of
XOR gates (X) or consist of alternating layers of AND gates and XOR gates (AX) or consist
only of AND gates (A).

Circuit Size Time [ms]
X AX A

Sequential Parallel Sequential Parallel Sequential Parallel

10 2.068 4.988 7.933

100 2.058 2.046 31.583 4.983 61.175 7.962

1 000 2.092 368.193 778.928

10 000 2.904 2.943 3 795.195 33.861 7 193.462 63.310

100 000 11.962 34 909.385 ↑
1 000 000 97.303 104.492 365 021.800 504.003 ↑ 1 008.987

(a) LAN Setting

Circuit Size Time [ms]
X AX A

Sequential Parallel Sequential Parallel Sequential Parallel

10 159.505 424.059 689.449

100 158.402 158.578 2 822.847 425.496 5 475.791 686.835

1 000 160.217 26 761.325 53 325.215

10 000 160.433 162.258 266 182.750 2 827.786 ↑ 5 484.357

100 000 189.730 ↑ ↑
1 000 000 295.079 310.269 ↑ 27 272.910 ↑ 54 423.600

(b) WAN Setting

63

5 Evaluation

The online phase communication is summarized in Table 5.24. The communication complexity
of the GMW protocol depends on the AND size and AND depth of the circuit.

Table 5.24: Online Phase Communication for the GMW Protocol in the SFE Setting.
Amount of data that is sent (and also received) by both the client and the server during the
online phase of the GMW protocol when sequential and parallel circuits of different sizes are
computed. The circuits either consist only of XOR gates (X) or consist of alternating layers of
AND gates and XOR gates (AX) or consist only of AND gates (A).

Circuit Size Communication [bytes]
X AX A

Sequential Parallel Sequential Parallel Sequential Parallel

10 29 84 139

100 29 30 579 95 1 129 160

1 000 29 5 529 11 029

10 000 29 41 55 029 1 791 110 029 3 541

100 000 29 550 029 ↑
1 000 000 29 153 5 500 029 129 653 ↑ 259 153

PFE Setting. The benchmarking results for the setup phase of both Yao’s garbled circuit
protocol and the GMW protocol in the PFE setting are presented in the following two tables.
Table 5.19 contains the average run-times in the LAN and WAN network settings and Table 5.20
contains the communication.

Table 5.25: Online Phase Run-Time in the PFE Setting. Average run-time for the online
phase of Yao’s protocol and the GMW protocol when universal circuits that simulate circuits
of different sizes are computed.

Circuit Size Time [ms]
Yao GMW

LAN WAN LAN WAN

10 2.522 212.556 22.928 2 016.336

100 3.588 214.722 328.720 24 738.735

1 000 21.668 256.743 3 568.120 252 157.050

10 000 364.890 1 066.834 31 914.340 ↑

64

5 Evaluation

Table 5.26: Online Phase Communication in the PFE Setting. Amount of data sent and
received by the client during the online phase of Yao’s protocol and the GMW protocol when
universal circuits that simulate circuits of different sizes are computed. The programming
bits to the universal circuit are provided by the server.

Circuit Size Communication [bytes]
Yao GMW

Sent Rcv Sent Rcv

10 29 41 414 421

100 29 31 146 5 345 5 587

1 000 29 549 177 58 102 62 392

10 000 29 8 071 426 622 262 685 319

5.4.4 Total Time & Communication

The total time comprises the times for the setup phase and the online phase. The total
run-time results for Yao’s protocol are shown alongside the results for the GMW protocol
in Table 5.27. They are for computing sequential circuits and parallel circuits in the SFE
setting.

Table 5.27: Total Run-Time for Sequential Circuits. Average total run-time for Yao’s pro-
tocol and the GMW protocol when computing (a) sequential circuits in the LAN setting, (b)
sequential circuits in the WAN setting, (c) parallel circuits in the LAN setting and (d) parallel
circuits in the WAN setting. The circuits are of different sizes and either consist only of XOR
gates (X) or consist of alternating layers of AND gates and XOR gates (AX) or consist only of
AND gates (A).

Circuit Size Time [ms]
X AX A

Yao GMW Yao GMW Yao GMW

10 4.288 2.172 4.244 6.546 4.244 9.538

100 4.328 2.156 4.443 33.282 4.345 63.125

1 000 4.384 2.189 4.632 373.045 5.183 786.823

10 000 5.767 2.986 8.936 3 829.537 12.330 7 256.885

100 000 17.111 12.043 47.471 35 085.030 79.744 ↑
1 000 000 130.882 97.391 322.857 366 628.625 506.321 ↑

(a) Sequential Circuits + LAN Setting

65

5 Evaluation

Circuit Size Time [ms]
X AX A

Yao GMW Yao GMW Yao GMW

10 321.091 159.677 319.588 529.508 322.384 795.844

100 320.531 158.573 318.816 2 928.970 318.535 5 583.497

1 000 322.632 160.388 324.474 26 972.654 321.995 53 542.771

10 000 325.126 160.612 420.943 266 628.013 424.747 ↑
100 000 370.302 189.903 652.070 ↑ 878.510 ↑

1 000 000 504.360 295.240 2 210.155 ↑ 3 873.081 ↑

(b) Sequential Circuits + WAN Setting

Circuit Size Time [ms]
X AX A

Yao GMW Yao GMW Yao GMW

100 4.362 2.137 4.332 6.557 4.377 9.538

10 000 5.743 3.040 9.517 39.221 12.696 72.668

1 000 000 132.992 104.563 325.897 712.184 521.120 1 387.439

(c) Parallel Circuits + LAN Setting

Circuit Size Time [ms]
X AX A

Yao GMW Yao GMW Yao GMW

100 320.531 158.762 320.062 530.968 320.746 793.228

10 000 323.885 162.439 418.843 3 038.973 424.039 5 707.204

1 000 000 526.802 310.450 2 226.238 29 069.617 3 856.143 57 609.229

(d) Parallel Circuits + WAN Setting

The GMW protocol requires interaction for the secure evaluation of AND gates. It performs
well for circuits with low AND sizes and AND depths. The run-times for parallel circuits are
therefore substantially shorter than for sequential circuits. In contrast, Yao’s protocol only
depends on the circuit’s AND size, resulting in similar run-times for sequential and parallel
circuits.

Table 5.28 contains the total communication for Yao’s protocol and the GMW protocol in the
SFE setting.

66

5 Evaluation

Table 5.28: Total Per-Party Communication in the SFE Setting. Total amount of data that
is sent and received by the client (a) in Yao’s protocol when sequential circuits are being
evaluated, (b) in Yao’s protocol when parallel circuits are being evaluated and (c) in the GMW
protocol. The circuits are of different sizes and either consist only of XOR gates (X) or consist
of alternating layers of AND gates and XOR gates (AX) or consist only of AND gates (A).

Circuit Size Communication [bytes]
X AX A

Sent Rcv Sent Rcv Sent Rcv

10 2 011 94 2 011 254 2 011 414

100 2 011 94 2 011 1 694 2 011 3 294

1 000 2 011 94 2 011 16 094 2 011 32 094

10 000 2 011 94 2 011 160 094 2 011 320 094

100 000 2 011 94 2 011 1 600 094 2 011 3 200 094

1 000 000 2 011 94 2 011 16 000 121 2 011 32 000 157

(a) Yao’s Protocol + Sequential Circuits

Circuit Size Communication [bytes]
X AX A

Sent Rcv Sent Rcv Sent Rcv

100 2 112 95 2 112 1 695 2 112 3 295

10 000 2 123 106 2 123 160 106 2 123 320 106

1 000 000 2 235 218 2 235 16 000 245 2 235 32 000 281

(b) Yao’s Protocol + Parallel Circuits

Circuit Size Communication [bytes]
X AX A

Sequential Parallel Sequential Parallel Sequential Parallel

10 29 2 175 2 230

100 29 30 8 814 2 186 17 556 4 299

1 000 29 79 300 156 480

10 000 29 41 775 968 89 898 1 551 864 177 664

100 000 29 7 750 933 ↑
1 000 000 29 153 77 502 458 8 194 795 ↑ 16 389 419

(c) GMW Protocol

67

5 Evaluation

PFE Setting. The circuit sizes we specify for the PFE setting are the sizes of the simulated
circuits. The resulting universal circuits consist of 61, 1 943, 34 321 and 504 461 gates, respec-
tively. Table 5.29 contains the total run-times for Yao’s protocol and the GMW protocol.

Table 5.29: Total Run-Time in the PFE Setting. Average total run-time for Yao’s protocol
and the GMW protocol when universal circuits that simulate circuits of different sizes are
computed.

Circuit Size Time [ms]
Yao GMW

LAN WAN LAN WAN

10 4.998 411.818 24.643 2 122.571

100 7.353 413.432 334.130 24 951.299

1 000 53.788 613.537 3 621.261 252 706.182

10 000 758.819 3 124.082 32 270.409 ↑

Table 5.30: Total Per-Party Communication in the PFE Setting. Total amount of data sent
and received by the client during Yao’s protocol and the GMW protocol when universal circuits
that simulate circuits of different sizes are computed. The programming bits to the universal
circuit are provided by the server.

Circuit Size Communication [bytes]
Yao GMW

Sent Rcv Sent Rcv

10 2 111 3 143 6 601 6 608

100 2 111 94 928 99 596 99 838

1 000 2 111 1 663 463 1 245 985 1 250 275

10 000 2 111 24 374 210 15 093 632 15 156 680

5.5 Discussion & Comparison

In this section, we discuss the benchmarking results presented in the preceding sections and
we directly compare our Intel SGX-based solution for secure function evaluation and private
function evaluation to an ABY-based cryptographic solution.

68

5 Evaluation

5.5.1 One-Time Expenses

The base-OTs used in Yao’s garbled circuit protocol and the GMW protocol need to be per-
formed once when the connection between the client and the server is established. They are
a one-time expense and therefore not counted towards the total time.
We argue that the remote attestation phase of our Intel SGX-based 2PC protocol is actually
similar to the base-OTs. Both service providers need to individually perform remote attesta-
tion in order to establish a trusted channel with the same enclave. In theory, once this has
been done, they can use the same enclave for computing many different circuits. The enclave
could even use sealing to persistently store the secret keys that were established with the
service providers. The remote attestation phase would not have to be performed again unless
the enclave identity (enclave measurement) changed.
Table 5.31 contains the run-time and communication for both the remote attestation phase
and the base-OTs for comparison. The RA phase takes considerably longer, although due to
our set-up, they are hard to compare. The remote attestation run-time is mainly dictated by
the speed of the connection with the Intel Attestation Service, which we did not simulate,
and by the amount of data transferred over it, which we cannot optimize.
For the RA phase, we report the amount of data sent and received by SP1 and SP2 each. This
includes the communication with the IAS. We additionally report the total amount of data sent
and received by the application, which is for both service providers. For the base-OTs, we re-
port the amount of data sent and received by the client and server each.

Table 5.31: One-Time Expenses Run-Times. (a) Average run-times and (b) communication
for the remote attestation phase and for the base-OTs.

Time [ms]
RA Base-OTs

LAN Setting 1 318.485 377.595

WAN Setting 2 612.672 561.591

(a) Run-Time

Communication [bytes]
RA Base-OTs

SP1/SP2 App Client/Server

Sent 6 639 10 494 49 956

Rcv 58 831 3 980 49 956

(b) Communication

69

5 Evaluation

5.5.2 Two-Party Computation Phase

Our Intel SGX-based 2PC protocol does not require direct interaction between the two service
providers. They both send their encrypted private inputs into the same enclave, within
which the circuit is computed and from which they can later request the result. As the
application and enclave are single-threaded, we execute the two service-providers, SP1 and
SP2, effectively consecutively to rule out any interference between the two. SP1 is started
6 seconds before SP2 and is sent to sleep for 8 seconds after it has received a result not ready
message in response to transmitting its inputs.

Currently, the circuit is read and loaded into the enclave after SP1’s circuit message has
been received. The time required for this process is therefore included in SP1’s two-party
computation phase. We argue that our implementation could be improved by adding support
for multi-threading on the application side and/or by loading the circuit into the enclave
during a distinct setup phase, which is run before SP1 and SP2 are started. To support this
theory, we compute the time theoretically required by SP1 for the two-party computation
phase if the circuit did not have to be read and loaded into the enclave. The results can
be found in Table 5.32. We additionally compute the time required by SP2 for the two-
party computation phase excluding the circuit evaluation. We report average values for
the evaluation of sequential and parallel circuits and do not exclude EPC paging-related
outliers. It should however be noted that for circuits with 1 million gates, the run-times for the
evaluation of sequential and parallel circuits differ by ∼30 ms (see Appendix Section A.2.1),
which is also reflected in the run-time for SP2’s 2PC phase. This is because parallel circuits
have more outputs, which need to be computed and encrypted. To simplify the comparison,
we disregard this <1%-deviation at this point. For larger circuit sizes, the two cases should
be differentiated.

PFE Setting. Analogously to the SFE setting, we compute the time theoretically required
by SP1 for the two-party computation phase if the circuit did not have to be read and
loaded into the enclave. The results can be found in Table 5.33. Since we do not return the
computation result to SP1 in the PFE setting, SP1’s 2PC phase ends after the result not ready
message is received. As we reuse the implementation for the SFE setting, the application still
performs an ECALL to try and obtain the result after SP1’s circuit hash and private inputs
have been sent into the enclave. This unnecessary step could be removed for a small run-time
improvement.

70

5 Evaluation

Table 5.32: Two-Party Computation Run-Time in the SFE Setting. Average run-time for
the two-party computation phase (a) for SP1 in the LAN setting, (b) for SP1 in the WAN
setting and (c) for SP2 in the LAN and WAN settings. The time required by SP1 to send its
input includes the time to read the circuit and to load it into the enclave and ends when the
result not ready message is received. The column labelled “∆” contains the difference of
those times. The time required to get the result is started when SP1 awakes after sleeping
for 8 seconds and includes the processing of the result. The time required by SP2 includes
the time for the evaluation of the circuit. In the columns “∆LAN” and “∆WAN” this time has
been subtracted.

Circuit Size Send Input Read+Load ∆ Get Result

10 88.605 0.598 88.007 46.667

100 89.934 1.379 88.555 46.682

1 000 95.156 6.060 89.096 46.624

10 000 115.777 25.001 90.776 46.704

100 000 314.957 218.072 96.885 5.229

1 000 000 2 447.729 2 355.246 92.483 4.845

(a) SP1 + LAN Setting

Circuit Size Send Input Read+Load ∆ Get Result

10 380.709 0.598 380.111 346.098

100 380.345 1.379 378.966 350.050

1 000 390.303 6.060 384.243 343.827

10 000 408.685 25.001 383.684 345.131

100 000 598.326 218.072 380.254 301.518

1 000 000 2 742.420 2 355.246 387.174 306.603

(b) SP1 + WAN Setting

2PC Phase

Circuit Size LAN WAN Evaluate ∆ LAN ∆ WAN

10 89.049 386.889 0.173 88.876 386.716

100 89.010 386.507 0.340 88.670 386.167

1 000 93.014 383.181 2.222 90.792 380.959

10 000 99.561 397.022 10.591 88.970 386.431

100 000 162.523 448.012 63.883 98.640 384.129

1 000 000 2 006.275 2 303.766 1 917.289 88.986 386.477

(c) SP2

71

5 Evaluation

Table 5.33: Two-Party Computation Run-Time in the PFE Setting. Average run-time for
the two-party computation phase in (a) the LAN setting and (b) the WAN setting. The time
required by SP1 to send its input includes the time to read the circuit and to load it into
the enclave and ends when the result not ready message is received. SP1 provides the
programming to the universal circuit. The column labelled “∆” contains the difference of
those times. The time required by SP2 includes the time for the evaluation of the circuit.

SP1 SP2 Total

Circuit Size Send Input Read+Load ∆ 2PC Phase Σ

10 88.460 0.830 87.630 88.687 176.317

100 95.141 7.863 87.278 96.507 183.785

1 000 199.026 102.436 96.590 124.684 221.274

10 000 1 328.588 1 249.498 79.090 1 237.075 1 316.165

(a) LAN Setting

SP1 SP2 Total

Circuit Size Send Input Read+Load ∆ 2PC Phase Σ

10 364.104 0.962 363.142 388.537 751.680

100 391.743 8.111 383.632 392.385 776.016

1 000 481.876 105.658 376.218 419.033 795.251

10 000 1 855.970 1 281.562 574.408 1 530.428 2 104.836

(b) WAN Setting

5.5.3 SFE Setting

Before we directly compare the run-times and communication of our Intel SGX-based 2PC
protocol with that of Yao’s garbled circuit protocol and the GMW protocol, we describe our
considerations for the comparison. This section deals with the SFE setting while the next one
deals with the PFE setting.

The total time for Yao’s protocol and the GMW protocol does not include the time to read
and construct the circuit from file or the time for the base-OTs. We therefore think, it is
reasonable to compare it to the time required by SP2 for the two-party computation phase,
which does not contain the time to read the circuit or to load it into the enclave, nor the
remote attestation time.
For SP1, the comparison is more difficult. In the current implementation of our protocol, the
total time required by SP1 is extended due to its long sleep duration, which could however
theoretically be used to perform other work. Additionally, the time to read and load the
circuit into the enclave is included. For circuits with 1 000 000 gates, this time is quite large
with approximately 2 355 ms. To compare, to build a parallel circuit with the same number

72

5 Evaluation

of gates, Yao’s protocol takes 730 to 870 ms and the GMW protocol takes 900 to 1 200 ms.
To build a sequential circuit of the same size containing AND gates, the GMW protocol may
even take twice as long.

Attempting to achieve a fair comparison, we compute a hypothetical run-time for the two-
party computation phase of SP1 by adding the time in column “∆” of Table 5.32 to the time
required by SP2 for the two-party computation phase. The computed time therefore includes
the time required to transmit SP1’s private input over the network and to send it into the
enclave but excludes the time to read the circuit and to load it into the enclave. The results
can be found in Table 5.34. We are aware that this approach is not perfect but we hope that
it gives an adequate indication for the run-time of SP1’s 2PC phase. We use this run-time for
the comparison with Yao’s protocol and the GMW protocol.

Table 5.34: Two-Party Computation Run-Time for SP1 and SP2. Average run-time for the
two-party computation phase of SP1 and SP2 in the LAN and WAN network settings. The
time required by SP2 was measured and the time required by SP1 was computed and does
not include the time to read the circuit and to load it into the enclave.

Circuit Size Time [ms]
LAN Setting WAN Setting

SP2 SP1 SP2 SP1

10 89.049 223.723 386.889 1 113.098

100 89.010 224.247 386.507 1 115.523

1 000 93.014 228.734 383.181 1 111.251

10 000 99.561 237.041 397.022 1 125.837

100 000 162.523 264.637 448.012 1 129.784

1 000 000 2 006.275 2 103.603 2 303.766 2 997.543

Comparison. In Table 5.35, we compare the total run-times for Yao’s garbled circuit protocol
and the GMW protocol with the time we computed for SP1’s two-party computation phase.
Because the run-time of Yao’s protocol and our Intel SGX-based 2PC protocol does not depend
on the AND depth of the circuit, the run-times for sequential and parallel circuits do not differ
substantially. We therefore specify averages for the computation of sequential and parallel
circuits to simplify the comparison.

We set the limit for the end-to-end run-time to 10 minutes = 600 000 milliseconds. The table
contains an upward pointing arrow (↑) if the computation was not completed during that
time and thus, no timing result was obtained.

73

5 Evaluation

Table 5.35: Comparison of the Run-Times in the SFE Setting. Average total run-time for
Yao’s protocol, the GMW protocol and our Intel SGX-based 2PC protocol when computing
sequential and parallel circuits of different sizes in (a) the LAN setting and (b) the WAN
setting. The circuits either consist only of XOR gates (X) or consist of alternating layers of
AND gates and XOR gates (AX) or consist only of AND gates (A). For Yao’s protocol and our
Intel SGX-based 2PC protocol, we specify averages for sequential and parallel circuits. We
compare the total run-time for Yao’s protocol and the GMW protocol to the time required by
SP1 for the two-party computation phase.

Circuit Size Time [ms]
X AX A

Yao GMW Yao GMW Yao GMW SGX

Seq Par Seq Par Seq Par

10 4.3 2.2 4.2 6.5 4.2 9.5 223.7

100 4.3 2.2 2.1 4.4 33.3 6.6 4.4 63.1 9.5 224.2

1 000 4.4 2.2 4.6 373.0 5.2 786.8 228.7

10 000 5.8 3.0 3.0 9.2 3 829.5 39.2 12.5 7 256.9 72.7 237.0

100 000 17.1 12.0 47.5 35 085.0 79.7 ↑ 264.6

1 000 000 131.9 97.4 104.6 324.4 366 628.6 712.2 513.7 ↑ 1 387.4 2 103.6

(a) LAN Setting

Circuit Size Time [ms]
X AX A

Yao GMW Yao GMW Yao GMW SGX

Seq Par Seq Par Seq Par

10 321 160 320 530 322 796 1 113

100 321 159 159 319 2 929 531 320 5 583 793 1 116

1 000 323 160 324 26 973 322 53 543 1 111

10 000 325 161 162 420 266 628 3 039 424 ↑ 5 707 1 126

100 000 370 190 652 ↑ 879 ↑ 1 130

1 000 000 516 295 310 2 218 ↑ 29 070 3 865 ↑ 57 609 2 998

(b) WAN Setting

Yao’s garbled ciruit protocol outperforms the GMW protocol unless circuits consisting only
of XOR gates (X) are evaluated. The GMW protocol’s performance is mainly determined
by the circuit structure and the network latency. This becomes apparent when comparing
the run-times for sequential and parallel circuits consisting of alternating layers of AND
and XOR gates (AX) with circuit size 1 million. The run-time for the evaluation of the
parallel circuit is decreased by factor ∼500× compared to the run-time for the evaluation

74

5 Evaluation

of the sequential circuit. Both have the same AND size. If that same parallel circuit is
evaluated in the WAN setting, the run-time is increased by factor ∼40× compared to the LAN
setting.

For circuits consisting only of XOR gates (X), the GMW protocol is up to 100× faster than our
protocol. In the LAN setting, it also outperforms our protocol for sequential circuits with up
to 100 gates and for all parallel circuits. In the WAN setting, our protocol is faster than the
GMW protocol for all circuits with a circuit AND depth of at least 100. For a parallel circuit
with circuit size 1 million, consisting only of AND gates (A), our protocol has a ∼19× better
run-time.

Our Intel SGX-based 2PC protocol also narrowly outperforms Yao’s protocol for circuits with
1 000 000 gates containing only AND gates (A) in the WAN setting. Its run-time is smaller by
factor ∼1.3×. In all other cases, the total time required by Yao’s protocol is shorter than the
time required by SP1 in our protocol. In the LAN setting, it has a ∼4× better run-time than
our protocol for the evaluation of the aforementioned circuit.
SP2 requires less time than SP1. It is faster than both parties in Yao’s protocol for circuits
with 10 000 and 100 000 gates in the WAN setting.

Table 5.36 contains the total communication of Yao’s garbled circuit protocol, the GMW
protocol and our Intel SGX-based 2PC protocol. For our protocol it includes Ethernet, TCP/IP
and TLS protocol overheads.
The communication required by our protocol only depends on the number of circuit input
and output values. In contrast, the required communication for Yao’s protocol and the GMW
protocol depends on the number of AND gates in the circuit. For the GMW protocol, it further
depends on the circuit’s AND depth.

Yao’s garbled circuit protocol is constant-round. Its communication overhead mostly stems
from the transfer of the garbled circuit. Per AND gate, 2 × 128 = 256 bits have to be
transferred during the protocol’s setup phase. The GMW protocol requires substantially
more communication per AND gate. Its performance is highly dependent on the network
latency. During the setup phase, 134 bits are transferred per multiplication triple. The
multiplication triples for all AND gates of the same layer are transferred together. During the
online phase, the GMW protocol requires interaction for the secure evaluation of AND gates.
Two independent 2-bit messages have to be transmitted per layer of AND gates. The number
of communication rounds during the online phase therefore depends on the AND depth of
the circuit.

In our protocol, the circuit does not have to be transferred. This leads to the communication
being constant for sequential circuits of all gate types. For parallel circuits it increases with the
circuit size as parallel circuits with a larger size also have a larger number of circuit outputs.
For circuits containing AND gates (AX, A), the communication overhead of our protocol is
substantially smaller than that of Yao’s protocol or that of the GMW protocol, both of which
increase linearly with the number of AND gates. For the evaluation of a Boolean circuit with
AND size 1 million and AND depth 1000, the communication of our implementation is lower
by factors 12 669× and 12 976× compared to Yao’s garbled circuit protocol and the GMW

75

5 Evaluation

protocol, respectively. For circuits consisting only of XOR gates, the GMW protocol requires
less communication than our protocol.

While we were hoping for better run-time results, we remain optimistic that our proof-of-
concept protocol implementation could be improved to yield better performance. Unfortu-
nately, much of its computational overhead stems from the inherent limitations of Intel SGX
such as the EPC memory size-constraints. For a sequential circuit with 1 million AND gates,
we measured an average in-enclave evaluation time of 1 937 ms. Outside the enclave, using
the same program, the evaluation time was by factor ∼3× smaller, averaging only around
570 ms.
Finally, we also want to note that Yao’s garbled circuit protocol and the GMW protocol only pro-
vide security in the semi-honest model. Maliciously-secure cryptographic 2PC protocols have
substantially longer run-times. In contrast, Intel SGX provides strong security guarantees, even
against privileged attackers. This does however require trusting Intel.

Table 5.36: Comparison of the Total Communication in the SFE Setting. Total amount
of data transmitted between the parties in Yao’s protocol, the GMW protocol and our Intel
SGX-based 2PC protocol for the computation of (a) sequential circuits and (b) parallel circuits
of different sizes. The circuits either consist only of XOR gates (X) or consist of alternating
layers of AND gates and XOR gates (AX) or consist only of AND gates (A).

Circuit Size Communication [bytes]
X AX A

Yao GMW Yao GMW Yao GMW SGX

10 2 205 58 2 365 4 350 2 525 4 460 2 276

100 2 205 58 3 805 17 628 5 405 35 112 2 276

1 000 2 205 58 18 205 158 600 34 205 312 960 2 276

10 000 2 205 58 162 205 1 551 936 322 205 3 103 728 2 276

100 000 2 205 58 1 602 205 15 501 866 3 202 205 ↑ 2 276

1 000 000 2 205 58 16 002 232 155 004 916 32 002 268 ↑ 2 276

(a) Sequential Circuits

Circuit Size Communication [bytes]
X AX A

Yao GMW Yao GMW Yao GMW SGX

100 2 207 60 3 807 4 372 5 407 8 598 2 278

10 000 2 229 82 162 229 179 796 322 229 355 328 2 300

1 000 000 2 453 306 16 002 480 16 389 590 32 002 516 32 778 838 2 526

(b) Parallel Circuits

76

5 Evaluation

5.5.4 PFE Setting

In the PFE setting, one party provides the private input and the other party provides the
private function in form of the programming to the universal circuit. In Yao’s garbled circuit
protocol and the GMW protocol, this party is the server. In our protocol, it is SP1.
In this section, we compare the total run-time comprising setup time and online time with
the time for the two-party computation phase, analogously to the SFE setting. Since the
total run-times for the cryptographic protocols contain the transmission of the programming
bits, we add the time required for sending SP1’s input to the time required by SP2 for the
two-party computation phase in order to achieve a fair comparison. The results can be found
in Table 5.33. SP1’s two-party computation phase ends after the result not ready message is
received since it does not receive the computation result. The computed time for the 2PC
phase therefore unnecessarily includes the time for the transmission of the result not ready
message to SP1.

We compare the run-times for our Intel SGX-based 2PC protocol with the run-times of Yao’s
garbled circuit protocol and the GMW protocol in Table 5.37. The circuit sizes we specify
are the sizes of the simulated circuits. The resulting universal circuits consist of 61, 1 943,
34 321 and 504 461 gates, respectively. The number of programming bits increases with the
number of gates in the universal circuit.

Again, we set the limit for the end-to-end run-time to 10 minutes = 600 000 milliseconds.
The table contains an upward pointing arrow (↑) if the computation was not completed
during that time and thus, no timing result was obtained.

Similar to the SFE setting, our protocol cannot outperform Yao’s protocol except when the
largest universal circuit, simulating a circuit with 10 000 gates is computed in the WAN
setting. In that case, our protcol is ∼1.5× faster than Yao’s protocol. We could not evaluate
and compare the run-times for larger universal circuits because the benchmarking hardware
we used could not fulfil the memory requirements of the ABY framework for computing those
circuits.

Table 5.37: Comparison of the Run-Times in the PFE Setting. Average total run-time for
Yao’s protocol and the GMW protocol when universal circuits that simulate circuits of different
sizes are computed.

Circuit Size Time [ms]
LAN Setting WAN Setting

Yao GMW SGX Yao GMW SGX

10 5.0 24.6 176.3 411.8 2 122.6 751.7

100 7.4 334.1 183.8 413.4 24 951.3 776.0

1 000 53.8 3 621.3 221.3 613.5 252 706.2 795.3

10 000 758.8 32 270.4 1 316.2 3 124.1 ↑ 2 104.8

77

5 Evaluation

The GMW protocol is only faster than our protocol for the evaluation of the smallest universal
circuit in the LAN setting. In all other cases, our protocol outperforms the GMW protocol.
For the evaluation of the universal circuit simulating a Boolean circuit with 10 000 gates, our
protocol has a ∼24× better run-time in the LAN setting. Yao’s protocol also yields a better
performance than the GMW protocol for all circuit sizes.
Again, the large influence of the network latency on the performance of the GMW pro-
tocol becomes obvious when comparing the results for the LAN and WAN network set-
tings.

Table 5.30 contains the communication for the two-party computation phase in the PFE
setting along with the total communication for Yao’s protocol and the GMW protocol. For the
computation of the universal circuit with the largest size, the communication of our Intel
SGX-based PFE solution is lower by factors ∼105× and ∼130× compared to Yao’s garbled
circuit protocol and the GMW protocol.

Table 5.38: Comparison of the Total Communication in the PFE Setting. Total amount
of data transmitted between the parties in Yao’s protocol, the GMW protocol and our Intel
SGX-based 2PC protocol for the computation of universal circuits of different sizes.

Circuit Size Communication [bytes]
Yao GMW SGX

10 5 254 13 209 1 591

100 97 039 199 434 2 534

1 000 1 665 574 2 496 260 18 754

10 000 24 376 321 30 250 312 232 068

78

6 Conclusion

Summary. Cryptographic two-party computation protocols such as Yao’s garbled circuit
protocol or the GMW protocol incur high computational and communication overheads. In
this work, we therefore explored an alternative Intel SGX-based 2PC approach. For protection
against side-channel attacks, we evaluate a Boolean circuit-representation of the function to
be computed inside the enclave instead of computing the function in plain. To this effect,
we designed an Intel SGX-based 2PC protocol, for which we provided a proof-of-concept
implementation. In our protocol, the circuit is loaded into the enclave after its creation,
making our approach applicable for general secure two-party computation. The same enclave
can be reused for computing many different functions in diverse application scenarios and no
costly per-application redesign is required.

Our work targeted secure function evaluation as well as universal circuit-based private function
evaluation. To the best of our knowledge, we are the first to implement an Intel SGX-based
PFE solution. For both the SFE and the PFE setting, we compared our implementation to the
ABY framework’s implementations of Yao’s garbled circuit protocol and the GMW protocol
in terms of performance, scalability and communication overhead. For the evaluation of a
Boolean circuit with AND size 1 million and AND depth 1000, the communication of our
implementation is four orders of magnitude lower compared to Yao’s garbled circuit protocol
and the GMW protocol. In a high-latency network setting, the run-time for our protocol’s 2PC
phase is smaller by factors 1.3× and 19×, respectively. For the evaluation of a universal circuit
with ∼0.5 million gates, simulating a Boolean circuit with 10 000 gates, the communication
of our Intel SGX-based PFE solution is lower by factors 105× and 130× compared to Yao’s
garbled circuit protocol and the GMW protocol. Even in a low-latency network setting, our
implementation has a 24× faster run-time than the GMW protocol. In a high-latency network
setting, it has a 1.5× faster run-time than Yao’s protocol. Given that one trusts Intel, our Intel
SGX-based approach additionally offers a stronger security model.

Limitations & Future Work. While our protocol outperforms Yao’s garbled circuit protocol
and the GMW protocol for circuits with large AND sizes and depths in high-latency networks
due to its very low communication overhead, it still comes with a high computational
overhead. This is partially due to the fact that our implementation was done as a first proof
of concept and has not yet been extensively optimized. A large part of the computational
overhead however also stems from the inherent limitations of Intel SGX such as the EPC
memory size-constraints. EPC paging leads to long in-enclave computation times for large
circuits.

79

6 Conclusion

Our work could be optimized and extended in several ways. First and foremost, we suggest
loading the circuit into the enclave during a distinct set-up phase. If the service providers
for example wish to compute the same function multiple times on different inputs, this step
would not have to be repeated.

Furthermore, by adding support for multi-threading on the application side, both service
providers could truly be run in parallel. Additionally, the possibility of multi-threading within
the enclave could be explored.

To reduce EPC paging, one could try to optimize the circuits’ memory requirements. The
overall enclave size could be reduced if the circuit were evaluated in parts. For parallel
circuits and circuits with low AND depths, the layer-wise evaluation might yield a positive
performance effect. For sequential circuits and circuits with high AND depths, the grouping
together of a larger number of layers probably makes more sense. In this case, the mechanism
by which the two service providers are ensured that the right circuit is being evaluated inside
the enclave might however need to be updated.

Last but not least, the security of our Intel SGX-based 2PC solution with respect to different
side-channel attacks should be further investigated. While we provide an extensive overview
of side-channel vulnerabilities of Intel SGX and try our best to mitigate them, a thorough
side-channel analysis should be performed to ensure security. The challenge in this context
seems to be keeping up with current research and maintaining security even as new attacks
are being discovered.

80

List of Figures

2.1 Boolean Circuit . 4
2.2 ABY Boolean Circuit Format . 8

4.1 Basic Set-up . 28

5.1 Circuit Structures . 43

A.1 Basic Directory Layout of the RA Sample Project 97
A.2 Output of the Edger8r and Enclave Signing Tools 98

List of Tables

5.1 Number of Gates in the UCs used for Benchmarking 44
5.2 Remote Attestation Run-Time . 45
5.3 Remote Attestation Plain Message Sizes . 46
5.4 Remote Attestation Phase Communication . 46
5.5 Time Required for Reading In Different Circuit Files 48
5.6 Time Required for Loading Different Circuits into the Enclave 49
5.7 Time Required for Sending the Private Inputs into the Enclave 50
5.8 Time Required for Evaluating Different Circuits inside the Enclave 51
5.9 Two-Party Computation Run-Time in the SFE Setting 53
5.10 Two-Party Computation Run-Time in the PFE Setting 54
5.11 Plain Message Data Exchanged in the 2PC Phase for Parallel Circuits 55
5.12 Communication in the 2PC Phase for Parallel Circuits 55
5.13 Communication in the 2PC Phase for Universal Circuits 56
5.14 Base-OT Run-Time . 56
5.15 Setup Phase Run-Time for Yao’s Protocol in the SFE Setting 57
5.16 Setup Phase Communication for Yao’s Protocol in the SFE Setting 58
5.17 Setup Phase Run-Time for the GMW Protocol in the SFE Setting 59
5.18 Setup Phase Communication for the GMW Protocol in the SFE Setting 60
5.19 Setup Phase Run-Time in the PFE Setting . 60

81

5.20 Setup Phase Communication in the PFE Setting . 61
5.21 Online Phase Run-Time for Yao’s Protocol in the SFE Setting 61
5.22 Online Phase Communication for Yao’s Protocol in the SFE Setting 62
5.23 Online Phase Run-Time for the GMW Protocol in the SFE Setting 63
5.24 Online Phase Communication for the GMW Protocol in the SFE Setting 64
5.25 Online Phase Run-Time in the PFE Setting . 64
5.26 Online Phase Communication in the PFE Setting 65
5.27 Total Run-Time for Sequential Circuits . 65
5.28 Total Per-Party Communication in the SFE Setting 67
5.29 Total Run-Time in the PFE Setting . 68
5.30 Total Per-Party Communication in the PFE Setting 68
5.31 One-Time Expenses Run-Times . 69
5.32 Two-Party Computation Run-Time in the SFE Setting 71
5.33 Two-Party Computation Run-Time in the PFE Setting 72
5.34 Two-Party Computation Run-Time for SP1 and SP2 73
5.35 Comparison of the Run-Times in the SFE Setting 74
5.36 Comparison of the Total Communication in the SFE Setting 76
5.37 Comparison of the Run-Times in the PFE Setting 77
5.38 Comparison of the Total Communication in the PFE Setting 78

A.1 Time Required for Loading Different Circuits into the Enclave 99
A.2 Time Required for Evaluating Different Circuits inside the Enclave 100
A.3 Two-Party Computation Run-Time in the SFE Setting (Same Start)101
A.4 Setup Phase Run-Time for Yao’s Protocol in the SFE Setting 102
A.5 Online Phase Run-Time for Yao’s Protocol in the SFE Setting 104

List of Protocols

2.1 Remote Attestation Message Flow . 17

4.1 Complete 2PC Protocol Message Flow . 29

82

List of Abbreviations

2PC Secure Two-Party Computation

ACK Acknowledgement

AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard New Instructions

AESM Application Enclave Service Manager

API Application Programming Interface

ASLR Address Space Layout Randomization

BIOS Basic Input/Output System

CMAC Cipher-Based Message Authentication Code

CPU Central Processing Unit

DH Diffie-Hellman

DHKE Diffie-Hellman Key Exchange

DRAM Dynamic Random Access Memory

ECALL Enclave Call

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EDL Enclave Definition Language

EPC Enclave Page Cache

EPCM Enclave Page Cache Map

EPID Enhanced Privacy ID

FFI Foreign Function Interface

GCM Galois/Counter Mode

GID Group ID

GMW Goldreich-Micali-Wigderson

83

List of Abbreviations

HTM Hardware Transactional Memory

IAS Intel Attestation Service

I/O Input/Output

IP Internet Protocol

IPP Integrated Performance Primitives

KB Kilobyte

KDF Key Derivation Function

KDK Key Derivation Key

KE Key Exchange

L1 Level 1

L1TF L1 Terminal Fault

L2 Level 2

L3 Level 3

LAN Local Area Network

LLC Last-Level Cache

LTS Long-Term Support

MEE Memory Encryption Engine

MK Masking Key

MPC Secure Multi-Party Computation

MTLS Mutual Transport Layer Security

OCALL Outside Call

OS Operating System

OT Oblivious Transfer

PFE Private Function Evaluation

PIB Platform Information Blob

PoET Proof of Elapsed Time

PRM Processor Reserved Memory

PSW Platform Software

RA Remote Attestation

84

List of Abbreviations

RAM Random Access Memory

RSA Rivest-Shamir-Adleman

SD Standard Deviation

SDK Software Development Kit

SECS SGX Enclave Control Structure

SFE Secure Function Evaluation

SGX Software Guard Extensions

SHA Secure Hash Algorithm

SigRL Signature Revocation List

SIGSTRUCT Signature Structure

SK Symmetric Key

SMK Session MAC Key

SMT Simultaneous Multithreading

SP Service Provider

SPID Service Provider ID

TCB Trusted Computing Base

TCP Transmission Control Protocol

TEE Trusted Execution Environment

TLS Transport Layer Security

TRE Trustworthy Remote Entity

TSX Transactional Synchronization Extension

UC Universal Circuit

URL Uniform Resource Locator

VK Verification Key

VM Virtual Machine

VMM Virtual Machine Manager

WAN Wide Area Network

XML Extensible Markup Language

85

Bibliography

[AGJS13] I. ANATI, S. GUERON, S. P. JOHNSON, V. R. SCARLATA. “Innovative Technology for CPU
Based Attestation and Sealing”. In: Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy (HASP’13). 2013 (cit. on
pp. 9 sqq., 15).

[ALSZ17] G. ASHAROV, Y. LINDELL, T. SCHNEIDER, M. ZOHNER. “More Efficient Oblivious Transfer
Extensions”. In: Journal of Cryptology 30.3 (07/2017), pp. 805–858 (cit. on p. 4).

[AM16] J. P. AUMASSON, L. MERINO. “SGX Secure Enclaves in Practice: Security and Crypto
Review”. In: Black Hat USA. 2016 (cit. on p. 24).

[ATG+16] S. ARNAUTOV, B. TRACH, F. GREGOR, T. KNAUTH, A. MARTIN, C. PRIEBE, J. LIND, D.
MUTHUKUMARAN, D. O’KEEFFE, M. L. STILLWELL, D. GOLTZSCHE, D. EYERS, R. KAPITZA,
P. PIETZUCH, C. FETZER. “SCONE: Secure Linux Containers with Intel SGX”. In: Pro-
ceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’16). USENIX Association, 2016, pp. 689–703 (cit. on pp. 13, 19).

[BB03] D. BRUMLEY, D. BONEH. “Remote Timing Attacks Are Practical”. In: Proceedings of
the 12th USENIX Security Symposium (USENIX Security’03. USENIX Association, 2003
(cit. on p. 20).

[BBB+16] R. BAHMANI, M. BARBOSA, F. BRASSER, B. PORTELA, A.-R. SADEGHI, G. SCERRI, B. WARIN-
SCHI. “Secure Multiparty Computation from SGX (Full Version)”. Cryptology ePrint
Archive, Report 2016/1057. https://eprint.iacr.org/2016/1057. 2016 (cit. on
p. 26).

[BBB+17] R. BAHMANI, M. BARBOSA, F. BRASSER, B. PORTELA, A.-R. SADEGHI, G. SCERRI, B. WARIN-
SCHI. “Secure Multiparty Computation from SGX”. In: Proceedings of the Interna-
tional Conference on Financial Cryptography and Data Security (FC’17). Springer, 2017,
pp. 477–497 (cit. on p. 26).

[BCD+17] F. BRASSER, S. CAPKUN, A. DMITRIENKO, T. FRASSETTO, K. KOSTIAINEN, U. MÜLLER, A.-R.
SADEGHI. “DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data
Location Randomization”. In: CoRR abs/1709.09917 (2017) (cit. on p. 22).

[BCF+14] J. BRINGER, H. CHABANNE, M. FAVRE, A. PATEY, T. SCHNEIDER, M. ZOHNER. “GSHADE:
Faster Privacy-Preserving Distance Computation and Biometric Identification”. In:
Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security
(IH&MMSEC’14). ACM, 2014 (cit. on p. 3).

[BCKS18] M. BRANDENBURGER, C. CACHIN, R. KAPITZA, A. SORNIOTTI. “Blockchain and Trusted
Computing: Problems, Pitfalls, and a Solution for Hyperledger Fabric”. In: CoRR
abs/1805.08541 (2018) (cit. on p. 19).

[Bea92] D. BEAVER. “Efficient Multiparty Protocols Using Circuit Randomization”. In: Pro-
ceedings of the 11th Annual International Cryptology Conference, Advances in Cryptology
(CRYPTO’91). Springer, 1992, pp. 420–432 (cit. on p. 6).

86

https://eprint.iacr.org/2016/1057

Bibliography

[Bea95] D. BEAVER. “Precomputing Oblivious Transfer”. In: Proceedings of the 15th Annual
International Cryptology Conference, Advances in Cryptology (CRYPTO’95). Springer,
1995, pp. 97–109 (cit. on p. 4).

[BFK+09] M. BARNI, P. FAILLA, V. KOLESNIKOV, R. LAZZERETTI, A.-R. SADEGHI, T. SCHNEIDER. “Se-
cure Evaluation of Private Linear Branching Programs with Medical Applications
(Full Version)”. Cryptology ePrint Archive, Report 2009/195. https://eprint.iacr.
org/2009/195. 2009 (cit. on p. 6).

[BFR+18] F. BRASSER, T. FRASSETTO, K. RIEDHAMMER, A.-R. SADEGHI, T. SCHNEIDER, C. WEIN-
ERT. “VoiceGuard: Secure and Private Speech Processing”. In: Proceedings of the
19th Annual Conference of the International Speech Communication Association (INTER-
SPEECH’18). International Speech Communication Association (ISCA), 2018, pp. 1303–
1307 (cit. on p. 19).

[BGNS06] E. BRICKELL, G. GRAUNKE, M. NEVE, J. SEIFERT. “Software mitigations to hedge
AES against cache-based software side channel vulnerabilities”. Cryptology ePrint
Archive, Report 2006/052. https://eprint.iacr.org/2006/052. 2006 (cit. on
p. 22).

[BMD+17] F. BRASSER, U. MÜLLER, A. DMITRIENKO, K. KOSTIAINEN, S. CAPKUN, A.-R. SADEGHI.
“Software Grand Exposure: SGX Cache Attacks Are Practical”. In: Proceedings of the
11th USENIX Workshop on Offensive Technologies (WOOT’17). USENIX Association, 2017
(cit. on p. 21).

[BPH14] A. BAUMANN, M. PEINADO, G. HUNT. “Shielding Applications from an Untrusted
Cloud with Haven”. In: Proceedings of the 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI’14). USENIX Association, 2014, pp. 267–283
(cit. on pp. 13, 19).

[BPSW07] J. BRICKELL, D. E. PORTER, V. SHMATIKOV, E. WITCHEL. “Privacy-preserving Remote
Diagnostics”. In: Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security (CCS’07). ACM, 2007, pp. 498–507 (cit. on p. 6).

[BT11] B. B. BRUMLEY, N. TUVERI. “Remote Timing Attacks Are Still Practical”. In: Proceed-
ings of the 16th European Conference on Research in Computer Security (ESORICS’11).
Springer, 2011, pp. 355–371 (cit. on p. 20).

[BWG+16] S. BRENNER, C. WULF, D. GOLTZSCHE, N. WEICHBRODT, M. LORENZ, C. FETZER, P. PIET-
ZUCH, R. KAPITZA. “SecureKeeper: Confidential ZooKeeper Using Intel SGX”. In:
Proceedings of the 17th International Middleware Conference (Middleware’16). ACM,
2016 (cit. on p. 19).

[CCX+18] G. CHEN, S. CHEN, Y. XIAO, Y. ZHANG, Z. LIN, T. H. LAI. “SGXPECTRE Attacks: Leaking
Enclave Secrets via Speculative Execution”. In: CoRR abs/1802.09085 (2018) (cit.
on p. 22).

[CD16] V. COSTAN, S. DEVADAS. “Intel SGX Explained”. Cryptology ePrint Archive, Report
2016/086. https://eprint.iacr.org/2016/086. 2016 (cit. on pp. 9 sq., 21).

[CDD+16] F. CHEN, M. DOW, S. DING, Y. LU, X. JIANG, H. TANG, S. WANG. “PREMIX: PRivacy-
preserving EstiMation of Individual admiXture”. In: Proceedings of the AMIA 2016
Annual Symposium (AMIA’16). AMIA, 2016, pp. 1747–1755 (cit. on p. 19).

87

https://eprint.iacr.org/2009/195
https://eprint.iacr.org/2009/195
https://eprint.iacr.org/2006/052
https://eprint.iacr.org/2016/086

Bibliography

[Cha17] M. CHANDLER (INTEL CORPORATION). “Intel(R) Enhanced Privacy ID (EPID) Security
Technology”. 07/13/2017. URL: https://software.intel.com/en- us/arti
cles/intel- enhanced- privacy- id- epid- security- technology (visited on
11/15/2018) (cit. on p. 15).

[CS13] S. CHECKOWAY, H. SHACHAM. “Iago Attacks: Why the System Call API is a Bad
Untrusted RPC Interface”. In: Proceedings of the 18th International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS’13).
ACM, 2013, pp. 253–264 (cit. on p. 13).

[CWC+18] G. CHEN, W. WANG, T. CHEN, S. CHEN, Y. ZHANG, X. WANG, T.-H. LAI, D. LIN. “Racing in
Hyperspace: Closing Hyper-Threading Side Channels on SGX with Contrived Data
Races”. In: Proceedings of the 39th IEEE Symposium on Security and Privacy (SP’18).
IEEE Computer Society, 2018, pp. 178–194 (cit. on p. 23).

[CWJ+17] F. CHEN, S. WANG, X. JIANG, S. DING, Y. LU, J. KIM, S. C. SAHINALP, C. SHIMIZU, J. C.
BURNS, V. J. WRIGHT, E. PNG, M. L. HIBBERD, D. D. LLOYD, H. YANG, A. TELENTI,
C. S. BLOSS, D. FOX, K. LAUTER, L. OHNO-MACHADO. “PRINCESS: Privacy-protecting
Rare disease International Network Collaboration via Encryption through Soft-
ware guard extensionS”. In: Bioinformatics 33.6 (2017), pp. 871–878 (cit. on p. 19).

[CZRZ17] S. CHEN, X. ZHANG, M. K. REITER, Y. ZHANG. “Detecting Privileged Side-Channel
Attacks in Shielded Execution with DéJà Vu”. In: Proceedings of the 12th ACM Asia
Conference on Computer and Communications Security (ASIACCS’17). ACM, 2017, pp. 7–
18 (cit. on pp. 20 sq.).

[DDL+17] Y. DING, R. DUAN, L. LI, Y. CHENG, Y. ZHANG, T. CHEN, T. WEI, H. WANG. “POSTER:
Rust SGX SDK: Towards Memory Safety in Intel SGX Enclave”. In: Proceedings of
the 24th ACM Conference on Computer and Communications Security (CCS’17). Code:
https://github.com/baidu/rust-sgx-sdk. ACM, 2017, pp. 2491–2493 (cit. on
p. 11).

[DSZ15] D. DEMMLER, T. SCHNEIDER, M. ZOHNER. “ABY – A Framework for Efficient Mixed-
Protocol Secure Two-Party Computation”. In: Proceedings of the 22nd Annual Network
and Distributed System Security Symposium (NDSS’15). Code: https://encrypto.de/
code/ABY. Internet Society, 2015 (cit. on pp. 1, 7, 44).

[EFG+09] Z. ERKIN, M. FRANZ, J. GUAJARDO, S. KATZENBEISSER, I. LAGENDIJK, T. TOFT. “Privacy-
Preserving Face Recognition”. In: Proceedings of the 9th International Symposium on
Privacy Enhancing Technologies (PETS’09). Springer, 2009, pp. 235–253 (cit. on p. 3).

[FAZ05] K. B. FRIKKEN, M. J. ATALLAH, C. ZHANG. “Privacy-preserving credit checking”. In:
Proceedings 6th ACM Conference on Electronic Commerce (EC’05). 2005, pp. 147–154
(cit. on p. 6).

[GESM17] J. GÖTZFRIED, M. ECKERT, S. SCHINZEL, T. MÜLLER. “Cache Attacks on Intel SGX”.
In: Proceedings of the 10th European Workshop on Systems Security (EuroSec’17). ACM,
2017 (cit. on pp. 21, 24).

[GKS17] D. GÜNTHER, Á. KISS, T. SCHNEIDER. “More Efficient Universal Circuit Constructions”.
In: Proceedings of the 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Advances in Cryptology (ASIACRYPT’17). Springer,
2017, pp. 443–470 (cit. on p. 7).

88

https://software.intel.com/en-us/articles/intel-enhanced-privacy-id-epid-security-technology
https://software.intel.com/en-us/articles/intel-enhanced-privacy-id-epid-security-technology
https://github.com/baidu/rust-sgx-sdk
https://encrypto.de/code/ABY
https://encrypto.de/code/ABY

Bibliography

[GLS+17a] D. GRUSS, J. LETTNER, F. SCHUSTER, O. OHRIMENKO, I. HALLER, M. COSTA. “Strong and
Efficient Cache Side-Channel Protection Using Hardware Transactional Memory”.
In: Proceedings of the 26th USENIX Security Symposium (USENIX Security’17). USENIX
Association, 2017, pp. 217–233 (cit. on p. 21).

[GLS+17b] D. GRUSS, M. LIPP, M. SCHWARZ, R. FELLNER, C. MAURICE, S. MANGARD. “KASLR
is Dead: Long Live KASLR”. In: Proceedings of the 9th International Symposium on
Engineering Secure Software and Systems (ESSoS’17). Springer, 2017, pp. 161–176
(cit. on p. 23).

[GMF+16] D. GUPTA, B. MOOD, J. FEIGENBAUM, K. BUTLER, P. TRAYNOR. “Using Intel Software
Guard Extensions for Efficient Two-Party Secure Function Evaluation”. In: Proceed-
ings of the International Conference on Financial Cryptography and Data Security (FC’16).
Springer, 2016, pp. 302–318 (cit. on p. 25).

[GMW87] O. GOLDREICH, S. MICALI, A. WIGDERSON. “How to Play ANY Mental Game”. In:
Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC’87).
ACM, 1987, pp. 218–229 (cit. on pp. 1, 3 sqq., 7).

[GRBG18] B. GRAS, K. RAZAVI, H. BOS, C. GIUFFRIDA. “Translation Leak-aside Buffer: Defeating
Cache Side-channel Protections with TLB Attacks”. In: Proceedings of the 27th USENIX
Security Symposium (USENIX Security’18). USENIX Association, 2018, pp. 955–972
(cit. on p. 23).

[HCP17] M. HÄHNEL, W. CUI, M. PEINADO. “High-Resolution Side Channels for Untrusted
Operating Systems”. In: Proceedings of the 2017 USENIX Annual Technical Conference
(USENIX ATC’17). USENIX Association, 2017, pp. 299–312 (cit. on p. 21).

[HLP+13] M. HOEKSTRA, R. LAL, P. PAPPACHAN, V. PHEGADE, J. DEL CUVILLO. “Using Innovative
Instructions to Create Trustworthy Software Solutions”. In: Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and Privacy
(HASP’13). ACM, 2013 (cit. on p. 9).

[HSVW18] T. HUNT, C. SONG, R. S. a.VITALY SHMATIKOV, E. WITCHEL. “Chiron: Privacy-preserving
Machine Learning as a Service”. In: CoRR abs/1803.05961 (2018) (cit. on p. 19).

[HTCK18] D. HARNIK, E. TSFADIA, D. CHEN, R. KAT. “Securing the Storage Data Path with SGX
Enclaves”. In: ArXiv e-prints (06/2018), arXiv:1806.10883 (cit. on p. 24).

[IES15] G. IRAZOQUI, T. EISENBARTH, B. SUNAR. “S$A: A Shared Cache Attack That Works
Across Cores and Defies VM Sandboxing – and Its Application to AES”. In: Proceed-
ings of the 36th IEEE Symposium on Security and Privacy (SP’15). IEEE Computer Society,
2015, pp. 591–604 (cit. on p. 20).

[IKNP03] Y. ISHAI, J. KILIAN, K. NISSIM, E. PETRANK. “Extending Oblivious Transfers Efficiently”.
In: Proceedings of the 23rd Annual International Cryptology Conference, Advances in
Cryptology (CRYPTO’03). Springer, 2003, pp. 145–161 (cit. on p. 4).

[Int] INTEL CORPORATION. “PoET 1.0 Specification – Sawtooth v1.0.5 documentation”.
URL: https://sawtooth.hyperledger.org/docs/core/releases/1.0/architec
ture/poet.html (visited on 12/04/2018) (cit. on p. 19).

[Int15] INTEL CORPORATION. “Intel(R) Software Guard Extensions (Intel(R) SGX) – Tuto-
rial Slides for the International Symposium on Computer Architecture (ISCA’15)”.
Version 1.1. 06/2015. URL: https://software.intel.com/sites/default/files/
332680-002.pdf (visited on 11/21/2018) (cit. on p. 20).

89

https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf

Bibliography

[Int16] INTEL CORPORATION. “Intel(R) Software Guard Extensions Part 7: Refine the En-
clave with Proxy Functions”. 11/28/2016. URL: https://software.intel.com/
en- us/articles/intel- software- guard- extensions- tutorial- part- 7-
refining-the-enclave (visited on 11/09/2018) (cit. on p. 12).

[Int18a] INTEL CORPORATION. “Attestation Service for Intel(R) Software Guard Extensions
(Intel(R) SGX): API Documentation”. Version 4.1. 2018. URL: https://software.
intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf (visited
on 11/16/2018) (cit. on pp. 16, 18, 37, 41).

[Int18b] INTEL CORPORATION. “Code Sample: Intel(R) Software Guard Extensions Remote
Attestation End-to-End Example”. 07/04/2018. URL: https://software.intel.co
m/en-us/articles/code-sample-intel-software-guard-extensions-remote-
attestation-end-to-end-example (visited on 11/08/2018) (cit. on pp. 16, 18).

[Int18c] INTEL CORPORATION. “Enclave Signing Tool for Intel(R) Software Guard Extensions
(Intel(R) SGX)”. 2018. URL: https://software.intel.com/sites/default/
files/managed/ae/2e/Enclave-Signing-Tool-for-Intel-SGX.pdf (visited on
11/14/2018) (cit. on p. 13).

[Int18d] INTEL CORPORATION. “Intel(R) Protected File System Library”. 05/07/2018. URL:
https://software.intel.com/en-us/sgx-sdk-dev-reference-intel-protec
ted-file-system-library (visited on 12/17/2018) (cit. on p. 36).

[Int18e] INTEL CORPORATION. “Intel(R) Software Guard Extensions (Intel(R) SGX) – Devel-
oper Guide”. Version 2.3. 09/2018. URL: https://download.01.org/intel-sgx/
linux-2.3.1/docs/Intel_SGX_Developer_Guide.pdf (visited on 11/06/2018)
(cit. on pp. 10 sqq., 15, 24).

[Int18f] INTEL CORPORATION. “Intel(R) Software Guard Extensions (Intel(R) SGX) SDK for
Linux* OS – Developer Reference”. Version 2.3.1. 09/2018. URL: https://download.
01.org/intel-sgx/linux-2.3.1/docs/Intel_SGX_Developer_Reference_
Linux_2.3.1_Open_Source.pdf (visited on 11/06/2018) (cit. on pp. 10–13, 16, 18).

[Int18g] INTEL CORPORATION. “Intel(R) Software Guard Extensions (Intel(R) SGX) Web-
Based Training – Part 1: Introduction to Intel(R) SGX”. 01/05/2018. URL: https://
software.intel.com/en-us/documentation/intel-sgx-web-based-training/
intro-to-sgx (visited on 11/09/2018) (cit. on p. 11).

[Int18h] INTEL CORPORATION. “L1 Terminal Fault”. 2018. URL: https://software.intel.
com/security-software-guidance/software-guidance/l1-terminal-fault
(visited on 11/27/2018) (cit. on pp. 22 sq.).

[Int18i] INTEL CORPORATION. “Overview on Signing and Whitelisting for Intel(R) Software
Guide Extension (Intel(R) SGX) Enclaves”. 2018. URL: https://software.intel.
com/sites/default/files/managed/78/4a/overview-signing-whitelisting-
intel-sgx-enclaves.pdf (visited on 11/14/2018) (cit. on p. 13).

[Int18j] INTEL CORPORATION. “Resources and Response to Side Channel L1 Terminal Fault”.
2018. URL: https://www.intel.com/content/www/us/en/architecture-and-
technology/l1tf.html (visited on 11/27/2018) (cit. on p. 23).

[JKS+18] K. JÄRVINEN, Á. KISS, T. SCHNEIDER, O. TKACHENKO, Z. YANG. “Faster Privacy-Preserving
Location Proximity Schemes”. In: Proceedings of the 17th International Conference on
Cryptology And Network Security (CANS’18). Springer, 2018, pp. 3–22 (cit. on p. 3).

90

https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-7-refining-the-enclave
https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-7-refining-the-enclave
https://software.intel.com/en-us/articles/intel-software-guard-extensions-tutorial-part-7-refining-the-enclave
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/en-us/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/sites/default/files/managed/ae/2e/Enclave-Signing-Tool-for-Intel-SGX.pdf
https://software.intel.com/sites/default/files/managed/ae/2e/Enclave-Signing-Tool-for-Intel-SGX.pdf
https://software.intel.com/en-us/sgx-sdk-dev-reference-intel-protected-file-system-library
https://software.intel.com/en-us/sgx-sdk-dev-reference-intel-protected-file-system-library
https://download.01.org/intel-sgx/linux-2.3.1/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-2.3.1/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-2.3.1/docs/Intel_SGX_Developer_Reference_Linux_2.3.1_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.3.1/docs/Intel_SGX_Developer_Reference_Linux_2.3.1_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.3.1/docs/Intel_SGX_Developer_Reference_Linux_2.3.1_Open_Source.pdf
https://software.intel.com/en-us/documentation/intel-sgx-web-based-training/intro-to-sgx
https://software.intel.com/en-us/documentation/intel-sgx-web-based-training/intro-to-sgx
https://software.intel.com/en-us/documentation/intel-sgx-web-based-training/intro-to-sgx
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/sites/default/files/managed/78/4a/overview-signing-whitelisting-intel-sgx-enclaves.pdf
https://software.intel.com/sites/default/files/managed/78/4a/overview-signing-whitelisting-intel-sgx-enclaves.pdf
https://software.intel.com/sites/default/files/managed/78/4a/overview-signing-whitelisting-intel-sgx-enclaves.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html
https://www.intel.com/content/www/us/en/architecture-and-technology/l1tf.html

Bibliography

[JSR+16] S. JOHNSON, V. SCARLATA, C. ROZAS, E. BRICKELL, F. MCKEEN. “Intel(R) Software
Guard Extensions: EPID Provisioning and Attestation Services”. 2016. URL: https:
//software.intel.com/sites/default/files/managed/57/0e/ww10-2016-
sgx-provisioning-and-attestation-final.pdf (visited on 11/15/2018) (cit. on
p. 15).

[KHF+19] P. KOCHER, J. HORN, A. FOGH, D. GENKIN, D. GRUSS, W. HAAS, M. HAMBURG, M. LIPP,
S. MANGARD, T. PRESCHER, M. SCHWARZ, Y. YAROM. “Spectre Attacks: Exploiting
Speculative Execution”. In: Proceedings of the 40th IEEE Symposium on Security and
Privacy (SP’19). IEEE Computer Society, 2019 (cit. on p. 22).

[KHH+17] S. KIM, J. HAN, J. HA, T. KIM, D. HAN. “Enhancing Security and Privacy of Tor’s
Ecosystem by Using Trusted Execution Environments”. In: Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI’17). USENIX
Association, 2017, pp. 145–161 (cit. on p. 19).

[KMS+16] A. KOSBA, A. MILLER, E. SHI, Z. WEN, C. PAPAMANTHOU. “Hawk: The Blockchain
Model of Cryptography and Privacy-Preserving Smart Contracts”. In: Proceedings
of the 37th IEEE Symposium on Security and Privacy (SP’16). IEEE Computer Society,
2016, pp. 839–858 (cit. on p. 19).

[KPM+16] K. A. KÜÇÜK, A. PAVERD, A. MARTIN, N. ASOKAN, A. SIMPSON, R. ANKELE. “Exploring
the Use of Intel SGX for Secure Many-Party Applications”. In: Proceedings of the 1st
Workshop on System Software for Trusted Execution (SysTEX’16). ACM, 2016 (cit. on
p. 25).

[KPR+15] P. KOEBERL, V. PHEGADE, A. RAJAN, T. SCHNEIDER, S. SCHULZ, M. ZHDANOVA. “Time to
Rethink: Trust Brokerage using Trusted Execution Environments”. In: Proceedings
of the 8th International Conference on Trust and Trustworthy Computing (TRUST’15).
Springer, 2015, pp. 181–190 (cit. on p. 25).

[KS08a] V. KOLESNIKOV, T. SCHNEIDER. “A Practical Universal Circuit Construction and Secure
Evaluation of Private Functions”. In: Proceedings of the 12th International Conference
on Financial Cryptography and Data Security (FC’08). Code: https://encrypto.de/
code/FairplayPF. Springer, 2008, pp. 83–97 (cit. on p. 7).

[KS08b] V. KOLESNIKOV, T. SCHNEIDER. “Improved Garbled Circuit: Free XOR Gates and Appli-
cations”. In: Proceedings of the 35th International Colloquium on Automata, Languages
and Programming (ICALP’08). Springer, 2008, pp. 486–498 (cit. on p. 5).

[KS16] Á. KISS, T. SCHNEIDER. “Valiant’s Universal Circuit is Practical”. In: Proceedings of
the 35th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Advances in Cryptology (EUROCRYPT’16). Code: https://encrypto.de/
code/UC. Springer, 2016, pp. 699–728 (cit. on pp. 7 sq., 43).

[KSH+15] S. KIM, Y. SHIN, J. HA, T. KIM, D. HAN. “A First Step Towards Leveraging Commodity
Trusted Execution Environments for Network Applications”. In: Proceedings of the
14th ACM Workshop on Hot Topics in Networks (HotNets’14). ACM, 2015 (cit. on p. 19).

[LEPS16] J. LIND, I. EYAL, P. R. PIETZUCH, E. G. SIRER. “Teechain: Payment Channels Using
Trusted Execution Environments”. In: CoRR abs/1612.07766 (2016) (cit. on p. 19).

[Lin18] Y. LINDELL. “The Security of Intel SGX for Key Protection and Data Privacy Applica-
tions”. 08/16/2018. URL: https://cdn2.hubspot.net/hubfs/1761386/security-
of-intelsgx-key-protection-data-privacy-apps.pdf (visited on 11/21/2018)
(cit. on p. 20).

91

https://software.intel.com/sites/default/files/managed/57/0e/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://software.intel.com/sites/default/files/managed/57/0e/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://software.intel.com/sites/default/files/managed/57/0e/ww10-2016-sgx-provisioning-and-attestation-final.pdf
https://encrypto.de/code/FairplayPF
https://encrypto.de/code/FairplayPF
https://encrypto.de/code/UC
https://encrypto.de/code/UC
https://cdn2.hubspot.net/hubfs/1761386/security-of-intelsgx-key-protection-data-privacy-apps.pdf
https://cdn2.hubspot.net/hubfs/1761386/security-of-intelsgx-key-protection-data-privacy-apps.pdf

Bibliography

[LMS16] H. LIPMAA, P. MOHASSEL, S. SADEGHIAN. “Valiant’s Universal Circuit: Improvements,
Implementation, and Applications”. Cryptology ePrint Archive, Report 2016/017.
https://eprint.iacr.org/2016/017. 2016 (cit. on p. 7).

[LP07] Y. LINDELL, B. PINKAS. “An Efficient Protocol for Secure Two-Party Computation in
the Presence of Malicious Adversaries”. In: Proceedings of the 26th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Advances
in Cryptology (EUROCRYPT’07). Springer, 2007, pp. 52–78 (cit. on p. 5).

[LP08] Y. LINDELL, B. PINKAS. “Secure Multiparty Computation for Privacy-Preserving Data
Mining”. Cryptology ePrint Archive, Report 2008/197. https://eprint.iacr.org/
2008/197. 2008 (cit. on p. 3).

[LP09] Y. LINDELL, B. PINKAS. “A Proof of Security of Yao’s Protocol for Two-Party Compu-
tation”. In: Journal of Cryptology 22.2 (04/2009), pp. 161–188 (cit. on p. 5).

[LSG+18] M. LIPP, M. SCHWARZ, D. GRUSS, T. PRESCHER, W. HAAS, A. FOGH, J. HORN, S. MANGARD,
P. KOCHER, D. GENKIN, Y. YAROM, M. HAMBURG. “Meltdown: Reading Kernel Memory
from User Space”. In: Proceedings of the 27th USENIX Security Symposium (USENIX
Security’18). USENIX Association, 2018, pp. 973–990 (cit. on p. 22).

[MAB+13] F. MCKEEN, I. ALEXANDROVICH, A. BERENZON, C. V. ROZAS, H. SHAFI, V. SHANBHOGUE,
U. R. SAVAGAONKAR. “Innovative Instructions and Software Model for Isolated Exe-
cution”. In: Proceedings of the 2nd International Workshop on Hardware and Architectural
Support for Security and Privacy (HASP’13). ACM, 2013 (cit. on pp. 9–12).

[Mar18] M. MARLINSPIKE. “Technology preview: Private contact discovery for Signal”. 09/26/2018.
URL: https : / / signal . org / blog / private - contact - discovery/ (visited on
12/04/2018) (cit. on p. 19).

[MBF+17] S. B. MOKHTAR, A. BOUTET, P. FELBER, M. PASIN, R. PIRES, V. SCHIAVONI. “X-Search:
Revisiting Private Web Search Using Intel SGX”. In: Proceedings of the 18th Inter-
national Middleware Conference (Middleware’17). ACM, 2017, pp. 198–208 (cit. on
p. 19).

[MES18] A. MOGHIMI, T. EISENBARTH, B. SUNAR. “MemJam: A False Dependency Attack
Against Constant-Time Crypto Implementations in SGX”. In: Proceedings of the
Cryptographers’ Track at the RSA Conference on Topics in Cryptology 2018 (CT-RSA’18).
2018, pp. 21–44 (cit. on pp. 22, 24).

[MHWK16] M. MILUTINOVIC, W. HE, H. WU, M. KANWAL. “Proof of Luck: An Efficient Blockchain
Consensus Protocol”. In: Proceedings of the 1st Workshop on System Software for Trusted
Execution (SysTEX’16). ACM, 2016 (cit. on p. 19).

[MIE17] A. MOGHIMI, G. IRAZOQUI, T. EISENBARTH. “CacheZoom: How SGX Amplifies the
Power of Cache Attacks”. In: Proceedings of the 19th International Conference on
Cryptographic Hardware and Embedded Systems (CHES’17). Springer, 2017, pp. 69–90
(cit. on p. 21).

[NNOB12] J. B. NIELSEN, P. S. NORDHOLT, C. ORLANDI, S. S. BURRA. “A New Approach to Practical
Active-Secure Two-Party Computation”. In: Proceedings of the 32nd Annual Interna-
tional Cryptology Conference, Advances in Cryptology (CRYPTO’12). Springer, 2012,
pp. 681–700 (cit. on p. 6).

[NPS99] M. NAOR, B. PINKAS, R. SUMNER. “Privacy Preserving Auctions and Mechanism
Design”. In: Proceedings of the 1st ACM Conference on Electronic Commerce (EC’99).
ACM, 1999, pp. 129–139 (cit. on p. 3).

92

https://eprint.iacr.org/2016/017
https://eprint.iacr.org/2008/197
https://eprint.iacr.org/2008/197
https://signal.org/blog/private-contact-discovery/

Bibliography

[NSMS14] S. NIKSEFAT, B. SADEGHIYAN, P. MOHASSEL, S. SADEGHIAN. “ZIDS: A Privacy-Preserving
Intrusion Detection System Using Secure Two-Party Computation Protocols”. In:
The Computer Journal 57.4 (04/2014), pp. 494–509 (cit. on p. 6).

[OSF+16] O. OHRIMENKO, F. SCHUSTER, C. FOURNET, A. MEHTA, S. NOWOZIN, K. VASWANI, M. COSTA.
“Oblivious Multi-Party Machine Learning on Trusted Processors”. In: Proceedings of
the 25th USENIX Security Symposium (USENIX Security’16). USENIX Association, 2016,
pp. 619–636 (cit. on p. 19).

[OST06] D. A. OSVIK, A. SHAMIR, E. TROMER. “Cache Attacks and Countermeasures: The Case
of AES”. In: Proceedings of the Cryptographers’ Track at the RSA Conference on Topics in
Cryptology 2006 (CT-RSA’06). Springer, 2006, pp. 1–20 (cit. on pp. 20 sqq.).

[OTK+18] O. OLEKSENKO, B. TRACH, R. KRAHN, M. SILBERSTEIN, C. FETZER. “Varys: Protecting
SGX Enclaves from Practical Side-Channel Attacks”. In: Proceedings of the 2018
USENIX Annual Technical Conference (USENIX ATC’18). USENIX Association, 2018,
pp. 227–240 (cit. on pp. 13 sq., 19, 23).

[PPFF16] R. PIRES, M. PASIN, P. FELBER, C. FETZER. “Secure Content-Based Routing Using Intel
Software Guard Extensions”. In: Proceedings of the 17th International Middleware
Conference (Middleware’16). ACM, 2016 (cit. on p. 19).

[Rab81] M. O. RABIN. “How To Exchange Secrets with Oblivious Transfer”. Technical Report
TR-81, Aiken Computation Laboratory, Harvard University. 1981 (cit. on p. 4).

[RTSS09] T. RISTENPART, E. TROMER, H. SHACHAM, S. SAVAGE. “Hey, You, Get Off of My Cloud:
Exploring Information Leakage in Third-Party Compute Clouds”. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security (CCS’09). ACM,
2009, pp. 199–212 (cit. on p. 20).

[Rus17a] M. RUSSINOVICH. “Announcing the Confidential Consortium Blockchain Frame-
work for enterprise blockchain networks”. 09/14/2017. URL: https://azure.
microsoft.com/en-us/blog/introducing-azure-confidential-computing/
(visited on 12/05/2018) (cit. on p. 19).

[Rus17b] M. RUSSINOVICH. “Announcing the Confidential Consortium Blockchain Frame-
work for enterprise blockchain networks”. 08/10/2017. URL: https://azure.
microsoft.com/en-us/blog/announcing-microsoft-s-coco-framework-for-
enterprise-blockchain-networks/ (visited on 12/05/2018) (cit. on p. 19).

[SCF+15] F. SCHUSTER, M. COSTA, C. FOURNET, C. GKANTSIDIS, M. PEINADO, G. MAINAR-RUIZ,
M. RUSSINOVICH. “VC3: Trustworthy Data Analytics in the Cloud Using SGX”. In:
Proceedings of the 36th IEEE Symposium on Security and Privacy (SP’15). IEEE Computer
Society, 2015, pp. 38–54 (cit. on p. 19).

[SCNS16] S. SHINDE, Z. L. CHUA, V. NARAYANAN, P. SAXENA. “Preventing Page Faults from
Telling Your Secrets”. In: Proceedings of the 11th ACM Asia Conference on Computer
and Communications Security (ASIACCS’16). ACM, 2016, pp. 317–328 (cit. on p. 20).

[ŠG14] J. ŠEDĚNKA, P. GASTI. “Privacy-preserving Distance Computation and Proximity
Testing on Earth, Done Right”. In: Proceedings of the 9th ACM Symposium on Informa-
tion, Computer and Communications Security (ASIACCS’14). ACM, 2014, pp. 99–110
(cit. on p. 3).

93

https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/announcing-microsoft-s-coco-framework-for-enterprise-blockchain-networks/
https://azure.microsoft.com/en-us/blog/announcing-microsoft-s-coco-framework-for-enterprise-blockchain-networks/
https://azure.microsoft.com/en-us/blog/announcing-microsoft-s-coco-framework-for-enterprise-blockchain-networks/

Bibliography

[SLK+17] J. SEO, B. LEE, S. KIM, M.-W. SHIH, I. SHIN, D. HAN, T. KIM. “SGX-Shield: Enabling
Address Space Layout Randomization for SGX Programs”. In: Proceedings of the
24th Annual Network and Distributed System Security Symposium (NDSS’17). 2017
(cit. on p. 20).

[SLKP17] M.-W. SHIH, S. LEE, T. KIM, M. PEINADO. “T-SGX: Eradicating Controlled-Channel
Attacks Against Enclave Programs”. In: Proceedings of the 24th Annual Network and
Distributed System Security Symposium (NDSS’17). Internet Society, 2017 (cit. on
pp. 20 sq.).

[SLTS17] S. SHINDE, D. LE TIEN, S. TOPLE, P. SAXENA. “Panoply: Low-TCB Linux Applications
with SGX Enclaves”. In: Proceedings of the 24th Annual Network and Distributed System
Security Symposium (NDSS’17). The Internet Society, 2017 (cit. on pp. 13, 19).

[SWG+17] M. SCHWARZ, S. WEISER, D. GRUSS, C. MAURICE, S. MANGARD. “Malware Guard
Extension: Using SGX to Conceal Cache Attacks”. In: Proceedings of the 14th Inter-
national Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA’17). Springer, 2017, pp. 3–24 (cit. on p. 21).

[SZ13] T. SCHNEIDER, M. ZOHNER. “GMW vs. Yao? Efficient Secure Two-Party Computation
with Low Depth Circuits”. In: Proceedings of the 17th International Conference on
Financial Cryptography and Data Security (FC’13). Springer, 2013, pp. 275–292 (cit. on
pp. 4, 6).

[TPV17] C.-C. TSAI, D. E. PORTER, M. VIJ. “Graphene-SGX: A Practical Library OS for Un-
modified Applications on SGX”. In: Proceedings of the 2017 USENIX Annual Technical
Conference (USENIX ATC’17). Code: https://github.com/oscarlab/graphene.
USENIX Association, 2017, pp. 645–658 (cit. on pp. 13, 19).

[TWSH18] O. TKACHENKO, C. WEINERT, T. SCHNEIDER, K. HAMACHER. “Large-Scale Privacy-
Preserving Statistical Computations for Distributed Genome-Wide Association Stud-
ies”. In: Proceedings of the 13th ACM Asia Conference on Computer and Communications
Security (ASIACCS’18). ACM, 2018, pp. 221–235 (cit. on p. 3).

[Val76] L. G. VALIANT. “Universal Circuits (Preliminary Report)”. In: Proceedings of the 8th
Annual ACM Symposium on Theory of Computing (STOC’76). ACM, 1976, pp. 196–203
(cit. on pp. 1, 7).

[VMW+18] J. VAN BULCK, M. MINKIN, O. WEISSE, D. GENKIN, B. KASIKCI, F. PIESSENS, M. SILBERSTEIN,
T. F. WENISCH, Y. YAROM, R. STRACKX. “Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution”. In: Proceedings of the 27th
USENIX Security Symposium (USENIX Security’18). See also: https://foreshadowatt
ack.eu/. USENIX Association, 2018, pp. 991–1008 (cit. on pp. 22, 24).

[VWK+17] J. VAN BULCK, N. WEICHBRODT, R. KAPITZA, F. PIESSENS, R. STRACKX. “Telling Your
Secrets Without Page Faults: Stealthy Page Table-Based Attacks on Enclaved Exe-
cution”. In: Proceedings of the 26th USENIX Security Symposium (USENIX Security’17).
See also: https://github.com/jovanbulck/sgx-pte. USENIX Association, 2017,
pp. 1041–1056 (cit. on p. 20).

[WAK18] N. WEICHBRODT, P.-L. AUBLIN, R. KAPITZA. “sgx-perf: A Performance Analysis Tool for
Intel SGX Enclaves”. In: Proceedings of the 19th International Middleware Conference
(Middleware’18). ACM, 2018, pp. 201–213 (cit. on p. 42).

94

https://github.com/oscarlab/graphene
https://foreshadowattack.eu/
https://foreshadowattack.eu/
https://github.com/jovanbulck/sgx-pte

Bibliography

[WCP+17] W. WANG, G. CHEN, X. PAN, Y. ZHANG, X. WANG, V. BINDSCHAEDLER, H. TANG, C. A.
GUNTER. “Leaky Cauldron on the Dark Land: Understanding Memory Side-Channel
Hazards in SGX”. In: Proceedings of the 24th ACM Conference Conference on Computer
and Communications Security (CCS’17). ACM, 2017, pp. 2421–2434 (cit. on pp. 20,
23).

[WVM+18] O. WEISSE, J. VAN BULCK, M. MINKIN, D. GENKIN, B. KASIKCI, F. PIESSENS, M. SILBERSTEIN,
R. STRACKX, T. F. WENISCH, Y. YAROM. “Foreshadow-NG: Breaking the Virtual Memory
Abstraction with Transient Out-of-Order Execution”. Version 1.0. 08/14/2018. URL:
https://foreshadowattack.eu/foreshadow- NG.pdf (visited on 11/16/2018)
(cit. on pp. 22 sqq.).

[XCP15] Y. XU, W. CUI, M. PEINADO. “Controlled-Channel Attacks: Deterministic Side Chan-
nels for Untrusted Operating Systems”. In: Proceedings of the 36th IEEE Symposium
on Security and Privacy (SP’15). IEEE Computer Society, 2015, pp. 640–656 (cit. on
p. 20).

[Yao86] A. C. YAO. “How to Generate and Exchange Secrets”. In: Proceedings of the 27th
Annual Symposium on Foundations of Computer Science (SFCS’86). IEEE Computer
Society, 1986, pp. 162–167 (cit. on pp. 1, 3 sqq., 7).

[YF14] Y. YAROM, K. FALKNER. “FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-Channel Attack”. In: Proceedings of the 23rd USENIX Security Symposium (USENIX
Security’14). USENIX Association, 2014, pp. 719–732 (cit. on p. 21).

[ZCC+16] F. ZHANG, E. CECCHETTI, K. CROMAN, A. JUELS, E. SHI. “Town Crier: An Authenticated
Data Feed for Smart Contracts”. In: Proceedings of the 23rd ACM Conference on
Computer and Communications Security (CCS’16). ACM, 2016, pp. 270–282 (cit. on
p. 19).

[ZDB+17] W. ZHENG, A. DAVE, J. G. BEEKMAN, R. A. POPA, J. E. GONZALEZ, I. STOICA. “Opaque:
An Oblivious and Encrypted Distributed Analytics Platform”. In: Proceedings of the
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI’17).
USENIX Association, 2017, pp. 283–298 (cit. on p. 19).

[ZJRR12] Y. ZHANG, A. JUELS, M. K. REITER, T. RISTENPART. “Cross-VM Side Channels and Their
Use to Extract Private Keys”. In: Proceedings of the 19th ACM Conference on Computer
and Communications Security (CCS’12). ACM, 2012, pp. 305–316 (cit. on p. 20).

95

https://foreshadowattack.eu/foreshadow-NG.pdf

A Appendix

A.1 Implementation

A.1.1 Remote Attestation Code Sample

The basic directory layout of the RA sample project can be seen in Figure A.1. Only the top-
level directories and the most relevant files are shown. The sample project consists of two sep-
arate programs: the Application, which includes the enclave, and the ServiceProvider.
Only the former needs to be run on an SGX-enabled platform. The service provider and the
untrusted part of the application are written in C++ while the enclave is written in the Rust
programming language.
The settings file GeneralSettings.h is used to configure both the application and the service
provider. Both programs include a file called isv_app.cpp, which contains the respective
main method. The protocol message flow is controlled by an instance of MessageHandler on
the application side and an instance of VerificationManager on the service provider side.
The latter delegates most of the work to an instance of ServiceProvider. The message
exchange between the application and the service provider is performed with the help of
Google Protocol Buffers. The message formats are defined inside the Messages.proto file.
The WebService is used by the service provider for communicating with the Intel Attestation
Service. Boost.Asio is used for networking and by default, the communication between the
service provider and the application is secured with TLS. The application takes the role of
the TLS server, requiring a certificate for authentication.

96

A Appendix

Application

enclave
src

lib.rs
enclave.config.xml

enclave.edl
isv_app

isv_app.cpp

Makefile
Enclave
GoogleMessages

Messages.proto

MessageHandler

MessageHandler.cpp

MessageHandler.h

Networking

ServiceProvider
isv_app

VerificationManager.cpp

VerificationManager.h

isv_app.cpp

service_provider

ServiceProvider.cpp

ServiceProvider.h
Makefile

Util
WebService
GeneralSettings.h

Figure A.1: Basic Directory Layout of the RA Sample Project

Both programs are built with the help of a Makefile and use some of the same utility classes,
i.e., for networking. The Application Makefile automatically runs the Edger8r Tool as well as
the Enclave Signing Tool (also see Section 2.4.2). As illustrated in Figure A.2, the Edger8r
Tool generates the four files enclave_t.h, enclave_t.c, enclave_u.h and enclave_u.c
from the EDL enclave.edl which defines the enclave’s interface. The Enclave Signing Tool
signs the enclave shared library.

97

A Appendix

Application

enclave
src

lib.rs
enclave.config.xml

enclave_t.c

enclave_t.h

enclave.edl
isv_app

enclave_u.c

enclave_u.h

isv_app.cpp

enclave.signed.so

Makefile

Figure A.2: Output of the Edger8r and Enclave Signing Tools

98

A Appendix

A.2 Evaluation

A.2.1 Intel SGX-Based Secure Two-Party Computation

Loading the Circuit into the Enclave. Table A.1 contains the times required for loading
sequential and parallel Boolean circuits with different gate types and circuit sizes into the
enclave in the SFE setting.

Table A.1: Time Required for Loading Different Circuits into the Enclave. Time needed
to load (a) sequential circuits and (b) parallel circuits of different sizes into the enclave. The
circuits either consist only of XOR gates (X) or consist of alternating layers of AND gates
and XOR gates (AX) or consist only of AND gates (A). The time to parse and hash the circuit
in-enclave is included. Values marked with an asterisk only cover the majority of executions
but not all of them.

Circuit Size Time [ms]
A X AX avg SD

10 0.497 0.508 0.493 0.500 0.062

100 *0.906 *0.919 *0.942 *0.923 *0.100

1 000 5.811 5.774 5.879 5.821 0.535

10 000 *19.775 *19.726 *19.745 *19.748 *0.763

100 000 205.080 203.239 204.003 204.107 6.165

1 000 000 2 271.920 2 273.780 2 295.586 2 280.429 13.246

(a) Sequential Circuits

Circuit Size Time [ms]
A X AX avg SD

100 *0.934 *0.918 *0.865 *0.905 *0.125

10 000 *19.434 *19.620 *19.702 *19.583 *0.491

1 000 000 2 274.730 2 272.976 2 293.029 2 280.245 11.453

(b) Parallel Circuits

99

A Appendix

Evaluating the Circuit inside the Enclave. Table A.2 contains the times required for evalu-
ating sequential and parallel Boolean circuits with different gate types and circuit sizes inside
the enclave in the SFE setting.

Table A.2: Time Required for Evaluating Different Circuits inside the Enclave. Time
needed to evaluate (a) sequential circuits and (b) parallel circuits of different sizes inside the
enclave. The circuits either consist only of XOR gates (X) or consist of alternating layers of
AND gates and XOR gates (AX) or consist only of AND gates (A). The time to check the three
circuit hash values for equality and to encrypt the computation result and marshal it out of
the enclave is included. Values marked with an asterisk only cover the majority of executions
but not all of them.

Circuit Size Time [ms]
A X AX avg SD

10 0.172 0.173 0.174 0.173 0.012

100 0.348 0.341 0.332 0.340 0.023

1 000 2.245 2.208 2.213 2.222 0.040

10 000 *9.349 *9.550 *9.488 *9.462 *0.522

100 000 *59.866 *59.142 *58.382 *59.163 *2.650

1 000 000 1 901.876 1 901.890 1 899.891 1 901.219 6.598

(a) Parallel Circuits

Circuit Size Time [ms]
A X AX avg SD

100 0.346 0.331 0.342 0.339 0.033

10 000 9.687 *9.705 *9.416 *9.613 *0.444

1 000 000 1 936.503 1 931.509 1 932.069 1 933.360 10.291

(b) Sequential Circuits

100

A Appendix

Starting Both Service Providers at the Same Time. The benchmarking results in Sec-
tion 5.3.2 are for starting the second service provider (SP2) 6 seconds after the first (SP1).
The results in this section are for starting both service providers at the same time. Due to
the application and enclave being single-threaded, this leads to long run-times, which are
equal for both service providers. It also leads to large standard deviations for the remote
attestation phase and the two-party computation phase.
The time required for the two-party computation phase as well as the required total time,
which additionally includes the remote attestation phase, are summarized in Table A.3. We
report the timings for sequential circuits and select circuit sizes, which suffice to convey the
idea.

Table A.3: Two-Party Computation Run-Time in the PFE Setting. Average run-time for
the two-party computation phase and average total time for computing circuits of different
sizes in (a) the LAN setting and (b) the WAN setting.

2PC Phase Total Time

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms]

100 151.691 89.519 1 500.564 309.811

10 000 159.946 58.672 1 474.400 134.873

1 000 000 4 182.935 789.700 5 801.592 172.112

(a) LAN Setting

2PC Phase Total Time

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms]

100 577.705 188.984 3 173.953 191.523

10 000 608.276 191.428 3 167.298 177.840

1 000 000 4 691.927 51.119 7 280.139 98.391

(b) WAN Setting

101

A Appendix

A.2.2 ABY-Based Secure Two-Party Computation

Setup Phase. Table A.4 contains the average run-time results for the setup phase of Yao’s
protocol along with the corresponding standard deviations. We separately specify the run-
times for the server and the client as reported by the ABY framework.

Table A.4: Setup Phase Run-Time for Yao’s Protocol in the SFE Setting. Average run-time
for the setup phase when computing (a) sequential circuits in the LAN setting, (b) parallel
circuits in the LAN setting, (c) sequential circuits in the WAN setting and (d) parallel circuits
in the WAN setting. The circuits are of different sizes and either consist only of XOR gates (X)
or consist of alternating layers of AND gates and XOR gates (AX) or consist only of AND
gates (A). For each circuit size, the first row of values is for the server and the second row of
values is for the client.

X AX A

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms] Time [ms] SD [ms]

10 0.791 0.685 1.071 0.645 0.819 0.827

1.637 0.103 1.661 0.071 1.696 0.142

100 0.672 0.633 0.717 0.628 1.029 0.844

1.711 0.064 1.756 0.181 1.762 0.129

1 000 0.821 0.523 1.000 0.643 1.644 0.697

1.707 0.064 1.976 0.095 2.307 0.143

10 000 1.770 0.892 2.788 0.735 3.660 0.680

2.339 0.181 4.973 0.176 7.717 0.275

100 000 5.545 0.471 16.161 1.269 28.632 2.375

6.784 0.322 32.801 1.267 60.384 2.261

1 000 000 50.663 2.813 165.530 7.104 288.126 11.230

51.350 2.657 205.208 6.644 342.664 9.953

(a) Sequential Circuits + LAN Setting

102

A Appendix

X AX A

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms] Time [ms] SD [ms]

100 1.010 0.781 1.103 0.764 0.805 0.646

1.738 0.123 1.752 0.092 1.759 0.100

10 000 1.619 0.836 3.245 0.675 3.587 0.583

2.298 0.198 4.978 0.174 7.652 0.266

1 000 000 52.122 3.432 167.640 4.525 296.899 18.813

52.632 3.662 207.551 4.325 349.783 17.516

(b) Parallel Circuits + LAN Setting

X AX A

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms] Time [ms] SD [ms]

10 38.526 12.251 37.574 14.932 31.779 16.891

107.255 2.901 109.304 2.252 110.240 2.173

100 33.527 17.147 29.530 18.758 28.736 17.029

108.281 2.445 108.637 2.283 109.727 1.651

1 000 32.821 16.966 36.883 15.773 31.923 16.093

108.450 3.580 110.119 1.851 110.178 1.494

10 000 44.105 4.730 37.964 19.788 49.145 10.335

111.512 4.460 203.177 6.010 205.900 5.291

100 000 64.185 16.676 95.107 34.953 149.672 29.499

128.175 3.022 419.272 23.383 648.742 43.332

1 000 000 129.192 40.080 239.981 50.053 331.686 35.699

199.807 32.377 1 871.232 72.777 3 482.470 76.052

(c) Sequential Circuits + WAN Setting

X AX A

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms] Time [ms] SD [ms]

100 331.709 14.546 19.325 16.059 32.712 21.3641

108.639 2.979 108.916 2.682 109.665 2.944

10 000 46.068 4.558 47.927 8.508 53.957 12.0261

108.553 2.775 203.102 4.066 204.123 5.933

1 000 000 156.041 45.305 249.855 40.337 365.517 25.8141

221.747 31.732 1 885.767 125.435 3 472.997 117.171

(d) Parallel Circuits + WAN Setting

103

A Appendix

Online Phase. Table A.5 contains the average run-time results for the online phase of Yao’s
protocol along with the corresponding standard deviations. We separately specify the run-
times for the server and the client as reported by the ABY framework.

Table A.5: Online Phase Run-Time for Yao’s Protocol in the SFE Setting. Average run-time
for the online phase when computing (a) sequential circuits in the LAN setting, (b) parallel
circuits in the LAN setting, (c) sequential circuits in the WAN setting and (d) parallel circuits
in the WAN setting. The circuits are of different sizes and either consist only of XOR gates (X)
or consist of alternating layers of AND gates and XOR gates (AX) or consist only of AND
gates (A). For each circuit size, the first row of values is for the server and the second row of
values is for the client.

X AX A

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms] Time [ms] SD [ms]

10 2.595 0.140 2.553 0.175 2.579 0.226

2.652 0.267 2.583 0.199 2.548 0.237

100 2.598 0.192 2.652 0.220 2.478 0.116

2.617 0.261 2.687 0.159 2.584 0.184

1 000 2.633 0.124 2.758 0.123 3.152 0.198

2.677 0.125 2.656 0.149 2.876 0.165

10 000 3.353 0.193 5.508 0.323 7.840 0.226

3.428 0.193 3.963 0.262 4.613 0.119

100 000 10.404 0.416 30.552 1.827 50.438 2.046

10.327 0.405 14.670 1.117 19.360 2.175

1 000 000 79.550 2.884 157.029 3.177 217.533 2.675

79.532 2.881 117.649 2.878 163.657 3.680

(a) Sequential Circuits + LAN Setting

X AX A

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms] Time [ms] SD [ms]

100 2.591 0.092 2.497 0.153 2.592 0.147

2.624 0.157 2.580 0.253 2.619 0.240

10 000 3.358 0.171 5.984 1.187 8.173 1.334

3.445 0.166 4.539 1.064 5.044 1.209

1 000 000 80.376 2.437 157.323 2.286 223.615 10.155

80.360 2.411 118.346 1.836 171.337 10.260

(b) Parallel Circuits + LAN Setting

104

A Appendix

X AX A

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms] Time [ms] SD [ms]

10 214.137 4.223 214.610 2.492 215.714 3.355

213.836 5.131 210.284 3.551 212.144 2.680

100 214.906 6.653 213.467 4.201 213.819 3.547

212.250 4.656 210.180 3.193 208.809 3.386

1 000 215.670 3.091 217.790 3.261 215.574 2.019

214.182 4.847 214.356 2.782 211.817 3.844

10 000 218.478 4.398 310.562 7.717 310.033 6.476

213.615 4.237 217.766 5.476 218.848 5.824

100 000 246.666 5.258 488.762 29.139 670.242 40.266

242.127 4.870 232.797 11.023 229.768 5.389

1 000 000 307.065 11.597 1 904.270 61.384 3 466.422 82.038

304.553 10.371 338.923 14.430 390.611 21.203

(c) Sequential Circuits + WAN Setting

X AX A

Circuit Size Time [ms] SD [ms] Time [ms] SD [ms] Time [ms] SD [ms]

100 214.720 2.943 214.169 2.302 214.403 4.151

211.892 3.559 211.147 2.140 211.081 4.531

10 000 217.302 3.307 307.313 4.278 306.115 4.889

215.332 4.432 215.740 3.946 219.915 5.717

1 000 000 306.212 3.864 1 914.423 99.753 3 425.109 125.153

305.056 4.837 340.471 13.789 381.711 13.609

(d) Parallel Circuits + WAN Setting

105

	Introduction
	Background
	Secure Function Evaluation
	Building Blocks for SFE
	Yao's Garbled Circuit Protocol
	The GMW Protocol

	Private Function Evaluation
	The ABY Framework
	Intel SGX
	SGX Fundamentals
	Programming with Intel SGX
	Remote Attestation
	Applications of Intel SGX
	Side-Channel Attacks on Intel SGX

	Related Work
	Intel SGX-Based Secure Two-Party Computation
	Protocol Message Flow
	Implementation
	Circuit Evaluation
	2PC Protocol Implementation

	Instructions for Use
	Set-up
	Running the 2PC Protocol

	Evaluation
	Experimental Set-up
	Benchmarking Environment
	Circuit Design
	Protocol Phases

	SGX Operations
	Enclave Creation
	Remote Attestation

	Intel SGX-Based Secure Two-Party Computation
	Application Benchmarks
	Two-Party Computation Phase

	ABY-Based Secure Two-Party Computation
	Base-OTs
	Setup Phase
	Online Phase
	Total Time & Communication

	Discussion & Comparison
	One-Time Expenses
	Two-Party Computation Phase
	SFE Setting
	PFE Setting

	Conclusion
	List of Abbreviations
	Bibliography
	Appendix
	Implementation
	Remote Attestation Code Sample

	Evaluation
	Intel SGX-Based Secure Two-Party Computation
	ABY-Based Secure Two-Party Computation

